
A (Calculational) Look at Optimization

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

Mondrian Workshop#01
8-9 July 2010 (updated: August 2010

Aveiro, Portugal

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Motivation

Questions:

• Why is programming, or systems design “difficult”?

• Is there a generic skill, or competence, that one such acquire
to become a “good programmer”?

What makes programming difficult?

• Technology (mess) — don’t fall in the trap: simply abstract
from it!

• Requirements — again abstract from these as much as
possible — too, write formal models or specs

Specifications:

• What is it that makes the specification of a problem hard to
fulfill?

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Problems = Easy + Hard

Superlatives in problem statements, eg.

• ”... the smallest such number”

• ”... the longest such list”

• ”... the best approximation”

suggest two layers in specifications:

• the easy layer — broad class of solutions (eg. a prefix of a
list)

• the difficult layer — requires one particular such solution
regarded as optimal in some sense (eg. “shortest with
maximal density”).

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Example

Requirements for whole division x ÷ y :

• Write a program which computes number z which, multiplied
by y , approximates x .

• Check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• Ups! Forgot to tell that I want the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of x ÷ y?

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Example

Requirements for whole division x ÷ y :

• Write a program which computes number z which, multiplied
by y , approximates x .

• Check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• Ups! Forgot to tell that I want the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of x ÷ y?

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Example — writing a spec

First version (literal):

x ÷ y = 〈
∨

z :: z × y ≤ x〉 (1)

Second version (involved):

z = x ÷ y ⇔ 〈∃ r : 0 ≤ r < y : x = z × y + r〉 (2)

Third version (clever!):

z × y ≤ x ⇔ z ≤ x ÷ y (y > 0) (3)

— a Galois connection.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Why (3) is better than (1,2)

It captures the requirements:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y ≤ x

(let z := x ÷ y in (3) and simplify)

• It is the best solution because it provides the largest such
number:

z × y ≤ x ⇒ z ≤ x ÷ y (y > 0)

(the ⇒ part of ⇔).

Main advantage:

Highly calculational!

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Dissecting GCs

• Elsewhere, Silva and Oliveira (2008) follow the “GCs as specs”
motto and show how to derive x ÷ y from its defining GC.

• Today I would like to focus on a particular class of GCs in
which the easy+hard split is particularly apparent.

• We will handle such GCs in the relational pointfree style,
eventually leading to specs elegantly captured by a binary
combinator of shape

E � H

where E (=easy) provides the broad class of solutions and H
(=hard) provides the criterion for optimizing E so as to obtain
the “superlative effect”.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

GCs as specs — examples

The take function on lists (longest prefix up-to specified length) is
the upper adjoint of GC

len y ≤ n ∧ y v x ⇔ y v take(n, x)

(Oliveira, 2010). Another GC,

〈∀ i : i ∈ inds y : p(y i)〉 ∧ y v x ⇔ y v takewhile p x

specifies takewhile p (longest prefix meeting condition p).

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Abstract pattern

Both GCs above (and many others!) share the abstract pattern

p y ∧ y v x ⇔ y v h x (4)

meaning:

• a generic GC between all objects y which satisfy property p
and all arbitrary such objects (x).

• lower-adjoint is an embedding

• upper-adjoint h is such that h x yields the best
approximation to x which satisfies p.

• (Typically, v will be a partial order.)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Aims

How much can we expect from (4)?

• A lot, as we will see

• But, we need to go pointfree

This means “shrinking” equivalence

p y ∧ y v x ⇔ y v h x

into (relational) equality

Φp · v = v · h (5)

where “· ” means relational composition and Φp denotes the
partial identity which captures property p. Details follow.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Relational composition and equality

Composition:

B A
Roo C

Soo

R·S

gg (6)

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (7)

In case S is a function (say h):

b(R · h)c ⇔ b R (h a) (8)

Equality:

R = S ⇔ 〈∀ b, a :: b R a⇔ b S a〉 (9)

(as happens in GCs.)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Converses and partial identities (coreflexives)

Converses: every B A
Roo has a converse B

R◦ // A such
that:

a(R◦)b ⇔ b R a (10)

Coreflexives: binary relation encodings of unary predicates:

b Φp a ⇔ b = a ∧ (p a) (11)

Thus, given unary predicate Bool A
poo , relation A A

Φpoo is

the largest fragment of the identity A A
idoo to involve objects

satisfying p:

X ⊆ Φp ⇔ X ⊆ id ∧ 〈∀ a : a X a : p a〉

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Relational types

Note the arrow notation used for relations in the same way as for
functions. This extends to writing arrows such as, for instance,

Φp Φp
voo

to mean the same as

v · Φp ⊆ Φp · v (12)

In words: if an upper-bound satisfies p then the lower-bound does
so as well. It can be checked that this means the same as the
pointwise

x v y ∧ (p y) ⇒ p x

In other words: property p is downward closed.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Calculating with generic GC

Φp · v = v · h

⇔ { anti-symmetry }

Φp · v ⊆ v · h ∧ v · h ⊆ Φp · v

⇔ { h ⊆ Φp · v ⇔ v · h ⊆ Φp · v because p is downward closed }

Φp · v ⊆ v · h ∧ h ⊆ Φp · v

⇔ { converses ; swap conjuncts }

h ⊆ Φp · v ∧ (Φp · v)◦ ⊆ h◦ · w

⇔ { shunting on h◦ }

h ⊆ Φp · v︸ ︷︷ ︸
“easy”

∧ h · (Φp · v)◦ ⊆ w︸ ︷︷ ︸
“hard”

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Calculating with generic GC

Comments:

• Easy part: h ⊆ Φp · v — ensures h yielding approximations
satisfying p

• Hard part: h · (Φp · v)◦ ⊆ w — ensures h yielding the best
such approximation.

Let us define a new combinator for this:

in general, given relation B A
Roo

and optimization criterion B B
Soo

on its outputs,

A

R
��

R�S

����
��

��
�

B B
S

oo

define R � S satisfying universal property:

X ⊆ R � S ⇔ X ⊆ R ∧ X · R◦ ⊆ S (13)

This is explained below with points (and words).

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

The “R optimized by S” combinator

• The ⇐ part of the given property

X ⊆ R � S ⇐ X ⊆ R ∧ X · R◦ ⊆ S a_

R
��

>
X

��~~
~~

~~
~

b′ b
�

S
oo

ensures R � S as the largest sub-relation X of R such that, for
all b′, b ∈ B, if there exists a ∈ A such that b′Xa ∧ bRa, then
b′Sb holds (“b′ better than b”).

• The same in a closed formula,

R � S = R︸︷︷︸
easy

∩S/R◦︸ ︷︷ ︸
hard

(14)

thanks to the GC of relational division (compare with integer
division):

X · R ⊆ S ⇔ X ⊆ S / R (15)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Role of division (“hard” part)

With points:

c(S / P)a ⇔ 〈∀ b : a P b : c S b〉 a?
S/P

����
��

��
��

c b
_
P

OO

�
S

oo

Thus, b′(R � S)a means

b′ R a ∧ 〈∀ b : b R a : b′ S b〉

Comments:

• Reasoning with quantifiers would mean “going one century
back”.

• Instead, we resort on the algebra of relational division — see
eg. next slide.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Role of division (“hard” part)

From GC X · R ⊆ S ⇔ X ⊆ S / R infer:

• (Right) cancellation:

(S/R) · R ⊆ S (16)

• Upper-adjoint distribution:

(S ∩ P)/R = (S/R) ∩ (P/R) (17)

• Lower-adjoint distribution:

(X ∪ Y) · R = X · R ∪ Y · R (18)

etc

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Algebra of R � S

• First intuitions arose when dealing with lists in Alloy in
calculating the journaled refinement of a FLASH memory
model, see (Ferreira and Oliveira, 2010) — no head/tail
recursion in Alloy!

• Example of R � S where R is a data-structure:
Mark Student

10 John
11 Mary
12 John
15 Arthur

 � ≥ =

Mark Student

11 Mary
12 John
15 Arthur

• Since then, I’ve been developing the algebra of R � S on a
“call by need” fashion.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Basic properties

Chaotic optimization:

R �> = R (19)

Impossible optimization:

R �⊥ = ⊥ (20)

Force determinism:

R � id = largest deterministic fragment of R (21)

Pre-condition fusion:

(R � S) · Φ = (R · Φ) � S (22)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Basic properties

Function fusion (where Rf abbreviates f ◦ · R · f):

(R � S) · f = (R · f) � S (23)

(f · S) � R = f · (S � Rf) (24)

Ensure simplicity (determinism):

R � S is simple ⇐ S is anti-symmetric (25)

Deterministic (simple) = already optimized: for R simple,

R � S = R ⇔ img R ⊆ S (26)

Thus (functions)

f � S = f ⇐ S is reflexive (27)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Basic properties

Union:

(R ∪ S) � Q = (R � Q) ∩ Q/S◦ ∪ (S � Q) ∩ Q/R◦ (28)

This has a number of corollaries, namely conditionals:

(P → R , T) � S = P → (R � S) , (T � S) (29)

Disjoint union:

[R,S] � U = [R � U,S � U] (30)

where the junc operator

[R,S] 4 R · i◦1 ∪ S · i◦2 (31)

is associated to relational coproducts.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

The “function competition” rule

A corollary of the union rule,

(f ∪ g) � S = (f ∩ S · g) ∪ (g ∩ S · f) (32)

since S/g◦ = S · g . Comments:

• For S anti-symmetric, (f ∪ g) � S is always simple at the cost
of not being entire.

• If furthermore one function (say g) “always wins” over the
other with respect S — (g x)S(f x) for all x — then
(f ∪ g) � S = g .

Details in the next slide.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

The “function competition” rule

From (32) we easily infer a side condition for g to win over f :

(f ∪ g) � S = g ⇐ g ⊆ S · f ∧ f ⊆ (S · g ⇒ g) (33)

Note that:

• Condition f ⊆ (S · g ⇒ g) — which ensures that the outcome
is a function — can be dropped for anti-symmetric S .

• This is so because f ⊆ S◦ · g (the same as the first conjunct,
taking converses) eventually makes f ⊆ (S · g ⇒ g) equivalent
to f ∩ (S ∩ S◦) · g ⊆ g .

• Note, however, that S is usually a preorder, therefore not
anti-symmetric.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Optimizing inductive relations

Quite often, the orderings involved in optimization are inductive
relations.

• Inductive orderings lead to recursive programs

• “Greedy algorithms” and “dynamic programming” studied in
this way in the Algebra of Programming book (Bird and
de Moor, 1997).

• Complexity of the approach puts many readers off (need for a
tabular, power allegory; always transposing relations to
powerset functions; ...)

• R � S algebra greatly simplifies and generalizes the
calculation of programs from such specifications.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Inductive relations

Example — inductive definition of the prefix relation:

x v nil ⇔ x = nil

x v cons(h, t) ⇔ x = nil ∨ 〈∃ x ′ : x = cons(h, x ′) : x ′ v t〉

The same in the pointfree style — unique solution of equation

v · [nil , cons] = [nil , nil ∪ cons] · (id + id ×v) (34)

Notation “folklore”:

v = (|[nil , nil ∪ cons]|)

where (|· · ·|) is termed the κατα combinator.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Kαταs in general

In general, for F a polynomial functor (relator) and initial

µF F(µF)
inoo ,

µF

(|R|)
��

in◦

**
∼= F(µF)

F(|R|)
��

in

hh

A F A
R

oo

there is a unique solution to equation X = R · F X · in◦ — thus
universal property:

X = (|R|) ⇔ X = R · F X · in◦ (35)

(Read (|R|) as “κατα R”.)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Introducing the κατα combinator

Therefore, by Knaster-Tarski: (|R|) is both the least prefix point

(|R|) ⊆ X ⇐ R · F X · in◦ ⊆ X (36)

and the greatest postfix point:

X ⊆ (|R|) ⇐ X ⊆ R · F X · in◦ (37)

Corollaries include reflexion,

(|in|) = id (38)

and two forms of κατα-fusion:

S · (|R|) ⊆ (|T |) ⇐ S · R ⊆ T · F S (39)

(|T |) ⊆ S · (|R|) ⇐ T · F S ⊆ S · R (40)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Derived properties

Post-conditioning (make T := Φ · R in (40) and simplify):

(|Φ · R|) ⊆ Φ · (|R|) (41)

Dropping type checks:

(|R|) ⊆ S · (|R|) ⇐ S F S
Roo (42)

(among many others)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

“Greedy” theorem

My version of theorem 7.2 by Bird and de Moor (1997):

(|R � S |) ⊆ (|R|) � S ⇐ S◦ F S◦Roo (43)

for S transitive. In a diagram, where the side condition is depicted
in dashed arrows:

µF

in◦

++

(|R|)�S

{{vvvvvvvvvvv

(|R|)
��

(|R�S |)

��

∼= F(µF)

F(|R|)
��

in

jj

A A
Soo FA

Roo

R�S

kk

⊇

A

S◦

OO�
�
�
�

FA
R

oo_ _ _ _ _ _ _ _ _ _ _ _

FS◦

OO�
�
�
�

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Calculational proof

(|R � S |) ⊆ (|R|) � S

⇔ { universal property of (�) (13) }

(|R � S |) ⊆ (|R|) ∧ (|R � S |) · (|R|)◦ ⊆ S

⇔ { monotonicity, since X � Y ⊆ X in general }

(|R � S |) · (|R|)◦ ⊆ S

⇔ { hylomorphisms: (|S |) · (|R|)◦ = 〈µ X :: S · F X · R◦〉 }

〈µ X :: (R � S) · F X · R◦〉 ⊆ S

⇐ { least (pre)fixpoint }

(R � S) · F S · R◦ ⊆ S

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Calculational proof (closing)

(R � S) · F S · R◦ ⊆ S

⇐ { side-condition S◦ F S◦Roo ; converses ; monotonicity }

(R � S) · R◦ · S ⊆ S

⇐ { since R � S ⊆ S/R◦ }

(S/R◦) · R◦ · S ⊆ S

⇐ { division cancellation (16) }

S · S ⊆ S

⇐ { S assumed transitive }

True

(Re-worked from (Bird and de Moor, 1997).)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Back to the beginning

Resuming what we were doing:

h ⊆ Φp · v︸ ︷︷ ︸
“easy”

∧ h · (Φp · v)◦ ⊆ w︸ ︷︷ ︸
“hard”

⇔ { introduce optimization combinator (13) }

h ⊆ (Φp · v) �w

Note that:

• (Φp · v) �w is entire because h is so

• (Φp · v) �w will be simple in case w is anti-symmetric.

Thus, for a partial order v, the upper adjoint of the starting GC is

h = (Φp · v) �w (44)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Calculational options

How do we calculate h ? Two ways:

1. Use the pointwise GC implicit in (44) — the one we started
from — and use the pointwise properties of v.

• This was the method used in (Oliveira, 2010) for calculating a
number of upper-adjoints, namely take.

• better in forecasting properties of h than in implementing it.

2. Resort to (44) directly, using the “greedy” theorem.

Here is an example:

takewhile p ⊆ ((Φp)
? · (|[nil , nil ∪ cons]|)) �≥length

where (Φp)
? is the “every element meets p” check on lists and

• (|[nil , nil ∪ cons]|) is the inductive definition of v on finite lists;

• ≥length= length◦· ≥ ·length is the “longer than” preorder.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

“The longest prefix of a list is itself”

For economy of exposition, let us consider the more immediate

id ⊆ (|[nil , nil ∪ cons]|) �≥length

(=“the longest prefix of a list is itself”).

For the “greedy” theorem (43) to be of use, side condition

≥◦
length id + id× ≥◦

length
[nil ,nil∪cons]oo

must be checked beforehand. Noting that ≥◦
length= ≤length, we

have to check

[nil , (nil ∪ cons) · (id ×≤length)] ⊆ ≤length · [nil , nil ∪ cons]

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

“The longest prefix of a list is itself”

From basic properties of relational coproducts this unfolds into

nil ⊆ ≤length · nil

(nil ∪ cons) · (id ×≤length) ⊆ ≤length · (nil ∪ cons)

which (since ≤length is a preorder) shrinks to monotonicity
condition

cons · (id ×≤length) ⊆ ≤length · cons

which trivially holds

length y ≤ length x ⇒ length(cons(h, y) ≤ length(cons(h, x))

since length(cons(a, b)) = 1 + length b.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

“The longest prefix of a list is itself”

Thus we can rely on the “greedy” theorem (43):

id ⊆ (|[nil , nil ∪ cons]|) �≥length

⇐ { (43) followed by (30) ; nil �≥length = nil }

id ⊆ (|[nil , (nil ∪ cons) �≥length]|)

⇔ { function competition (33), details omitted }

id ⊆ (|[nil , cons]|)

⇔ { κατα-reflexion (38) }

id ⊆ id

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

takewhile in brief

• The takewhile spec,

takewhile p ⊆ ((Φp)
? · (|[nil , nil ∪ cons]|)) �≥length

adds post-condition (Φp)
? to what produced the identity

function above.

• This is another inductive (“map”-like) relation, a coreflexive:

(Φp)
? = (|[nil , cons · (Φp × id)]|)

which fuses with prefix (|[nil , nil ∪ cons]|) — recall (41) —
yielding

(|[nil , (nil ∪ cons · (Φp × id)) �≥length]|)

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

takewhile in brief

Thus we meet a variant of function competition which leads to a
familiar encoding,

(f ∪ g · Φp) � S = p → g , f

— under the side-conditions of (33) — and thus

takewhile p = (|[nil , p · π1 → cons , nil]|)

which becomes

takewhile :: (a -> Bool) -> [a] -> [a]
takewhile p [] = []
takewhile p (h:t)

| p h = h: takewhile p t
| otherwise = []

in Haskell notation.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Winding up — related work

• The R � S combinator corresponds to what Bird and de Moor

(1997) write as min S · ΛR where PB A
ΛRoo (a function) is

the powerset-transpose of relation B A
Roo and

B PB
min Soo computes the minimum of a set (if it exists)

according to relation S .

• Currently re-working results of the book so as to check the
calculational power of the combinator.

• Also trying to calculate far more complex functions, for
instance the shortest maximally-dense prefix function (two
superlatives!) studied by Mu and Curtis (2010).

• Functions of this kind arise in bioinformatics in finding sections
of DNA dense with mutations. Read (Mu and Curtis, 2010).

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Last but not least

Towards optimization of probabilistic, or stochastic systems —
plan of the work is:

• Shift from relational algebra to linear algebra — cf. “matrices
as arrows” (Macedo and Oliveira, 2010)

• Binary relations (Boolean matrices) give place to system
behaviour models such as eg. Markov chains, etc

• (Blocked) linear algebra is pointfree “per se”

• Studying conditions for the extension

X ≤ R � S ⇔ X ≤ R ∧ X · Rt ≤ S

to make sense, where X , R, S are stochastic matrices.

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

References

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall International, 1997. C.A.R.
Hoare, series editor.

M.A. Ferreira and J.N. Oliveira. Variations on an Alloy-centric
tool-chain in verifying a journaled file system model. Technical
Report DI-CCTC-10-07, DI/CCTC, University of Minho, Gualtar
Campus, Braga, January 2010. Available from the authors’
websites.

H.D. Macedo and J.N. Oliveira. Matrices as arrows! a biproduct
approach to typed linear algebra, 2010. (Submitted to MPC’10).

Shin-Cheng Mu and S. Curtis. Functional pearl: Maximally dense
segments, 2010. Draft: see
http://www.iis.sinica.edu.tw/ scm/2010/functional-pearl-
maximally-dense-segments/.

J.N. Oliveira. A Look at Program “Galculation”, January 2010.
Presentation at the IFIP WG 2.1 #65 Meeting.

P.F. Silva and J.N. Oliveira. ’Galculator’: functional prototype of a
Galois-connection based proof assistant. In PPDP ’08:

http://progtools.comlab.ox.ac.uk/members/oege/publications/aop97
http://portal.acm.org/citation.cfm?id=1389456&jmp=cit&coll=portal&dl=GUIDE&CFID=39121848&CFTOKEN=50253653##
http://portal.acm.org/citation.cfm?id=1389456&jmp=cit&coll=portal&dl=GUIDE&CFID=39121848&CFTOKEN=50253653##

Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Proceedings of the 10th international ACM SIGPLAN conference
on Principles and practice of declarative programming, pages
44–55, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-117-0. doi:
http://doi.acm.org/10.1145/1389449.1389456. .

	Introduction
	Optimization as a combinator
	The algebra
	Inductive relations
	Example
	Closing
	References

