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Motivation

Questions:

• Why is programming, or systems design “difficult”?

• Is there a generic skill, or competence, that one such acquire
to become a “good programmer”?

What makes programming difficult?

• Technology (mess) — don’t fall in the trap: simply abstract
from it!

• Requirements — again abstract from these as much as
possible — too, write formal models or specs

Specifications:

• What is it that makes the specification of a problem hard to
fulfill?
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Problems = Easy + Hard

Superlatives in problem statements, eg.

• ”... the smallest such number”

• ”... the longest such list”

• ”... the best approximation”

suggest two layers in specifications:

• the easy layer — broad class of solutions (eg. a prefix of a
list)

• the difficult layer — requires one particular such solution
regarded as optimal in some sense (eg. “shortest with
maximal density”).
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Example

Requirements for whole division x ÷ y :

• Write a program which computes number z which, multiplied
by y , approximates x .

• Check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• Ups! Forgot to tell that I want the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of x ÷ y?
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Example — writing a spec

First version (literal):

x ÷ y = 〈
∨

z :: z × y ≤ x〉 (1)

Second version (involved):

z = x ÷ y ⇔ 〈∃ r : 0 ≤ r < y : x = z × y + r〉 (2)

Third version (clever!):

z × y ≤ x ⇔ z ≤ x ÷ y (y > 0) (3)

— a Galois connection.
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Why (3) is better than (1,2)

It captures the requirements:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y ≤ x

(let z := x ÷ y in (3) and simplify)

• It is the best solution because it provides the largest such
number:

z × y ≤ x ⇒ z ≤ x ÷ y (y > 0)

(the ⇒ part of ⇔).

Main advantage:

Highly calculational!
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Dissecting GCs

• Elsewhere, Silva and Oliveira (2008) follow the “GCs as specs”
motto and show how to derive x ÷ y from its defining GC.

• Today I would like to focus on a particular class of GCs in
which the easy+hard split is particularly apparent.

• We will handle such GCs in the relational pointfree style,
eventually leading to specs elegantly captured by a binary
combinator of shape

E � H

where E (=easy) provides the broad class of solutions and H
(=hard) provides the criterion for optimizing E so as to obtain
the “superlative effect”.
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GCs as specs — examples

The take function on lists (longest prefix up-to specified length) is
the upper adjoint of GC

len y ≤ n ∧ y v x ⇔ y v take(n, x)

(Oliveira, 2010). Another GC,

〈∀ i : i ∈ inds y : p(y i)〉 ∧ y v x ⇔ y v takewhile p x

specifies takewhile p (longest prefix meeting condition p).
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Abstract pattern

Both GCs above (and many others!) share the abstract pattern

p y ∧ y v x ⇔ y v h x (4)

meaning:

• a generic GC between all objects y which satisfy property p
and all arbitrary such objects (x).

• lower-adjoint is an embedding

• upper-adjoint h is such that h x yields the best
approximation to x which satisfies p.

• (Typically, v will be a partial order.)
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Aims

How much can we expect from (4)?

• A lot, as we will see

• But, we need to go pointfree

This means “shrinking” equivalence

p y ∧ y v x ⇔ y v h x

into (relational) equality

Φp · v = v · h (5)

where “· ” means relational composition and Φp denotes the
partial identity which captures property p. Details follow.
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Relational composition and equality

Composition:

B A
Roo C

Soo

R·S

gg (6)

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (7)

In case S is a function (say h):

b(R · h)c ⇔ b R (h a) (8)

Equality:

R = S ⇔ 〈∀ b, a :: b R a⇔ b S a〉 (9)

(as happens in GCs.)
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Converses and partial identities (coreflexives)

Converses: every B A
Roo has a converse B

R◦ // A such
that:

a(R◦)b ⇔ b R a (10)

Coreflexives: binary relation encodings of unary predicates:

b Φp a ⇔ b = a ∧ (p a) (11)

Thus, given unary predicate Bool A
poo , relation A A

Φpoo is

the largest fragment of the identity A A
idoo to involve objects

satisfying p:

X ⊆ Φp ⇔ X ⊆ id ∧ 〈∀ a : a X a : p a〉
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Relational types

Note the arrow notation used for relations in the same way as for
functions. This extends to writing arrows such as, for instance,

Φp Φp
voo

to mean the same as

v · Φp ⊆ Φp · v (12)

In words: if an upper-bound satisfies p then the lower-bound does
so as well. It can be checked that this means the same as the
pointwise

x v y ∧ (p y) ⇒ p x

In other words: property p is downward closed.
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Calculating with generic GC

Φp · v = v · h

⇔ { anti-symmetry }

Φp · v ⊆ v · h ∧ v · h ⊆ Φp · v

⇔ { h ⊆ Φp · v ⇔ v · h ⊆ Φp · v because p is downward closed }

Φp · v ⊆ v · h ∧ h ⊆ Φp · v

⇔ { converses ; swap conjuncts }

h ⊆ Φp · v ∧ (Φp · v)◦ ⊆ h◦ · w

⇔ { shunting on h◦ }

h ⊆ Φp · v︸ ︷︷ ︸
“easy”

∧ h · (Φp · v)◦ ⊆ w︸ ︷︷ ︸
“hard”
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Calculating with generic GC

Comments:

• Easy part: h ⊆ Φp · v — ensures h yielding approximations
satisfying p

• Hard part: h · (Φp · v)◦ ⊆ w — ensures h yielding the best
such approximation.

Let us define a new combinator for this:

in general, given relation B A
Roo

and optimization criterion B B
Soo

on its outputs,

A

R
��

R�S

����
��

��
�

B B
S

oo

define R � S satisfying universal property:

X ⊆ R � S ⇔ X ⊆ R ∧ X · R◦ ⊆ S (13)

This is explained below with points (and words).
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The “R optimized by S” combinator

• The ⇐ part of the given property

X ⊆ R � S ⇐ X ⊆ R ∧ X · R◦ ⊆ S a_

R
��

>
X

��~~
~~

~~
~

b′ b
�

S
oo

ensures R � S as the largest sub-relation X of R such that, for
all b′, b ∈ B, if there exists a ∈ A such that b′Xa ∧ bRa, then
b′Sb holds (“b′ better than b”).

• The same in a closed formula,

R � S = R︸︷︷︸
easy

∩S/R◦︸ ︷︷ ︸
hard

(14)

thanks to the GC of relational division (compare with integer
division):

X · R ⊆ S ⇔ X ⊆ S / R (15)
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Role of division (“hard” part)

With points:

c(S / P)a ⇔ 〈∀ b : a P b : c S b〉 a?
S/P

����
��

��
��

c b
_
P

OO

�
S

oo

Thus, b′(R � S)a means

b′ R a ∧ 〈∀ b : b R a : b′ S b〉

Comments:

• Reasoning with quantifiers would mean “going one century
back”.

• Instead, we resort on the algebra of relational division — see
eg. next slide.
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Role of division (“hard” part)

From GC X · R ⊆ S ⇔ X ⊆ S / R infer:

• (Right) cancellation:

(S/R) · R ⊆ S (16)

• Upper-adjoint distribution:

(S ∩ P)/R = (S/R) ∩ (P/R) (17)

• Lower-adjoint distribution:

(X ∪ Y ) · R = X · R ∪ Y · R (18)

etc



Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

Algebra of R � S

• First intuitions arose when dealing with lists in Alloy in
calculating the journaled refinement of a FLASH memory
model, see (Ferreira and Oliveira, 2010) — no head/tail
recursion in Alloy!

• Example of R � S where R is a data-structure:
Mark Student

10 John
11 Mary
12 John
15 Arthur

 � ≥ =

Mark Student

11 Mary
12 John
15 Arthur

• Since then, I’ve been developing the algebra of R � S on a
“call by need” fashion.
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Basic properties

Chaotic optimization:

R �> = R (19)

Impossible optimization:

R �⊥ = ⊥ (20)

Force determinism:

R � id = largest deterministic fragment of R (21)

Pre-condition fusion:

(R � S) · Φ = (R · Φ) � S (22)
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Basic properties

Function fusion (where Rf abbreviates f ◦ · R · f ):

(R � S) · f = (R · f ) � S (23)

(f · S) � R = f · (S � Rf ) (24)

Ensure simplicity (determinism):

R � S is simple ⇐ S is anti-symmetric (25)

Deterministic (simple) = already optimized: for R simple,

R � S = R ⇔ img R ⊆ S (26)

Thus (functions)

f � S = f ⇐ S is reflexive (27)
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Basic properties

Union:

(R ∪ S) � Q = (R � Q) ∩ Q/S◦ ∪ (S � Q) ∩ Q/R◦ (28)

This has a number of corollaries, namely conditionals:

(P → R , T ) � S = P → (R � S) , (T � S) (29)

Disjoint union:

[R,S ] � U = [R � U,S � U] (30)

where the junc operator

[R,S ] 4 R · i◦1 ∪ S · i◦2 (31)

is associated to relational coproducts.
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The “function competition” rule

A corollary of the union rule,

(f ∪ g) � S = (f ∩ S · g) ∪ (g ∩ S · f ) (32)

since S/g◦ = S · g . Comments:

• For S anti-symmetric, (f ∪ g) � S is always simple at the cost
of not being entire.

• If furthermore one function (say g) “always wins” over the
other with respect S — (g x)S(f x) for all x — then
(f ∪ g) � S = g .

Details in the next slide.



Introduction Optimization as a combinator The algebra Inductive relations Example Closing References

The “function competition” rule

From (32) we easily infer a side condition for g to win over f :

(f ∪ g) � S = g ⇐ g ⊆ S · f ∧ f ⊆ (S · g ⇒ g) (33)

Note that:

• Condition f ⊆ (S · g ⇒ g) — which ensures that the outcome
is a function — can be dropped for anti-symmetric S .

• This is so because f ⊆ S◦ · g (the same as the first conjunct,
taking converses) eventually makes f ⊆ (S · g ⇒ g) equivalent
to f ∩ (S ∩ S◦) · g ⊆ g .

• Note, however, that S is usually a preorder, therefore not
anti-symmetric.
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Optimizing inductive relations

Quite often, the orderings involved in optimization are inductive
relations.

• Inductive orderings lead to recursive programs

• “Greedy algorithms” and “dynamic programming” studied in
this way in the Algebra of Programming book (Bird and
de Moor, 1997).

• Complexity of the approach puts many readers off (need for a
tabular, power allegory; always transposing relations to
powerset functions; ...)

• R � S algebra greatly simplifies and generalizes the
calculation of programs from such specifications.
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Inductive relations

Example — inductive definition of the prefix relation:

x v nil ⇔ x = nil

x v cons(h, t) ⇔ x = nil ∨ 〈∃ x ′ : x = cons(h, x ′) : x ′ v t〉

The same in the pointfree style — unique solution of equation

v · [nil , cons] = [nil , nil ∪ cons] · (id + id ×v) (34)

Notation “folklore”:

v = (|[nil , nil ∪ cons]|)

where (|· · ·|) is termed the κατα combinator.
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Kαταs in general

In general, for F a polynomial functor (relator) and initial

µF F(µF)
inoo ,

µF

(|R|)
��

in◦

**
∼= F(µF)

F(|R|)
��

in

hh

A F A
R

oo

there is a unique solution to equation X = R · F X · in◦ — thus
universal property:

X = (|R|) ⇔ X = R · F X · in◦ (35)

(Read (|R|) as “κατα R”.)
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Introducing the κατα combinator

Therefore, by Knaster-Tarski: (|R|) is both the least prefix point

(|R|) ⊆ X ⇐ R · F X · in◦ ⊆ X (36)

and the greatest postfix point:

X ⊆ (|R|) ⇐ X ⊆ R · F X · in◦ (37)

Corollaries include reflexion,

(|in|) = id (38)

and two forms of κατα-fusion:

S · (|R|) ⊆ (|T |) ⇐ S · R ⊆ T · F S (39)

(|T |) ⊆ S · (|R|) ⇐ T · F S ⊆ S · R (40)
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Derived properties

Post-conditioning (make T := Φ · R in (40) and simplify):

(|Φ · R|) ⊆ Φ · (|R|) (41)

Dropping type checks:

(|R|) ⊆ S · (|R|) ⇐ S F S
Roo (42)

(among many others)
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“Greedy” theorem

My version of theorem 7.2 by Bird and de Moor (1997):

(|R � S |) ⊆ (|R|) � S ⇐ S◦ F S◦Roo (43)

for S transitive. In a diagram, where the side condition is depicted
in dashed arrows:

µF

in◦

++

(|R|)�S

{{vvvvvvvvvvv

(|R|)
��

(|R�S |)

��

∼= F(µF)

F(|R|)
��

in

jj

A A
Soo FA

Roo

R�S

kk

⊇

A

S◦

OO�
�
�
�

FA
R

oo_ _ _ _ _ _ _ _ _ _ _ _

FS◦

OO�
�
�
�
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Calculational proof

(|R � S |) ⊆ (|R|) � S

⇔ { universal property of (�) (13) }

(|R � S |) ⊆ (|R|) ∧ (|R � S |) · (|R|)◦ ⊆ S

⇔ { monotonicity, since X � Y ⊆ X in general }

(|R � S |) · (|R|)◦ ⊆ S

⇔ { hylomorphisms: (|S |) · (|R|)◦ = 〈µ X :: S · F X · R◦〉 }

〈µ X :: (R � S) · F X · R◦〉 ⊆ S

⇐ { least (pre)fixpoint }

(R � S) · F S · R◦ ⊆ S
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Calculational proof (closing)

(R � S) · F S · R◦ ⊆ S

⇐ { side-condition S◦ F S◦Roo ; converses ; monotonicity }

(R � S) · R◦ · S ⊆ S

⇐ { since R � S ⊆ S/R◦ }

(S/R◦) · R◦ · S ⊆ S

⇐ { division cancellation (16) }

S · S ⊆ S

⇐ { S assumed transitive }

True

(Re-worked from (Bird and de Moor, 1997).)
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Back to the beginning

Resuming what we were doing:

h ⊆ Φp · v︸ ︷︷ ︸
“easy”

∧ h · (Φp · v)◦ ⊆ w︸ ︷︷ ︸
“hard”

⇔ { introduce optimization combinator (13) }

h ⊆ (Φp · v) �w

Note that:

• (Φp · v) �w is entire because h is so

• (Φp · v) �w will be simple in case w is anti-symmetric.

Thus, for a partial order v, the upper adjoint of the starting GC is

h = (Φp · v) �w (44)
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Calculational options

How do we calculate h ? Two ways:

1. Use the pointwise GC implicit in (44) — the one we started
from — and use the pointwise properties of v.

• This was the method used in (Oliveira, 2010) for calculating a
number of upper-adjoints, namely take.

• better in forecasting properties of h than in implementing it.

2. Resort to (44) directly, using the “greedy” theorem.

Here is an example:

takewhile p ⊆ ((Φp)
? · (|[nil , nil ∪ cons]|)) �≥length

where (Φp)
? is the “every element meets p” check on lists and

• (|[nil , nil ∪ cons]|) is the inductive definition of v on finite lists;

• ≥length= length◦· ≥ ·length is the “longer than” preorder.
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“The longest prefix of a list is itself”

For economy of exposition, let us consider the more immediate

id ⊆ (|[nil , nil ∪ cons]|) �≥length

(=“the longest prefix of a list is itself”).

For the “greedy” theorem (43) to be of use, side condition

≥◦
length id + id× ≥◦

length
[nil ,nil∪cons]oo

must be checked beforehand. Noting that ≥◦
length= ≤length, we

have to check

[nil , (nil ∪ cons) · (id ×≤length)] ⊆ ≤length · [nil , nil ∪ cons]
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“The longest prefix of a list is itself”

From basic properties of relational coproducts this unfolds into

nil ⊆ ≤length · nil

(nil ∪ cons) · (id ×≤length) ⊆ ≤length · (nil ∪ cons)

which (since ≤length is a preorder) shrinks to monotonicity
condition

cons · (id ×≤length) ⊆ ≤length · cons

which trivially holds

length y ≤ length x ⇒ length(cons(h, y) ≤ length(cons(h, x))

since length(cons(a, b)) = 1 + length b.
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“The longest prefix of a list is itself”

Thus we can rely on the “greedy” theorem (43):

id ⊆ (|[nil , nil ∪ cons]|) �≥length

⇐ { (43) followed by (30) ; nil �≥length = nil }

id ⊆ (|[nil , (nil ∪ cons) �≥length]|)

⇔ { function competition (33), details omitted }

id ⊆ (|[nil , cons]|)

⇔ { κατα-reflexion (38) }

id ⊆ id
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takewhile in brief

• The takewhile spec,

takewhile p ⊆ ((Φp)
? · (|[nil , nil ∪ cons]|)) �≥length

adds post-condition (Φp)
? to what produced the identity

function above.

• This is another inductive (“map”-like) relation, a coreflexive:

(Φp)
? = (|[nil , cons · (Φp × id)]|)

which fuses with prefix (|[nil , nil ∪ cons]|) — recall (41) —
yielding

(|[nil , (nil ∪ cons · (Φp × id)) �≥length]|)
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takewhile in brief

Thus we meet a variant of function competition which leads to a
familiar encoding,

(f ∪ g · Φp) � S = p → g , f

— under the side-conditions of (33) — and thus

takewhile p = (|[nil , p · π1 → cons , nil ]|)

which becomes

takewhile :: (a -> Bool) -> [a] -> [a]
takewhile p [] = []
takewhile p (h:t)

| p h = h: takewhile p t
| otherwise = []

in Haskell notation.
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Winding up — related work

• The R � S combinator corresponds to what Bird and de Moor

(1997) write as min S · ΛR where PB A
ΛRoo (a function) is

the powerset-transpose of relation B A
Roo and

B PB
min Soo computes the minimum of a set (if it exists)

according to relation S .

• Currently re-working results of the book so as to check the
calculational power of the combinator.

• Also trying to calculate far more complex functions, for
instance the shortest maximally-dense prefix function (two
superlatives!) studied by Mu and Curtis (2010).

• Functions of this kind arise in bioinformatics in finding sections
of DNA dense with mutations. Read (Mu and Curtis, 2010).
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Last but not least

Towards optimization of probabilistic, or stochastic systems —
plan of the work is:

• Shift from relational algebra to linear algebra — cf. “matrices
as arrows” (Macedo and Oliveira, 2010)

• Binary relations (Boolean matrices) give place to system
behaviour models such as eg. Markov chains, etc

• (Blocked) linear algebra is pointfree “per se”

• Studying conditions for the extension

X ≤ R � S ⇔ X ≤ R ∧ X · Rt ≤ S

to make sense, where X , R, S are stochastic matrices.
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