
On a Monadic Encoding of Continuous
Behaviour

Renato Neves

joint work with: Lúıs Barbosa, Manuel Martins, Dirk Hofmann

INESC TEC (HASLab) & Universidade do Minho

October 1, 2015

1 / 27

The main goal

A coalgebraic calculus of hybrid components.

2 / 27

Motivation & Context

Hybrid systems possess both discrete and continuous behaviour.

1 2 3 4 5 6

1

2

3

4

Time →

A discrete evolution

1 2 3 4 5 6

1

2

3

4

Time →

A continuous evolution

• They are often complex

• but can be seen as the composition of (simpler) components.

3 / 27

Motivation & Context

Hybrid systems possess both discrete and continuous behaviour.

1 2 3 4 5 6

1

2

3

4

Time →

A discrete evolution

1 2 3 4 5 6

1

2

3

4

Time →

A continuous evolution

• They are often complex

• but can be seen as the composition of (simpler) components.

3 / 27

Motivation & Context

Hybrid systems possess both discrete and continuous behaviour.

1 2 3 4 5 6

1

2

3

4

Time →

A discrete evolution

1 2 3 4 5 6

1

2

3

4

Time →

A continuous evolution

• They are often complex

• but can be seen as the composition of (simpler) components.

3 / 27

Thermostat

0 2 4 6 8 10
10

12

14

16

18

20

22

x

y

A possible behaviour (c 10)

4 / 27

Water level regulator

0 10 20 30 40 50 60
0

5

10

15

20

25

x

y

A possible behaviour (d 0)

5 / 27

Hybrid components (coalgebraically)

Arrows of type S × I → S ×HO where

• S × I → S defines the internal (discrete) transitions

• and S × I → HO the observable (continuous) behaviour.

This favours a coalgebraic perspective !

6 / 27

Hybrid components (coalgebraically)

Arrows of type S × I → S ×HO where

• S × I → S defines the internal (discrete) transitions

• and S × I → HO the observable (continuous) behaviour.

This favours a coalgebraic perspective !

6 / 27

Coalgebras & Hybrid systems (related work)

• Object–oriented hybrid systems of coalgebras plus monoid

actions [Jacobs, 2000]. A coalgebra for the (discrete)

assignments, a monoid for the (continuous) evolutions.

• Notions of bisimulation for hybrid systems (resort to open

maps) [Haghverdi et al., 2005].

7 / 27

Coalgebras & Hybrid systems (related work)

• Object–oriented hybrid systems of coalgebras plus monoid

actions [Jacobs, 2000]. A coalgebra for the (discrete)

assignments, a monoid for the (continuous) evolutions.

• Notions of bisimulation for hybrid systems (resort to open

maps) [Haghverdi et al., 2005].

7 / 27

Components as coalgebras

We view a component as

〈 s ∈ S, c : S × I → B(S ×O) 〉

where B is a (strong) monad that captures a specific type of
behaviour [Barbosa, 2001].

[Barbosa, 2001] shows how to generate a rich component algebra

from a strong monad.

8 / 27

Motivation & Context

Different monads capture different types of behaviour . . .

. . . and thus different kinds of component

• Maybe monad (M) faulty components

• Powerset monad (P) non–deterministic components

• Distribution monad (D) probabilistic components

• Hybrid monad (H) hybrid components

9 / 27

Motivation & Context

Different monads capture different types of behaviour . . .

. . . and thus different kinds of component

• Maybe monad (M) faulty components

• Powerset monad (P) non–deterministic components

• Distribution monad (D) probabilistic components

• Hybrid monad (H) hybrid components

9 / 27

Motivation & Context

Different monads capture different types of behaviour . . .

. . . and thus different kinds of component

• Maybe monad (M) faulty components

• Powerset monad (P) non–deterministic components

• Distribution monad (D) probabilistic components

• Hybrid monad (H) hybrid components

9 / 27

Motivation & Context

Different monads capture different types of behaviour . . .

. . . and thus different kinds of component

• Maybe monad (M) faulty components

• Powerset monad (P) non–deterministic components

• Distribution monad (D) probabilistic components

• Hybrid monad (H) hybrid components

9 / 27

Motivation & Context

Different monads capture different types of behaviour . . .

. . . and thus different kinds of component

• Maybe monad (M) faulty components

• Powerset monad (P) non–deterministic components

• Distribution monad (D) probabilistic components

• Hybrid monad (H) hybrid components

9 / 27

Monad H

It is defined in such a way that

c : S × I → S ×HO

c : S × I → S × (OT ×D)
unfold H

where T = R≥0 and D = [0,∞].

Kleisli composition allows the transfer of evolution control

between components.

Technically, this amounts to concatenation of evolutions.

10 / 27

Monad H

It is defined in such a way that

c : S × I → S ×HO

c : S × I → S × (OT ×D)
unfold H

where T = R≥0 and D = [0,∞].

Kleisli composition allows the transfer of evolution control

between components.

Technically, this amounts to concatenation of evolutions.

10 / 27

Kleisli composition (thermostat revisited)

c1 i = (λt.(i + t), 10), c2 i = (λt.(i + sin t), ∞)

0 5 10 15 20 25 30
10

15

20

25

x

y
c2 • c1 10

11 / 27

Kleisli composition (thermostat revisited)

c1 i = (λt.(i + t), 10), c2 i = (λt.(i + sin t), ∞)

0 5 10 15 20 25 30
10

15

20

25

x

y
c2 • c1 10

11 / 27

Monad H and Höfner’s Algebra

Kleisli composition of Monad H corresponds to concatenation of

evolutions in

An algebra of hybrid systems [Höfner, 2009]

1 2 3 4 5 6

1

2

3

Time →

Concatenation of evolutions

12 / 27

Assembly of monad H (underlying functor)

Based upon the category of topological spaces Top.

Definition
Given a space X ∈ |Top|,

HX =̂ { (f , d) ∈ XT ×D | f ·fd = f }

where fd = id C ≤d B d .

Definition
Given a continuous function g : X → Y ,

Hg : HX → HY , Hg =̂ gT × id

Intuitively, Hg alters evolutions pointwise (but keeps durations).

13 / 27

Assembly of monad H (underlying functor)

Based upon the category of topological spaces Top.

Definition
Given a space X ∈ |Top|,

HX =̂ { (f , d) ∈ XT ×D | f ·fd = f }

where fd = id C ≤d B d .

Definition
Given a continuous function g : X → Y ,

Hg : HX → HY , Hg =̂ gT × id

Intuitively, Hg alters evolutions pointwise (but keeps durations).

13 / 27

Assembly of monad H (underlying functor)

Based upon the category of topological spaces Top.

Definition
Given a space X ∈ |Top|,

HX =̂ { (f , d) ∈ XT ×D | f ·fd = f }

where fd = id C ≤d B d .

Definition
Given a continuous function g : X → Y ,

Hg : HX → HY , Hg =̂ gT × id

Intuitively, Hg alters evolutions pointwise (but keeps durations).

13 / 27

Assembly of monad H (underlying functor)

An interesting algebra

HX

θ
��
X

θ (f , d) =̂ f 0

14 / 27

Assembly of Monad H (monad operations)

Id

η

HH

µ}}
H

Definition
Given a space X ∈ |Top|,

ηX x =̂ (x, 0)

Defines the simplest continuous system of type X → HX.

15 / 27

Assembly of Monad H (monad operations)

Id

η

HH

µ}}
H

Definition
Given a space X ∈ |Top|,

µX (f , d) =̂ (θ · f , d) ++ (f d)

. . .

16 / 27

Assembly of Monad H (monad operations)

Let us reason

HHX ⊆
(HX)T ×D →

(HX)T ⊆
(XT ×D)T ∼=

(XT)T ×DT →
(XT)T ∼=
XT×T

17 / 27

Kleisli category TopH

(An environment to study the effects of continuity over

composition)

• |TopH| = |Top|,
• for any objects I, O ∈ |TopH|,

TopH(I, O) = Top(I,HO)

• the identity of I is ηI , and given two arrows c1 : I → HK,

c2 : K → HO their (sequential) composition,

c2 • c1 : I → HO

is equal to

µ ·Hc2 · c1

18 / 27

Kleisli composition (of TopH)

I
c1→ HK

Hc2→ HHO
µ→ HO

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

x

y

c1 0

Hc27→

19 / 27

Other forms of composition (in TopH)

Choice (coproduct)

c1 : I1 → HO, c2 : I2 → HO

[c1, c2] : I1 + I2 → HO
(+)

Parallelism (pullback)

c1 : I → HO1, c2 : I → HO2

〈〈c1, c2〉〉 : I → H(O1 ×O2)
(×)

These operators are (co)limits, hence a number of useful laws

come for free !

20 / 27

Other forms of composition (in TopH)

Choice (coproduct)

c1 : I1 → HO, c2 : I2 → HO

[c1, c2] : I1 + I2 → HO
(+)

Parallelism (pullback)

c1 : I → HO1, c2 : I → HO2

〈〈c1, c2〉〉 : I → H(O1 ×O2)
(×)

These operators are (co)limits, hence a number of useful laws

come for free !

20 / 27

Other forms of composition (in TopH)

Choice (coproduct)

c1 : I1 → HO, c2 : I2 → HO

[c1, c2] : I1 + I2 → HO
(+)

Parallelism (pullback)

c1 : I → HO1, c2 : I → HO2

〈〈c1, c2〉〉 : I → H(O1 ×O2)
(×)

These operators are (co)limits, hence a number of useful laws

come for free !

20 / 27

Other forms of composition (in TopH)

Synchronised parallelism

c1 : I → HO1, c2 : I → HO2

Lc1, c2M : I → H(O1 ×O2)
(s)

Feedback

c : I → HI

νc : I → HI
(ν)

21 / 27

Other forms of composition (in TopH)

Synchronised parallelism

c1 : I → HO1, c2 : I → HO2

Lc1, c2M : I → H(O1 ×O2)
(s)

Feedback

c : I → HI

νc : I → HI
(ν)

21 / 27

TopH (Parallelism)

c1 x = (λt. x + (sin t), 20)

c2 x = (λt. x + (sin(3 ∗ t)), 20)

0 5 10 15 20

−2

0

2

x

y
〈〈c1, c2〉〉 0

22 / 27

TopH (Parallelism)

c1 x = (λt. x + (sin t), 20)

c2 x = (λt. x + (sin(3 ∗ t)), 20)

0 5 10 15 20

−2

0

2

x

y
〈〈c1, c2〉〉 0

22 / 27

TopH (Parallelism)

c3 (x, y) = (λt. x + y , 0)

0 5 10 15 20

−2

0

2

x

y
c3 • 〈〈c1, c2〉〉 0

23 / 27

TopH (Parallelism)

c3 (x, y) = (λt. x + y , 0)

0 5 10 15 20

−2

0

2

x

y
c3 • 〈〈c1, c2〉〉 0

23 / 27

Conclusions

• Our goal is a coalgebraic calculus of hybrid components

• and monad H seems to be a promising approach for this.

But mind

• Simulink, widely used in industry, and

• Hybrid automata, the standard formalism for the

specification of hybrid systems.

• The former is highly expressive, but lacks a clear semantics.

• The latter is very intuitive, but does not have composition

mechanisms as rich as Simulink.

24 / 27

Conclusions

• Our goal is a coalgebraic calculus of hybrid components

• and monad H seems to be a promising approach for this.

But mind

• Simulink, widely used in industry, and

• Hybrid automata, the standard formalism for the

specification of hybrid systems.

• The former is highly expressive, but lacks a clear semantics.

• The latter is very intuitive, but does not have composition

mechanisms as rich as Simulink.

24 / 27

Conclusions

• Our goal is a coalgebraic calculus of hybrid components

• and monad H seems to be a promising approach for this.

But mind

• Simulink, widely used in industry, and

• Hybrid automata, the standard formalism for the

specification of hybrid systems.

• The former is highly expressive, but lacks a clear semantics.

• The latter is very intuitive, but does not have composition

mechanisms as rich as Simulink.

24 / 27

Future work

• Introduction of non–determinism.

• Development of a calculus bisimulation–based.

• Try to answer the question:

“Which kind of logics does monad H gives rise to?”

25 / 27

Future work

• Introduction of non–determinism.

• Development of a calculus bisimulation–based.

• Try to answer the question:

“Which kind of logics does monad H gives rise to?”

25 / 27

Future work

• Introduction of non–determinism.

• Development of a calculus bisimulation–based.

• Try to answer the question:

“Which kind of logics does monad H gives rise to?”

25 / 27

References I

Barbosa, L. S. (2001).

Components as coalgebras.

PhD thesis, DI, Minho University.

Haghverdi, E., Tabuada, P., and Pappas, G. J. (2005).

Bisimulation relations for dynamical, control, and hybrid

systems.

Theoretical Computer Science, 342(2–3):229 – 261.

Höfner, P. (2009).

Algebraic calculi for hybrid systems.

PhD thesis, University of Augsburg.

26 / 27

References II

Jacobs, B. (2000).

Object-oriented hybrid systems of coalgebras plus monoid

actions.

Theoretical Computer Science, 239(1):41 – 95.

27 / 27

