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The main goal

A coalgebraic calculus of hybrid components.
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Motivation & Context

Hybrid systems possess both discrete and continuous behaviour.
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A continuous evolution

• They are often complex

• but can be seen as the composition of (simpler) components.
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Thermostat
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Water level regulator
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Hybrid components (coalgebraically)

Arrows of type S × I → S ×HO where

• S × I → S defines the internal (discrete) transitions

• and S × I → HO the observable (continuous) behaviour.

This favours a coalgebraic perspective !
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Coalgebras & Hybrid systems (related work)

• Object–oriented hybrid systems of coalgebras plus monoid

actions [Jacobs, 2000]. A coalgebra for the (discrete)

assignments, a monoid for the (continuous) evolutions.

• Notions of bisimulation for hybrid systems (resort to open

maps) [Haghverdi et al., 2005].
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Components as coalgebras

We view a component as

〈 s ∈ S, c : S × I → B(S ×O) 〉

where B is a (strong) monad that captures a specific type of
behaviour [Barbosa, 2001].

[Barbosa, 2001] shows how to generate a rich component algebra

from a strong monad.
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Motivation & Context

Different monads capture different types of behaviour . . .

. . . and thus different kinds of component

• Maybe monad (M)  faulty components

• Powerset monad (P)  non–deterministic components

• Distribution monad (D)  probabilistic components

• Hybrid monad (H)  hybrid components
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Monad H

It is defined in such a way that

c : S × I → S ×HO

c : S × I → S × (OT ×D)
unfold H

where T = R≥0 and D = [0,∞].

Kleisli composition allows the transfer of evolution control

between components.

Technically, this amounts to concatenation of evolutions.
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Kleisli composition (thermostat revisited)

c1 i = ( λt.(i + t), 10 ), c2 i = ( λt.(i + sin t), ∞ )
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Monad H and Höfner’s Algebra

Kleisli composition of Monad H corresponds to concatenation of

evolutions in

An algebra of hybrid systems [Höfner, 2009]
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Concatenation of evolutions
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Assembly of monad H (underlying functor)

Based upon the category of topological spaces Top.

Definition
Given a space X ∈ |Top|,

HX =̂ { (f , d) ∈ XT ×D | f ·fd = f }

where fd = id C ≤d B d .

Definition
Given a continuous function g : X → Y ,

Hg : HX → HY , Hg =̂ gT × id

Intuitively, Hg alters evolutions pointwise (but keeps durations).
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Assembly of monad H (underlying functor)

An interesting algebra

HX

θ
��
X

θ (f , d) =̂ f 0
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Assembly of Monad H (monad operations)

Id

η   

HH

µ}}
H

Definition
Given a space X ∈ |Top|,

ηX x =̂ (x, 0)

Defines the simplest continuous system of type X → HX.
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Assembly of Monad H (monad operations)

Id

η   

HH

µ}}
H

Definition
Given a space X ∈ |Top|,

µX (f , d) =̂ (θ · f , d) ++ (f d)

. . .
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Assembly of Monad H (monad operations)

Let us reason

HHX ⊆
(HX)T ×D →

(HX)T ⊆
(XT ×D)T ∼=

(XT)T ×DT →
(XT)T ∼=
XT×T
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Kleisli category TopH

(An environment to study the effects of continuity over

composition)

• |TopH| = |Top|,
• for any objects I, O ∈ |TopH|,

TopH(I, O) = Top(I,HO)

• the identity of I is ηI , and given two arrows c1 : I → HK,

c2 : K → HO their (sequential) composition,

c2 • c1 : I → HO

is equal to

µ ·Hc2 · c1

18 / 27



Kleisli composition (of TopH)

I
c1→ HK

Hc2→ HHO
µ→ HO
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Other forms of composition (in TopH)

Choice (coproduct)

c1 : I1 → HO, c2 : I2 → HO

[c1, c2] : I1 + I2 → HO
(+)

Parallelism (pullback)

c1 : I → HO1, c2 : I → HO2

〈〈c1, c2〉〉 : I → H(O1 ×O2)
(×)

These operators are (co)limits, hence a number of useful laws

come for free !
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Other forms of composition (in TopH)

Synchronised parallelism

c1 : I → HO1, c2 : I → HO2

Lc1, c2M : I → H(O1 ×O2)
(s)

Feedback

c : I → HI

νc : I → HI
(ν)
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TopH (Parallelism)

c1 x = (λt. x + (sin t), 20 )

c2 x = (λt. x + (sin(3 ∗ t)), 20 )
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TopH (Parallelism)

c3 (x, y) = (λt. x + y , 0)
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Conclusions

• Our goal is a coalgebraic calculus of hybrid components

• and monad H seems to be a promising approach for this.

But mind

• Simulink, widely used in industry, and

• Hybrid automata, the standard formalism for the

specification of hybrid systems.

• The former is highly expressive, but lacks a clear semantics.

• The latter is very intuitive, but does not have composition

mechanisms as rich as Simulink.
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Future work

• Introduction of non–determinism.

• Development of a calculus bisimulation–based.

• Try to answer the question:

“Which kind of logics does monad H gives rise to?”
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