On a Monadic Encoding of Continuous Behaviour

Renato Neves

joint work with: Luís Barbosa, Manuel Martins, Dirk Hofmann

INESC TEC (HASLab) & Universidade do Minho

October 1, 2015

The main goal

A coalgebraic calculus of hybrid components.

Hybrid systems possess both discrete and continuous behaviour.

- They are often complex
- but can be seen as the composition of (simpler) components.

Hybrid systems possess both discrete and continuous behaviour.

- They are often complex
- but can be seen as the composition of (simpler) components.

Hybrid systems possess both discrete and continuous behaviour.

- They are often complex
- but can be seen as the composition of (simpler) components.

Thermostat

Water level regulator

Hybrid components (coalgebraically)

Arrows of type $S \times I \rightarrow S \times \mathcal{H}O$ where

- $S \times I \rightarrow S$ defines the internal (discrete) transitions
- and $S \times I \rightarrow \mathcal{H}O$ the observable (continuous) behaviour.

This favours a coalgebraic perspective !

Hybrid components (coalgebraically)

Arrows of type $S \times I \rightarrow S \times \mathcal{H}O$ where

- $S \times I \rightarrow S$ defines the internal (discrete) transitions
- and $S \times I \rightarrow \mathcal{H}O$ the observable (continuous) behaviour.

This favours a coalgebraic perspective !

Coalgebras & Hybrid systems (related work)

• Object-oriented hybrid systems of coalgebras plus monoid actions [Jacobs, 2000]. A coalgebra for the (discrete) assignments, a monoid for the (continuous) evolutions.

• Notions of bisimulation for hybrid systems (resort to open maps) [Haghverdi et al., 2005].

Coalgebras & Hybrid systems (related work)

• Object–oriented hybrid systems of coalgebras plus monoid actions [Jacobs, 2000]. A coalgebra for the (discrete) assignments, a monoid for the (continuous) evolutions.

• Notions of bisimulation for hybrid systems (resort to open maps) [Haghverdi et al., 2005].

Components as coalgebras

We view a component as

$$\langle s \in S, c : S \times I \rightarrow \mathcal{B}(S \times O) \rangle$$

where \mathcal{B} is a (strong) monad that captures a specific type of behaviour [Barbosa, 2001].

[Barbosa, 2001] shows how to generate a rich component algebra from a strong monad.

Different monads capture different types of behaviour ...

- Maybe monad $(\mathcal{M}) \rightsquigarrow$ faulty components
- Powerset monad $(\mathcal{P}) \rightsquigarrow$ non-deterministic components
- Distribution monad $(\mathcal{D}) \rightsquigarrow$ probabilistic components
- Hybrid monad $(\mathcal{H}) \rightsquigarrow$ hybrid components

Different monads capture different types of behaviour ...

- Maybe monad $(\mathcal{M}) \rightsquigarrow$ faulty components
- Powerset monad (𝒫) → non–deterministic components
- Distribution monad $(\mathcal{D}) \rightsquigarrow$ probabilistic components
- Hybrid monad $(\mathcal{H}) \rightsquigarrow$ hybrid components

Different monads capture different types of behaviour ...

- Maybe monad $(\mathcal{M}) \rightsquigarrow$ faulty components
- Powerset monad $(\mathcal{P}) \rightsquigarrow$ non-deterministic components
- Distribution monad $(\mathcal{D}) \rightsquigarrow$ probabilistic components
- Hybrid monad $(\mathcal{H}) \rightsquigarrow$ hybrid components

Different monads capture different types of behaviour ...

- Maybe monad $(\mathcal{M}) \rightsquigarrow$ faulty components
- Powerset monad $(\mathcal{P}) \rightsquigarrow$ non-deterministic components
- Distribution monad $(\mathcal{D}) \rightsquigarrow$ probabilistic components
- Hybrid monad $(\mathcal{H}) \rightsquigarrow$ hybrid components

Different monads capture different types of behaviour ...

- Maybe monad $(\mathcal{M}) \rightsquigarrow$ faulty components
- Powerset monad $(\mathcal{P}) \rightsquigarrow$ non-deterministic components
- Distribution monad $(\mathcal{D}) \rightsquigarrow$ probabilistic components
- Hybrid monad $(\mathcal{H}) \rightsquigarrow$ hybrid components

Monad \mathcal{H}

It is defined in such a way that

$$\frac{c: S \times I \to S \times \mathcal{H}O}{c: S \times I \to S \times (O^{\mathsf{T}} \times D)} \quad \text{unfold } \mathcal{H}$$

where $T = \mathbb{R}_{\geq 0}$ and $D = [0, \infty]$.

Kleisli composition allows the transfer of evolution control between components.

Technically, this amounts to concatenation of evolutions.

Monad \mathcal{H}

It is defined in such a way that

$$\frac{c: S \times I \to S \times \mathcal{HO}}{c: S \times I \to S \times (O^{\mathsf{T}} \times D)} \quad \text{unfold } \mathcal{H}$$

where
$$T = \mathbb{R}_{\geq 0}$$
 and $D = [0, \infty]$.

Kleisli composition allows the transfer of evolution control between components.

Technically, this amounts to concatenation of evolutions.

Kleisli composition (thermostat revisited)

$$c_1 i = (\lambda t.(i + t), 10), c_2 i = (\lambda t.(i + sin t), \infty)$$

Kleisli composition (thermostat revisited)

$$c_1 i = (\lambda t.(i+t), 10), c_2 i = (\lambda t.(i+sint), \infty)$$

Monad ${\mathcal H}$ and Höfner's Algebra

Kleisli composition of Monad $\ensuremath{\mathcal{H}}$ corresponds to concatenation of evolutions in

An algebra of hybrid systems [Höfner, 2009]

Based upon the category of topological spaces Top.

Definition Given a space $X \in |\mathbf{Top}|$, $\mathfrak{H}X \cong \{ (f, d) \in X^{\top} \times D \mid f \cdot \lambda_d = f \}$ where $\lambda_d = id \triangleleft \leq_d \rhd \underline{d}$.

Definition Given a continuous function $g: X \rightarrow Y$,

$$\mathcal{H}g:\mathcal{H}X\to\mathcal{H}Y,\qquad\mathcal{H}g\cong g^{\mathsf{T}}\times id$$

Intuitively, $\mathfrak{H}g$ alters evolutions pointwise (but keeps durations).

Based upon the category of topological spaces Top.

Definition

Given a space $X \in |\mathbf{Top}|$,

$$\mathcal{H}X \cong \{ (f, d) \in X^{\mathsf{T}} \times D \mid f \cdot \mathbf{A}_d = f \}$$

where $A_d = id \triangleleft \leq_d \rhd \underline{d}$.

Definition Given a continuous function $g: X \to Y$,

$$\mathcal{H}g:\mathcal{H}X\to\mathcal{H}Y,\qquad\mathcal{H}g\cong g^{\mathsf{T}}\times id$$

Intuitively, ${\mathfrak H}g$ alters evolutions pointwise (but keeps durations).

Based upon the category of topological spaces Top.

Definition

Given a space $X \in |\mathbf{Top}|$,

$$\mathfrak{H}X \cong \{ (f, d) \in X^{\mathsf{T}} \times D \mid f \cdot \mathbf{A}_d = f \}$$

where $\lambda_d = id \triangleleft \leq_d \rhd \underline{d}$.

Definition

Given a continuous function $g: X \to Y$,

$$\mathfrak{H}g:\mathfrak{H}X\to\mathfrak{H}Y,\qquad\mathfrak{H}g\,\,\widehat{=}\,\,g^{\mathsf{T}}\times id$$

Intuitively, $\mathcal{H}g$ alters evolutions pointwise (but keeps durations).

An interesting algebra

Assembly of Monad \mathcal{H} (monad operations)

Definition Given a space $X \in |\mathbf{Top}|$,

$$\eta_X x \stackrel{\frown}{=} (\underline{x}, 0)$$

Defines the simplest continuous system of type $X \to \mathcal{H}X$.

Assembly of Monad \mathcal{H} (monad operations)

Definition Given a space $X \in |\mathbf{Top}|$,

. . .

$$\mu_X(f,d) \stackrel{\scriptscriptstyle\frown}{=} (\theta \cdot f,d) + (f d)$$

Assembly of Monad \mathcal{H} (monad operations)

Let us reason

 $\mathcal{HHX} \subseteq (\mathcal{HX})^{\mathsf{T}} \times D \rightarrow (\mathcal{HX})^{\mathsf{T}} \subseteq (\mathcal{X}^{\mathsf{T}} \times D)^{\mathsf{T}} \cong (X^{\mathsf{T}})^{\mathsf{T}} \times D^{\mathsf{T}} \rightarrow (X^{\mathsf{T}})^{\mathsf{T}} \times D^{\mathsf{T}} \rightarrow (X^{\mathsf{T}})^{\mathsf{T}} \cong X^{\mathsf{T} \times \mathsf{T}}$

Kleisli category $\textbf{Top}_{\mathcal{H}}$

(An environment to study the effects of continuity over composition)

- $|\mathbf{Top}_{\mathcal{H}}| = |\mathbf{Top}|,$
- for any objects $I, O \in |\mathbf{Top}_{\mathcal{H}}|$,

$$\mathbf{Top}_{\mathcal{H}}(I, O) = \mathbf{Top}(I, \mathcal{H}O)$$

• the identity of I is η_I , and given two arrows $c_1 : I \to \mathcal{H}K$, $c_2 : K \to \mathcal{H}O$ their (sequential) composition,

$$c_2 \bullet c_1 : I \to \mathcal{H}O$$

is equal to

$$\mu \cdot \mathcal{H}c_2 \cdot c_1$$

Kleisli composition (of $\mathsf{Top}_{\mathcal{H}}$)

$I \xrightarrow{c_1} \mathcal{H}K \xrightarrow{\mathcal{H}c_2} \mathcal{H}HO \xrightarrow{\mu} \mathcal{H}O$

Choice (coproduct)

$$\frac{c_1: I_1 \to \mathcal{H}O, c_2: I_2 \to \mathcal{H}O}{[c_1, c_2]: I_1 + I_2 \to \mathcal{H}O} (+)$$

Parallelism (pullback)

$$\frac{c_1: I \to \mathcal{H}O_1, c_2: I \to \mathcal{H}O_2}{\langle \langle c_1, c_2 \rangle \rangle : I \to \mathcal{H}(O_1 \times O_2)} (\times)$$

These operators are (co)limits, hence a number of useful laws come for free !

Choice (coproduct)

$$\frac{c_1: I_1 \to \mathcal{H}O, c_2: I_2 \to \mathcal{H}O}{[c_1, c_2]: I_1 + I_2 \to \mathcal{H}O} (+)$$

Parallelism (pullback)

$$\frac{c_1: I \to \mathcal{H}O_1, c_2: I \to \mathcal{H}O_2}{\langle \langle c_1, c_2 \rangle \rangle: I \to \mathcal{H}(O_1 \times O_2)} (\times)$$

These operators are (co)limits, hence a number of useful laws come for free !

Choice (coproduct)

$$\frac{c_1: I_1 \to \mathcal{H}O, c_2: I_2 \to \mathcal{H}O}{[c_1, c_2]: I_1 + I_2 \to \mathcal{H}O} (+)$$

Parallelism (pullback)

$$\frac{c_1: I \to \mathcal{H}O_1, c_2: I \to \mathcal{H}O_2}{\langle \langle c_1, c_2 \rangle \rangle : I \to \mathcal{H}(O_1 \times O_2)} (\times)$$

These operators are (co)limits, hence a number of useful laws come for free !

Synchronised parallelism

$$\frac{c_1: I \to \mathcal{H}O_1, c_2: I \to \mathcal{H}O_2}{(c_1, c_2): I \to \mathcal{H}(O_1 \times O_2)} (s)$$

Feedback

$$\frac{c:I\to \mathcal{H}I}{\nu c:I\to \mathcal{H}I} \ (\nu)$$

Synchronised parallelism

$$\frac{c_1: I \to \mathcal{H}O_1, c_2: I \to \mathcal{H}O_2}{(c_1, c_2): I \to \mathcal{H}(O_1 \times O_2)} (s)$$

Feedback

$$\frac{c:I\to \mathcal{H}I}{\nu c:I\to \mathcal{H}I} \ (\nu)$$

Conclusions

- Our goal is a coalgebraic calculus of hybrid components
- \bullet and monad ${\mathfrak H}$ seems to be a promising approach for this.

But mind

- Simulink, widely used in industry, and
- Hybrid automata, the standard formalism for the specification of hybrid systems.

- The former is highly expressive, but lacks a clear semantics.
- The latter is very intuitive, but does not have composition mechanisms as rich as Simulink.

Conclusions

- Our goal is a coalgebraic calculus of hybrid components
- \bullet and monad ${\mathfrak H}$ seems to be a promising approach for this.

But mind

- Simulink, widely used in industry, and
- Hybrid automata, the standard formalism for the specification of hybrid systems.

- The former is highly expressive, but lacks a clear semantics.
- The latter is very intuitive, but does not have composition mechanisms as rich as Simulink.

Conclusions

- Our goal is a coalgebraic calculus of hybrid components
- \bullet and monad ${\mathfrak H}$ seems to be a promising approach for this.

But mind

- Simulink, widely used in industry, and
- Hybrid automata, the standard formalism for the specification of hybrid systems.

- The former is highly expressive, but lacks a clear semantics.
- The latter is very intuitive, but does not have composition mechanisms as rich as Simulink.

Future work

- Introduction of non-determinism.
- Development of a calculus bisimulation-based.
- Try to answer the question:

"Which kind of logics does monad H gives rise to?"

Future work

- Introduction of non-determinism.
- Development of a calculus bisimulation-based.
- Try to answer the question: "Which kind of logics does monad H gives rise to?"

Future work

- Introduction of non-determinism.
- Development of a calculus bisimulation-based.
- Try to answer the question:

"Which kind of logics does monad \mathfrak{H} gives rise to?"

References I

Barbosa, L. S. (2001). Components as coalgebras. PhD thesis, DI, Minho University.

Haghverdi, E., Tabuada, P., and Pappas, G. J. (2005). Bisimulation relations for dynamical, control, and hybrid systems.

Theoretical Computer Science, 342(2–3):229 – 261.

Höfner, P. (2009).

Algebraic calculi for hybrid systems. PhD thesis, University of Augsburg.

References II

Jacobs, B. (2000).

Object-oriented hybrid systems of coalgebras plus monoid actions.

Theoretical Computer Science, 239(1):41 – 95.