
Computing for Musicology
(Course code: F104N5)

5. Towards Pattern Recognition in Music

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

June 2009 (last update: May 2018)

Licenciatura em Música
(http://www.musica.ilch.uminho.pt/)

Universidade do Minho
Braga

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

What is a pattern?

From the Wikipedia:

A pattern (...) is a type of theme of recurring events or
objects, sometimes referred to as elements of a set.
These elements repeat in a predictable manner. (...)

Still Wikipedia:

Pattern matching is the act of checking for the
presence of the constituents of a pattern, whereas the
detecting for underlying patterns is referred to as
pattern recognition.

Normally, queries involving maps and filters extract information
(eg. by counting) ignoring the patterns which layout such
information.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Example

• Suppose we want to check whether a particular data element
d occurs in a list l .

• There are several ways to provide an answer to such a query.

• The easiest is to evaluate d ∈ l — the answer is a Boolean
(True or False), with maximal loss of information.

• Another is to count the number of occurrences of d in l :

check d l = (length ◦ filter (≡ d)) l

There is more information now — should d occur in l , we
know how often.

• Still we have lost the information of where in the list such
occurrences take place: all at the front? scattered? all at the
tail?

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Finding indices in sequences

The following function tells which positions in a sequence s are
occupied with data satisfying a particular condition p:

findIndices p s = [i | (x , i)← zip s [0 . .], p x]

To see how findIndices is more informative than filter , run the
following query inspecting “rondo word” "ARBRCRBRA"

findIndices (≡ ’R’) "ARBRCRBRA" = [1, 3, 5, 7]

and compare with

filter (≡ ’R’) "ARBRCRBRA" = "RRRR"

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

How findIndices works

1st step — zipping: zip "ARBRCRBRA" [0 . .] yields

[(’A’, 0), (’R’, 1), (’B’, 2), (’R’, 3), (’C’, 4), (’R’, 5), (’B’, 6), (’R’, 7), (’A’, 8)]

2nd step — filtering via x ≡ ’R’ yields

[(’R’, 1), (’R’, 3), (’R’, 5), (’R’, 7)]

3rd step — selecting the right component i of each pairs (x , i),
yielding

[1, 3, 5, 7]

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Word (sequence) inversion

Note how easy it is to record the sequence of positions occupied by
all elements in a sequence:

invert s = nub [(x , findIndices (≡ x) s) | x ← s]

For instance,

invert "ARBRCRBRA" =
[(’A’, [0, 8]), (’R’, [1, 3, 5, 7]), (’B’, [2, 6]), (’C’, [4])]

clearly tells the role of A (begin = end), refrain R, intermediate
episode B and middle episode C .

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Searching for patterns

Let us now generalize

isPrefixOf p l

so that it checks whether a particular pattern p occurs in a list l at
position i :

match p l i = p ‘isPrefixOf ‘ (drop i l)

For instance, not only isPrefixOf "Mendel" "Mendelssohn" =
True holds, but also

match "ssohn" "Mendelssohn" 6 = True

Clearly,

isPrefixOf p l = match p l 0

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Searching for patterns

Last but not least, we may think of a function which records in
which positions in a sequence a particular pattern occurs:

patternIndices p s =
[(i , i + length p − 1) | (x , i)← zip s [0 . .],match p s i]

Consider, for instance,

op79i

L. van Beethoven (1770-1827)

Presto alla tedesca = 78

4
3

8.228596

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Searching for patterns

Clearly, this piano sonata fragment (right hand only) is captured by

tune = ntimes cell1 3 ++ (ntimes cell2 4) ++ cell3

where

cell1 = ["E", "B,", "^G", "B,", "E", "B,"]
cell2 = ["^D", "B,", "^F", "B,", "^D", "B,"]
cell3 = ["E", "B,", "E", "B,", "E", "B,"]

So,

patternIndices cell1 tune = [(0, 5), (6, 11), (12, 17)]
patternIndices cell2 tune =

[(18, 23), (24, 29), (30, 35), (36, 41)]
patternIndices cell3 tune = [(42, 47)]

as expected.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Searching for patterns

However,

• One has the feeling that there is only one cell in this
fragment which repeats at different degrees of the scale.
Howe can we capture this?

• We need an abstraction mechanism which should be able to
abstract from each cell the pattern of intervals involved.

• For this we need to model the notion of interval between two
degrees in a diatonic scale.

Prior to all this, let us investigate how some other music
abstraction functions can be encoded in Haskell.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

More subtle filtering functionality

Think of the function copy which copies its input faithfully to the
output, that is, copy x = x . Surely, this function has the following
properties,

copy [] = []
copy [x] = [x]
copy (s ++ r) = (copy s) ++ (copy r)

from which we easily calculate

copy [] = []
copy [x] = [x]
copy (x : r) = x : (copy r)

as earlier on.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

More about filtering

Function copy can be easily converted into another,

ndcopy (= “no duplicate copy”)

that removes duplicates by adding a filter at each stage:

ndcopy [] = []
ndcopy [x] = [x]
ndcopy (x : r) = x : (filter (6≡ x) (ndcopy r))

NB: ndcopy is nothing but the standard function nub to which we
have resorted earlier on.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

More about filtering

• Between these two extremes (copying everything or removing
all duplicates) there is the intermediate operation which
removes only consecutive duplicates.

• To see the difference, compare

ndcopy "Mendelssohn" = "Mendlsoh"

(all duplicates go out) with

ncdcopy "Mendelssohn" = "Mendelsohn"

(only "s" in "ss" gets filtered).

• How do we encode ncdcopy?

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Abstraction: removing local repeats

Removing all duplicates:

ndcopy [] = []
ndcopy [x] = [x]
ndcopy (x : r) = x : (filter (6≡ x) (ndcopy r))

Removing consecutive duplicates only:

ncdcopy [] = []
ncdcopy [x] = [x]
ncdcopy (x : y : r)
| x ≡ y = ncdcopy (x : r)
| x 6≡ y = x : ncdcopy (y : r)

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Removing locally repeated notes

Recall that music notes are pairs (n, d) of note pitch with
duration.

Abstracting from repeated notes is trickier because we want to
keep durations of the notes we are going to remove:

nrep [] = []
nrep [a] = [a]
nrep ((n, d) : (n′, d ′) : l)
| n ≡ n′ = nrep ((n, d + d ′) : l)
| n 6≡ n′ = (n, d) : nrep ((n′, d ′) : l)

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Removing locally repeated notes

Consider, for instance, the beginning of the Presto of Beethoven’s
String Quartet op.74:

etc

5.1461344

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Removing locally repeated notes

Compare the original part of the 1st violin,

op74iii

L. van Beethoven (1770-1827)

Presto

Vl.I
4
3

with the same once subject to nrep:

Presto

4
3

(Note the binary meter flavour of the first bars, which could be
thought of as being 6

8 .)

7.5232873

7.5232873

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Removing locally repeated notes

In Haskell, here is (the beginning) of the original tune:

tune =
[("c", 1

8), ("c", 1
8), ("c", 1

8), ("C", 3
8), ("e", 1

8), ("e", 1
8), ("e", 1

8), ("E", 3
8), ("g", 1

8), ("g", 1
8), ("g", 1

8), ("c", 1
4), ("e’", 1

4), ("c", 1
4), ("=B", 1

4), ...]

Now the effect of nrep:

nrep tune =
[("c", 3

8), ("C", 3
8), ("e", 3

8), ("E", 3
8), ("g", 3

8), ("c", 1
4), ("e’", 1

4), ("c", 1
4), ("=B", 1

4), ("z", 1
8), ...]

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Sampling for musical analysis

• Removing repeated notes provides for music abstraction
wherever rhythm is unimportant and tune (pitch) analysis is
at target

• Quite often one wishes to abstract from the details of the
tune itself and focus on the tonal thread by removing eg.
passing notes, grace notes, and so on.

• Sampling does this for us, as shown next.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Sampling for musical analysis

In this case, a list of durations is the additional input (sampler)
which tells at which points in time notes are to be selected, while
keeping the durations specified by the sampler:

sample :: (Ord d ,Num d)⇒ [d]→ [(n, d)]→ [(n, d)]
sample [] = []
sample [] = []
sample (y : r) ((a, x) : t)
| y > 0 ∧ y ≡ x = (a, y) : sample r t
| y > 0 ∧ y < x = (a, y) : sample r ((a, x − y) : t)
| y > 0 ∧ y > x = (a, y) : sample ((x − y) : r) t
| y < 0 ∧ x + y ≡ 0 = sample r t
| y < 0 ∧ x + y > 0 = sample r ((a, x + y) : t)
| y < 0 ∧ x + y < 0 = sample ((x + y) : r) t

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Sampling for musical analysis

Example: two different samples of op.74iii,

Presto

4
3

and
Presto

4
3

where the latter loses more information, keeping only the tonal
thread.

Exercise 1: Write in Haskell the sampler lists which yield the above two
samples of op.74iii main theme.

�

7.5232873

8.071861

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Sampling keeps what’s essential

Sampling enables the music analyst to capture a view, or
projection, of the target tune. For instance, given source

Sonata K331i

W.A. Mozart (1756-1791)

Piano

8
6

8
6

the following sample

Piano

8
6

4
4

removes rhythmic detail while keeping the main rhythmic

structure, that given by rhythmic pattern 4
4 , that is, 2

8 ,
1
8 .

5.0677667

5.0677667

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Sampling keeping the essential

Another sample, this time over 3
16 ,

Piano

8
6

8
6

(which could be regarded as having meter 12
16) keeps the melodic

structure.

5.0677667

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Epilogue

• When used together with the other combinators described in
this series of slides, sampling offers support for musical
analysis by removing detail (eg. passing notes, short
rhythmic patterns) and providing a view (analysis) of the
musical text.

• Melodic pattern identification calls for a metric structure in
musical pitch enabling us to calculate the derivative of a
melodic line, ie., the sequence of intervals involved.

• From melodic derivatives we can (re)build tunes again, by the
converse operation of integration.

• Such will be the purpose of the next set of slides in this series.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

Theme of the Abegg Variations by Robert Schumann (1810-1856):

4
3

Source:
abegg tune =
[("A", 1

4
), ("B", 1

4
), ("e", 1

4
), ("g", 1

4
), ("g", 1

2
), ("^G", 1

4
), ("A", 1

4
), ("c", 1

4
), ("f", 1

4
), ("f", 1

2
), ("^F", 1

4
), ("G", 1

4
), ("B", 1

4
), ("d", 1

4
), ("d", 1

2
), ("E", 1

4
), ("F", 1

4
), ("A", 1

4
), ("c", 1

4
), ("c", 1

2
), ("g", 1

4
), ("g", 1

4
), ("e", 1

4
), ("B", 1

4
), ("A", 1

2
), ("a", 1

4
), ("a", 1

4
), ("f", 1

4
), ("d", 1

4
), ("c", 1

2
), ("c’", 1

4
), ("c’", 1

4
), ("a", 1

4
), ("f", 1

4
), ("d", 1

2
), ("d’", 1

4
), ("d’", 1

4
), ("b", 1

4
), ("g", 1

4
), ("f", 1

2
)]

26.070332

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

Rhythmic analysis: getting the rhythm in the first place,

abegg r = map snd abegg tune =

[1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
]

This appears to be a repetition of cell

cell1 = [14 ,
1
4 ,

1
4 ,

1
4 ,

1
2]

Let us check:
patternIndices cell1 abegg r =
[(0, 4), (5, 9), (10, 14), (15, 19), (20, 24), (25, 29), (30, 34), (35, 39)]

Indeed: eight perfect copies of the cell (pretty classic!)

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

As to the melody, we know the story already: word Abegg
(surname of Pauline von Abegg, the young friend of the
Schumann’s) becomes

A b e g g

4
3

once paired with cell1 . You obtain the above by running

abcPlay "F" "3/4" (zip "ABegg" cell1)

(Mind the need for ’B’ instead of ’b’ to obtain the right Abc
pitch.)

5.0677667

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

Let us now see how to obtain the retrograde inversion of the
Abegg cell, which can be found in the start of the second part of
the melody.

First, we define a generic function for retrograde inversion

retrog m = let (l , r) = unzip m in zip (reverse l) r

where unzip does what it says: splits a list of pairs in two lists.

Then we run

abcPlay "F" "3/4" (retrog (zip "ABegg" cell1))

and obtain

g g e b A

4
3

5.0677667

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

The first part of the theme repeats the original cell four times,
with different starting points,

A b e g g

4
3

while the second part does so for the inverted cell:

g g e b A

4
3

(Again pretty classic, for a romantic composer.)

14.053818

14.053818

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

Having captured the architecture of the whole theme, what is left
for us to study?

• The footholds of each repetition.

We can capture these by resorting to the sample function. Because
of the anacrusis, the sampling pattern needs an extra crotchet
(quarter note):

bars = [14] ++ cycle [64]

(an infinite sequence, as we want to sample as much as possible).

Let us do the sampling:

abcPlay "F" "3/4" stune
where stune = sample bars abegg tune

bars = [14] ++ cycle [64]

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

The outcome will be, for the first part:

4
3

For the second part different footholds are required, as the cell is
inverted. Altogether, the sampling rhythm will be

bars = [14] ++ ntimes [64] 3 ++ [94] ++ cycle [64]

and the overall outcome will be:

4
3

14.576259

28.055683

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — an analysis of Schumann’s opus 1

Thus we reveal the “internal”, chorale-like tune which underlies the
whole theme, made of all footholds, together with the original bass
(also suitably sampled):

4
3

4
3

The first part (corresponding to the ascending Abegg cell) is
descending, the other is ascending.

A typical piece of German music, reminiscent of the Lutheran
chorale style.

28.055683

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — what makes music “jazzistic?”

A brief study of the transformations which lead from the Bourée of
Bach’s Lute Suite in E Minor (BWV 996),

(here played by Narciso Yepes) to. . .

13.1395445

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Annex — what makes music “jazzistic?”

. . . to Jethro Tull’s piece with the same name (1969):

(From the LP “Stand up”; score available from the Jethro Tull
”Antology”, ©1969 by Chrysalis Music Ltd., England)

35.10873

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

What is a Bourée?

• Characteristic rhythmic pattern (bourée):

2
2

etc.

• Transformations could be melodic (eg. blue notes, etc) but in
this example they will be all rhythmic. Let us see which.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

The original: Bach’s BWV 996 nr.5

Score sample:

2
2

Haskell script which generates the above:

(zip bwv996v1 bwv996r1) # (zip bwv996v2 bwv996r2)

where number 1 refers to the top line and 2 to the bottom one,
“v” means melodic voice, “r” means rhythmic pattern.

10.55346

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Analysis of Bach’s BWV 996 nr.5

Definition of bwv996r1 :

bwv996r1 = ntimes r11 7 ++ r12 ++ ntimes r11 6 ++ r13

where

r11 = [14 ,
1
8 ,

1
8]

r12 = [18 ,
1
8 ,

1
8 ,

1
8]

r13 = [38 ,
1
8 ,

1
2]

cf.

2
2

17.554218

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Analysis of Bach’s BWV 996 nr.5

Definition of bwv996r2 :

bwv996r2 = r11 ++ ntimes r21 3 ++ r20 ++ r12 ++ ntimes r21 3
++ minim

where

r11 = [14 ,
1
8 ,

1
8] 4

4

r12 = [18 ,
1
8 ,

1
8 ,

1
8] 4

4

r21 = [14 ,
1
4 ,

1
4 ,

1
4] 4

4

r20 = [14 ,
1
4] 4

4

cf.

2
2

17.554218

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Transformations

Compound effect obtained by

• syncopation

• broken rhythmic cells

Syncopation (Wikipedia):

(...) syncopation occurs when a temporary displacement
of the regular metrical accent occurs, causing the
emphasis to shift from a strong accent to a weak accent.

This effect is obtained by cutting-off some duration, as specified in
parameter d of function

sync :: (Num a)⇒ a→ [a]→ [a]
sync d [] = []
sync d (h : t) = (h − d) : t

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Transformations

In the case of BWV996v, compare the original

(zip bwv996v1 bwv996r1) # (zip bwv996v2 bwv996r2)

with

(zip bwv996v1 bwv996r1 ′) # (zip bwv996v2 bwv996r2)

where

bwv996r1 ′ = sync (18) bwv996r1

The top line is thus anticipated by a eigth-note, leading altogether
to the following score.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

BWV996v after syncopation

2
2

2
2

17.815449

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Breaking rhythmic cells

• Ian Anderson changes the cell [x , y , z] characteristic of the
bourée,

x y z

into [x + x
4 ,

y
2 , z].

• Thus cell r11 = [14 ,
1
8 ,

1
8]

becomes r11 ′ = [5
16 ,

1
16 ,

1
8]

• Consistently, cell

r12 = [18 ,
1
8 ,

1
8 ,

1
8]

becomes r12 ′ = [5
32 ,

5
32 ,

1
16 ,

1
8]

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Breaking rhythmic cells

Broken-cells effect alone yields:

17.554218

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Breaking rhythmic cells

How do we do this? As follows:

dotted1 l = apl (cycle [(54∗), (12∗), id]) l
dotted2 l = apl [(54∗), (54∗), (12∗), id] l

where apl nicely illustrates the power of functional programming:

apl :: [a→ b]→ [a]→ [b]
apl f l = map ap (zip f l)

where ap applies functions to arguments:

ap (f , a) = f a

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

The two transformations together

Syncopated sentence of broken cells finally yields:

17.684834

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Last touch

A slightly different bass and some freedom in breaking the rhythmic
cells will lead to Ian Anderson’s version of Bach’s BWV996v:

10.448972

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Musical text correlation

Mutual relationship between nr.65 of BWV 244 by J.S. Bach
(Mache Dich, Mein Herze, Rein air),

8
12

8
12

...

35.056488

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Musical text correlation

... and the theme of movie Le Repos du guerrier by Michel Magne
(1930-1984)

Le Repos du Guerrier
(Cent mille Chansons)

Michel Magne (1930-1984)

8
12

— made popular by Frida Boccara (1940-1996) with the song Cent
mille Chansons.

71.130554

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue Annex

Musical text correlation

One can think of a program which produces several correlations
between the two music sequences, in particular:

J.S. Bach versus M. Magne

F G A B A B E A B D A B C E D C

(*)

8
12

8
12

(*) mind the gap

Is this sufficient for asserting that Magne’s piece could have been
inspired by such an air by Bach?

18.390156

	Pattern recognition
	Indexing
	Word inversion
	Searching
	Abstraction
	Sampling
	Epilogue
	Annex

