
Computing for Musicology
(0809.F104N5)

5. Towards Music Pattern Recognition

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

June 2009
Licenciatura em Música

(http://www.musica.reitoria.uminho.pt/licenciatura.html)

Universidade do Minho
Braga

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

What is a pattern?

From the Wikipedia:

A pattern (...) is a type of theme of recurring events or
objects, sometimes referred to as elements of a set.
These elements repeat in a predictable manner. (...)
Pattern matching is the act of checking for the
presence of the constituents of a pattern, whereas the
detecting for underlying patterns is referred to as
pattern recognition.

Normally, queries involving maps and filters extract information
(eg. by counting) ignoring the patterns which layout such
information.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Example

• Suppose we want to check whether a particular data element
d occurs in a list l .

• There are several ways to provide an answer to such a query.

• The easiest is to evaluate d ∈ l — the answer is a Boolean
(True or False), with maximal loss of information.

• Another is to count the number of occurrences of d in l :

check d l = (length ◦ filter (≡ d)) l

There is more information now — should d occur in l , we
know how often.

• Still we have lost the information of where in the list such
occurrences take place: all at the front? scattered? all at the
tail?

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Finding indices in sequences

The following function tells which positions in a list are occupied
with data satisfying a particular condition p:

findIndices p l = [i | (x , i)← zip l [0 . .], p x]

To see how findIndices is more informative than filter , run the
following query inspecting “rondo word” "ARBRCRBRA"

findIndices (≡ ’R’) "ARBRCRBRA" = [1, 3, 5, 7]

and compare with

filter (≡ ’R’) "ARBRCRBRA" = "RRRR"

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

How findIndices works

1st step — zipping: zip "ARBRCRBRA" [0 . .] yields

[(’A’, 0), (’R’, 1), (’B’, 2), (’R’, 3), (’C’, 4), (’R’, 5), (’B’, 6), (’R’, 7), (’A’, 8)]

2nd step — filtering via x ≡ ’R’ yields

[(’R’, 1), (’R’, 3), (’R’, 5), (’R’, 7)]

3rd step — selecting right component of pairs, yielding

[1, 3, 5, 7]

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Word (sequence) inversion

Note how easy it is to record the list of positions occupied by all
elements in a list:

invert l = nub [(x , findIndices (≡ x) l) | x ← l]

For instance,

invert "ARBRCRBRA" =
[(’A’, [0, 8]), (’R’, [1, 3, 5, 7]), (’B’, [2, 6]), (’C’, [4])]

clearly tells the role of A (begin = end), refrain R, intermediate
episode B and middle episode C .

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Searching for patterns

Let us now generalize isPrefixOf so that it checks whether a
particular pattern p occurs in a list l at position i :

match p l i = p ‘isPrefixOf ‘ (drop i l)

For instance, not only isPrefixOf "Mendel" "Mendelssohn" =
True holds, but also

match "ssohn" "Mendelssohn" 6 = True

Clearly,

isPrefixOf p l = match p l 0

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Searching for patterns

Las but not least, we may think of a function which records in
which positions in a list a particular pattern occurs:

patternIndices p l =
[(i , i + length p − 1) | (x , i)← zip l [0 . .],match p l i]

Consider, for instance,

op79i
L. van Beethoven (1770−1827)

Presto alla tedesca = 78

4
3

8.228596

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Searching for patterns

Clearly, this piano sonata fragment (right hand only) is captured by

tune = ntimes cell1 3 ++ (ntimes cell2 4) ++ cell3

where

cell1 = ["E", "B,", "^G", "B,", "E", "B,"]
cell2 = ["^D", "B,", "^F", "B,", "^D", "B,"]
cell3 = ["E", "B,", "E", "B,", "E", "B,"]

So,

patternIndices cell1 tune = [(0, 5), (6, 11), (12, 17)]
patternIndices cell2 tune =

[(18, 23), (24, 29), (30, 35), (36, 41)]
patternIndices cell3 tune = [(42, 47)]

as expected.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Searching for patterns

However,

• One has the feeling that there is only one cell in this
fragment which repeats at different degrees of the scale.
Howe can we capture this?

• We need an abstraction mechanism which should be able to
abstract from each cell the pattern of intervals involved.

• For this we need to model the notion of interval between two
degrees in a diatonic scale.

Prior to all this, let us investigate how some other music
abstraction functions can be encoded in Haskell.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

More subtle filtering functionality

Think of the function copy which copies its input faithfully to the
output, that is, copy x = x . Surely, this function has the following
properties,

copy [] = []
copy [x] = [x]
copy (s ++ r) = (copy s) ++ (copy r)

from which we easily calculate

copy [] = []
copy [x] = [x]
copy (x : r) = x : (copy r)

as earlier on.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

More about filtering

Functioncopy can be easily converted into one that removes
duplicates (ndcopy) by adding a filter at each stage:

ndcopy [] = []
ndcopy [x] = [x]
ndcopy (x : r) = x : (filter (6≡ x) (ndcopy r))

NB: ndcopy is nothing but the standard function nub to which we
have resorted earlier on.

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

More about filtering

• Between these two extremes (copying everything or removing
all duplicates) there is the intermediate operation which
removes only consecutive duplicates.

• To see the difference, compare

ndcopy "Mendelssohn" = "Mendlsoh"

(all duplicates go out) with

ncdcopy "Mendelssohn" = "Mendelsohn"

(only "s" in "ss" gets filtered.

• How do we encode ncdcopy?

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Abstraction: removing local repeats

Removing all duplicates:

ndcopy [] = []
ndcopy [x] = [x]
ndcopy (x : r) = x : (filter (6≡ x) (ndcopy r))

Removing consecutive duplicates only:

ncdcopy [] = []
ncdcopy [x] = [x]
ncdcopy (x : y : r)
| x ≡ y = ncdcopy (x : r)
| x 6≡ y = x : ncdcopy (y : r)

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Removing locally repeated notes

Recall that music notes are pairs (n, d) of note pitch with
duration. Abstracting from repeated notes is trickier because we
want to keep durations of the notes we are going to remove:

nrep [] = []
nrep [a] = [a]
nrep ((n, d) : (n′, d ′) : l)
| n ≡ n′ = nrep ((n, d + d ′) : l)
| n 6≡ n′ = (n, d) : nrep ((n′, d ′) : l)

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Removing locally repeated notes

Consider, for instance, the beginning of the Presto of Beethoven’s
String Quartet op.74:

op74iii
L. van Beethoven (1770−1827)

Presto

Vl.I 4
3

Now the same once nrep’ed:

Presto

4
3

(Note the binary meter flavour of the first bars, which could be
thought of as being 6

8 .)

12.329761

12.329761

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Removing locally repeated notes

In Haskell, here is (the beginning) of the original tune:

tune = [("c", 1 % 8), ("c", 1 % 8), ("c", 1 % 8), ("C", 3 %
8), ("e", 1 % 8), ("e", 1 % 8), ("e", 1 % 8), ("E", 3 %
8), ("g", 1 % 8), ("g", 1 % 8), ("g", 1 % 8), ("c", 1 %
4), ("e’", 1 % 4), ("c", 1 % 4), ("=B", 1 % 4), ...]

Now the effect of nrep:

nrep tune = [("c", 3 % 8), ("C", 3 % 8), ("e", 3 % 8), ("E", 3 %
8), ("g", 3 % 8), ("c", 1 % 4), ("e’", 1 % 4), ("c", 1 %
4), ("=B", 1 % 4), ("z", 1 % 8), ...]

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Sampling for musical analysis

In this case, a list of durations is the additional input (sampler)
which tells at which points in time notes are to be selected, while
keeping the durations specified by the sampler:

sample :: (Ord d ,Num d)⇒ [d]→ [(n, d)]→ [(n, d)]
sample [] = []
sample [] = []
sample (y : r) ((a, x) : t)
| y < 0 ∧ x + y ≡ 0 = sample r t
| y < 0 ∧ x + y > 0 = sample r ((a, x + y) : t)
| y < 0 ∧ x + y < 0 = sample ((x + y) : r) t
| y > 0 ∧ y < x = (a, y) : sample r ((a, x − y) : t)
| y > 0 ∧ y > x = (a, y) : sample ((x − y) : r) t
| y > 0 ∧ y ≡ x = (a, y) : sample r t

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Sampling for musical analysis

Two different samples of op.74iii,

4
3

and

4
3

where the latter loses more information, keeping only the tonal
thread.

Exercise 1: Write in Haskell the sampler lists which yield the above two
samples of op.74iii main theme.

�

12.329761

13.322399

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Sampling keeps what’s essential

Sampling enables the music analyst to capture a view, or
projection, of the target tune. For instance, given source

Sonata K331i
W.A. Mozart (1756−1791)

Piano

8
6

8
6

the following sample

Piano

8
6

8
6

removes rhythmic detail while keeping the main rhythmic

structure, that given by rhythmic pattern , that is, 2
8 , 1

8 .

5.0677667

5.0677667

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Sampling keeping the essential

Another sample, this time over 3
16 ,

Piano

8
6

8
6

(which could be regarded as having meter 12
16) keeps the melodic

structure.

5.0677667

Pattern recognition Indexing Word inversion Searching Abstraction Sampling Epilogue

Epilogue

• When used together with the other combinators described in
this series of slides, sampling offers support for musical
analysis by removing detail (eg. passing notes, short
rhythmic patterns) and providing a view (analysis) of the
musical text.

• Melodic pattern identification calls for a metric structure in
musical pitch enabling us to calculate the derivative of a
melodic line, ie., the sequence of intervals involved.

• From melodic derivatives we can (re)build tunes again, by the
converse operation of integration.

• Such is the purpose of the next set of slides in this series.

	Pattern recognition
	Indexing
	Word inversion
	Searching
	Abstraction
	Sampling
	Epilogue

