
Computing for Musicology
(0809.F104N5)

2. Introduction to Programming with Numbers
and Words

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

March 2009
Licenciatura em Música

(http://www.musica.reitoria.uminho.pt/licenciatura.html)

Universidade do Minho
Braga

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

From a middle school textbook

First page of chapter on
multiplying and dividing
rational numbers (7th
year):

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

From a middle school textbook

Draw your attention to the text-box at the bottom, on the left:

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

First program: multiplication

The properties of multiplication are enough for us to start writing
programs involving addition and multiplication, eg.

a× 0 = 0 (1)

a× 1 = a (2)

a× (b + c) = (a× b) + (a× c) (3)

Let us see how: for c = 1 one has

a× 0 = 0
a× 1 = a
a× (b + 1) = (a× b) + (a× 1)

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

First program: multiplication

This runs (eg. in Haskell) and can actually be simplified into

a× 0 = 0
a× (b + 1) = (a× b) + a

(Just replace a× 1 by a and delete second clause, which is a
consequence of the other two.)

Exercise 1: From the following properties of exponentials,

a1 = a

a(b+c) = ab × ac

a0 = 1

write an Haskell program which computes ax .

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Numbers in Haskell

Exercise 2: From the following properties of addition,

a + 0 = a

a + (b + c) = (a + b) + c

infer an Haskell program which computes addition itself.

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

• Further to numbers, in Haskell we can
handle words, that is, objects such as
"Haydn", "Mendelssohn", and so on.

• Note the use of "" in words: in fact, there
is a (great!) difference between the word
"Mendelssohn" and the individual Felix
Mendelssohn, a composer who was born
200 years ago.

F. Mendelssohn-Bartholdy (1809-1847)

In this way, while Haskell is able to tell us
that the word "Mendelssohn" is made of 11 letters,

length "Mendelssohn" = 11

it is unable to infer that Mendelssohn died in 1847 (you need to
ask a music historian about the truth of such fact).

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

• Further to numbers, in Haskell we can
handle words, that is, objects such as
"Haydn", "Mendelssohn", and so on.

• Note the use of "" in words: in fact, there
is a (great!) difference between the word
"Mendelssohn" and the individual Felix
Mendelssohn, a composer who was born
200 years ago.

F. Mendelssohn-Bartholdy (1809-1847)

In this way, while Haskell is able to tell us
that the word "Mendelssohn" is made of 11 letters,

length "Mendelssohn" = 11

it is unable to infer that Mendelssohn died in 1847 (you need to
ask a music historian about the truth of such fact).

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

Haskell provides a rich set of operations on words. Let us see some
of these:

• word inversion:
reverse "Mendelssohn" = "nhossledneM"

• word chaining:

"Mendelssohn" ++ "Bartholdy" =
"MendelssohnBartholdy"

or (if you like)

"Mendelssohn" ++ "-" ++ "Bartholdy" =
"Mendelssohn-Bartholdy"

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

Haskell provides a rich set of operations on words. Let us see some
of these:

• word inversion:
reverse "Mendelssohn" = "nhossledneM"

• word chaining:

"Mendelssohn" ++ "Bartholdy" =
"MendelssohnBartholdy"

or (if you like)

"Mendelssohn" ++ "-" ++ "Bartholdy" =
"Mendelssohn-Bartholdy"

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

Further operations on words:

• removing repeated characters from words:

nub "Mendelssohn" = "Mendlsoh"

• checking prefixes:

isPrefixOf "Mendel" "Mendelssohn" = True
isPrefixOf "Mendlsoh" "Mendelssohn" = False

• sorting the characters of words in increasing order:

sort "Mendelssohn" = "Mdeehlnnoss"

• equality of words, eg.

"Mendel"=="Mendelssohn" yields False

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

Further operations on words:

• removing repeated characters from words:

nub "Mendelssohn" = "Mendlsoh"

• checking prefixes:

isPrefixOf "Mendel" "Mendelssohn" = True
isPrefixOf "Mendlsoh" "Mendelssohn" = False

• sorting the characters of words in increasing order:

sort "Mendelssohn" = "Mdeehlnnoss"

• equality of words, eg.

"Mendel"=="Mendelssohn" yields False

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

Further operations on words:

• removing repeated characters from words:

nub "Mendelssohn" = "Mendlsoh"

• checking prefixes:

isPrefixOf "Mendel" "Mendelssohn" = True
isPrefixOf "Mendlsoh" "Mendelssohn" = False

• sorting the characters of words in increasing order:

sort "Mendelssohn" = "Mdeehlnnoss"

• equality of words, eg.

"Mendel"=="Mendelssohn" yields False

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words in Haskell

Further operations on words:

• removing repeated characters from words:

nub "Mendelssohn" = "Mendlsoh"

• checking prefixes:

isPrefixOf "Mendel" "Mendelssohn" = True
isPrefixOf "Mendlsoh" "Mendelssohn" = False

• sorting the characters of words in increasing order:

sort "Mendelssohn" = "Mdeehlnnoss"

• equality of words, eg.

"Mendel"=="Mendelssohn" yields False

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Sentences in Haskell

• Words can have characters in them other than lowercase and
uppercase letters.

• Words with spaces are better viewed as sentences, eg.

"Mendelssohn died in 1847"

Sentences can be split into sequences of words:

words "Mendelssohn died in 1847" =
["Mendelssohn", "died", "in", "1847"]

• So, sentence "Mendelssohn died in 1847", which has 24
characters,

length "Mendelssohn died in 1847" = 24

is made of 4 words:

length (words "Mendelssohn died in 1847") = 4

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Sentences in Haskell

• Words can have characters in them other than lowercase and
uppercase letters.

• Words with spaces are better viewed as sentences, eg.

"Mendelssohn died in 1847"

Sentences can be split into sequences of words:

words "Mendelssohn died in 1847" =
["Mendelssohn", "died", "in", "1847"]

• So, sentence "Mendelssohn died in 1847", which has 24
characters,

length "Mendelssohn died in 1847" = 24

is made of 4 words:

length (words "Mendelssohn died in 1847") = 4

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Sentences in Haskell

• Words can have characters in them other than lowercase and
uppercase letters.

• Words with spaces are better viewed as sentences, eg.

"Mendelssohn died in 1847"

Sentences can be split into sequences of words:

words "Mendelssohn died in 1847" =
["Mendelssohn", "died", "in", "1847"]

• So, sentence "Mendelssohn died in 1847", which has 24
characters,

length "Mendelssohn died in 1847" = 24

is made of 4 words:

length (words "Mendelssohn died in 1847") = 4

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Numbers versus words

• Also note the difference between 1847 (a number) and its
denotation "1847" (a word).

• We say that word "1847" shows (or prints) number 1847.
Check this by evaluating

show 1847

Exercise 3: Check the difference between numbers and words by
evaluating the following expressions:

a) 1847 + 2
b) "1847" + 2
c) "died in " ++ 1847
c) "died in " ++ (show 1847)

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Numbers versus words

• Also note the difference between 1847 (a number) and its
denotation "1847" (a word).

• We say that word "1847" shows (or prints) number 1847.
Check this by evaluating

show 1847

Exercise 4: Check the difference between numbers and words by
evaluating the following expressions:

a) 1847 + 2
b) "1847" + 2
c) "died in " ++ 1847
c) "died in " ++ (show 1847)

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Numbers versus words

• Also note the difference between 1847 (a number) and its
denotation "1847" (a word).

• We say that word "1847" shows (or prints) number 1847.
Check this by evaluating

show 1847

Exercise 5: Check the difference between numbers and words by
evaluating the following expressions:

a) 1847 + 2
b) "1847" + 2
c) "died in " ++ 1847
c) "died in " ++ (show 1847)

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Empty words and empty sentences

Words can have only one character, cf.

length "H" = 1

and even no characters at all:

length "" = 0

This last word — the empty word —
adds nothing to any other given word w :

w ++ "" = "" ++ w = w

This leads us to the operator which
yields all prefixes of a given word,

F.J. Haydn (1732-1809)

inits "Haydn" =
["", "H", "Ha", "Hay", "Hayd", "Haydn"]

sorted by dictionary order, in which "" is smallest.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Empty words and empty sentences

Words can have only one character, cf.

length "H" = 1

and even no characters at all:

length "" = 0

This last word — the empty word —
adds nothing to any other given word w :

w ++ "" = "" ++ w = w

This leads us to the operator which
yields all prefixes of a given word,

F.J. Haydn (1732-1809)

inits "Haydn" =
["", "H", "Ha", "Hay", "Hayd", "Haydn"]

sorted by dictionary order, in which "" is smallest.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words are made of characters

• By evaluating

head "Mendelssohn"

you run the operation head which yields the first letter of a
given word, if it exists (thus never evaluate head ""...)

• Note that ’M’ = head "Mendelssohn" is a letter (character),
not a word.

• So, letter ’M’ is different from "M", the singleton word which
contains only character ’M’.

• To check that words are sequences of characters check

"Haydn"==[’H’, ’a’, ’y’, ’d’, ’n’]

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words are made of characters

• By evaluating

head "Mendelssohn"

you run the operation head which yields the first letter of a
given word, if it exists (thus never evaluate head ""...)

• Note that ’M’ = head "Mendelssohn" is a letter (character),
not a word.

• So, letter ’M’ is different from "M", the singleton word which
contains only character ’M’.

• To check that words are sequences of characters check

"Haydn"==[’H’, ’a’, ’y’, ’d’, ’n’]

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words are made of characters

• By evaluating

head "Mendelssohn"

you run the operation head which yields the first letter of a
given word, if it exists (thus never evaluate head ""...)

• Note that ’M’ = head "Mendelssohn" is a letter (character),
not a word.

• So, letter ’M’ is different from "M", the singleton word which
contains only character ’M’.

• To check that words are sequences of characters check

"Haydn"==[’H’, ’a’, ’y’, ’d’, ’n’]

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Building words out of characters

• How do you add a character, say ’F’, at the front of a given
word, say "Mendelssohn"? You have two ways: either typing

"F" ++ "Mendelssohn"

or
’F’ : "Mendelssohn"

Both yield "FMendelssohn".

• The (:) op-
erator is known as cons, a prefix of construct, which is such that

c : w = "c" ++ w

meaning that it can
be used to build words by adding characters to the empty word:

’H’ : (’a’ : (’y’ : (’d’ : (’n’ : "")))) = "Haydn"

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Building words out of characters

• How do you add a character, say ’F’, at the front of a given
word, say "Mendelssohn"? You have two ways: either typing

"F" ++ "Mendelssohn"

or
’F’ : "Mendelssohn"

Both yield "FMendelssohn".

• The (:) op-
erator is known as cons, a prefix of construct, which is such that

c : w = "c" ++ w

meaning that it can
be used to build words by adding characters to the empty word:

’H’ : (’a’ : (’y’ : (’d’ : (’n’ : "")))) = "Haydn"

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words which are ‘rondos’

• Suppose "ABCD" is a word describing a particular piece of
music made of parts ’A’, ’B’, ’C’ and ’D’.

• Now run
intersperse ’R’ "ABCD"

in your Haskell calculator, where ’R’ describes yet another
part. You will obtain

"ARBRCRD"

— that is, the rondo word where episodes ’A’, ’B’, ’C’ and
’D’ alternate with refrain ’R’.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Words which are ‘rondos’

• Suppose "ABCD" is a word describing a particular piece of
music made of parts ’A’, ’B’, ’C’ and ’D’.

• Now run
intersperse ’R’ "ABCD"

in your Haskell calculator, where ’R’ describes yet another
part. You will obtain

"ARBRCRD"

— that is, the rondo word where episodes ’A’, ’B’, ’C’ and
’D’ alternate with refrain ’R’.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

‘Canon perpetuus’ kind of words

• Take your rondo "ARBRCRD" word and run

cycle "ARBRCRD"

in your Haskell calculator. You will see you little rondo
repeated forever,

"ARBRCRDARBRCRDARBRCRDARBRCRDARBRCRDARB..."

(The only way to stop this is to type Ctr-c.)

• Note the mathematical property

intersperse x (cycle w) = cycle (intersperse x w)

• Infinite words such as the one just built above will be very
useful in our formalization of music notation to come up
soon.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Word filtering

Suppose that, from a rondo-word, you want to extract the episodes in the

order they take place. You can write

filter (6≡ ’R’) "ARBRCRD"

to recover word "ABCD" without refrain ’R’. This literally means:

filter out all instances of ’R’ from "ARBRCRD"

Put in other words:

filter word "ARBRCRD" so as to keep only the letters different
from ’R’

If you wish to keep the ’R’s instead of deleting them just type

filter (==’R’) "ARBRCRD"

to obtain the word "RRR" containing the three instances of the refrain.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Word filtering

Suppose that, from a rondo-word, you want to extract the episodes in the

order they take place. You can write

filter (6≡ ’R’) "ARBRCRD"

to recover word "ABCD" without refrain ’R’. This literally means:

filter out all instances of ’R’ from "ARBRCRD"

Put in other words:

filter word "ARBRCRD" so as to keep only the letters different
from ’R’

If you wish to keep the ’R’s instead of deleting them just type

filter (==’R’) "ARBRCRD"

to obtain the word "RRR" containing the three instances of the refrain.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Word filtering

Suppose that, from a rondo-word, you want to extract the episodes in the

order they take place. You can write

filter (6≡ ’R’) "ARBRCRD"

to recover word "ABCD" without refrain ’R’. This literally means:

filter out all instances of ’R’ from "ARBRCRD"

Put in other words:

filter word "ARBRCRD" so as to keep only the letters different
from ’R’

If you wish to keep the ’R’s instead of deleting them just type

filter (==’R’) "ARBRCRD"

to obtain the word "RRR" containing the three instances of the refrain.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Word filtering

• As another example of word filtering, let us see how to drop
vowels from words:

filter notVowel
"Joseph Haydn died two hundred years ago"

obtaining

"Jsph Hydn dd tw hndrd yrs g"

The key in this process is the specification of the property
‘being a vowel’ or not:

notVowel c = not (c ∈ "aeiouAEIOU")

Here c ∈ w checks whether a particular c can be found in
word w .

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Taking and dropping

Further (standard) operations on words:

• selecting n-first letters:

take 7 "Mendelssohn" = "Mendels"

Case of not enough letters:

take 7 "Haydn" = "Haydn"

• dropping n-first letters:

drop 7 "Mendelssohn" = "sohn"

Case of not enough letters:

drop 7 "Haydn" = ""

Note the mathematical property:

take n w ++ drop n w = w (4)

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Taking and dropping

Further (standard) operations on words:

• selecting n-first letters:

take 7 "Mendelssohn" = "Mendels"

Case of not enough letters:

take 7 "Haydn" = "Haydn"

• dropping n-first letters:

drop 7 "Mendelssohn" = "sohn"

Case of not enough letters:

drop 7 "Haydn" = ""

Note the mathematical property:

take n w ++ drop n w = w (4)

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Taking and dropping

Further (standard) operations on words:

• selecting n-first letters:

take 7 "Mendelssohn" = "Mendels"

Case of not enough letters:

take 7 "Haydn" = "Haydn"

• dropping n-first letters:

drop 7 "Mendelssohn" = "sohn"

Case of not enough letters:

drop 7 "Haydn" = ""

Note the mathematical property:

take n w ++ drop n w = w (4)

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Ciphering words

Julius Caesar (100BC-44BC) is known to have used the following
trick to hide the contents of his messages to his army from the
enemy by ciphering the words:
• Ciphering: replace each letter by its successor in the Latin

alphabet, eg. "WeAreReadyToAttack" converted to
"XfBsfSfbezUpBuubdl".

• Deciphering: replace each letter by its predecessor in the
Latin alphabet.

Exercise 6: Check that Haskell knows about the Latin alphabet by
running

succ ’A’ = ’B’
succ ’B’ = ’C’ , etc
pred ’k’ = ’j’
pred ’d’ = ’c’ , etc

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Ciphering words

Julius Caesar (100BC-44BC) is known to have used the following
trick to hide the contents of his messages to his army from the
enemy by ciphering the words:
• Ciphering: replace each letter by its successor in the Latin

alphabet, eg. "WeAreReadyToAttack" converted to
"XfBsfSfbezUpBuubdl".

• Deciphering: replace each letter by its predecessor in the
Latin alphabet.

Exercise 7: Check that Haskell knows about the Latin alphabet by
running

succ ’A’ = ’B’
succ ’B’ = ’C’ , etc
pred ’k’ = ’j’
pred ’d’ = ’c’ , etc

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Word mappings

The effect of applying succ or pred to every letter in a word or
sentence is obtained in Haskell by typing, for instance

map succ "WeAreReadyToAttack" =
"XfBsfSfbezUpBuubdl"
map pred "PlXfBsfSfbezUpp" = "OkWeAreReadyToo"

The map operator is extremely useful in Haskell programming, as
the following illustration shows:

• conversion to uppercase letters:

map toUpper "Mendelssohn" = "MENDELSSOHN"

• conversion to lowercase letters:
map toLower "Haydn" = "haydn"

where toUpper and toLower are the obvious case-conversion
operations.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Rebuilding sentences from their words

We have seen how to split a sentence into a sequence of words,
recall

words "Mendelssohn died in 1847" =
["Mendelssohn", "died", "in", "1847"]

Is there the converse operation of rebuilding the original sentence
from its words? Let us try it:

concat ["Haydn", "died", "in", "1809"] =
”Haydndiedin1809”

So concat merges a sequence of words into a single word. (Can be
thought of (++) generalized to more than two arguments.)

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Rebuilding sentences from their words

However, "Haydndiedin1809" is not what we started from: the
spaces are missing. We thus need something else:

concat (intersperse " " ["Haydn", "died", "in", "1809"])

Mind the following mathematical property:

concat (intersperse " " (words s)) = s

Exercise 8: Run take 16 (cycle "ARBRCRD"). Conclude that Haskell is
able to select from infinite words.

�

Exercise 9: Check that concat [""] = "" but concat "" yelds an error.
Why is this so?

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Let’s program with words, not numbers

How difficult is it to write programs which handle words instead
of numbers?

• Conceptually, programs handling words (sentences, etc) are as
easy to write as those which handle numbers

• The design principle is the same: programs always arise from
(mathematical) properties of the operators we want to write.

Example:

We want to re-invent the (++) operator which
concatenates words.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Programming with words, not numbers

First of all, we record properties of this operator. Further to the
ones already written up,

"" ++ w = w
"a" ++ w = a : w

we add the one which tells that you can join words from both ends:

(w ++ y) ++ z = w ++ (y ++ z)

NB: the standard name for this is the associative property.

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Programming with words, not numbers

Now, substitute w in the third property of

"" ++ w = w
"a" ++ w = a : w
(w ++ y) ++ z = w ++ (y ++ z)

by "a", obtaining:

"" ++ w = w
"a" ++ w = a : w
("a" ++ y) ++ z = "a" ++ (y ++ z)

Then use the second equation to simplify the third (twice):

"" ++ w = w
"a" ++ w = a : w
(a : y) ++ z = a : (y ++ z)

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Programming with words, not numbers

As the second equation is no longer needed, remove it from the
program. You are done:

"" ++ w = w
(a : y) ++ z = a : (y ++ z)

Exercise 10: Knowing that properties

length "" = 0
length (w ++ y) = length w + length y
length "c" = 1

hold, provide your own version of length.

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Exercises

Exercise 11: From the following properties of ∈,

c ∈ "" = False
c ∈ (w ++ y) = c ∈ w | c ∈ w
c ∈ "d" = c == d

provide you own version of this operator.

�

Exercise 12: Complete the following properties of the word reversal
operation:

reverse "" = ""
reverse (w ++ y) =
reverse "c" =

Hence provide your own version of reverse.

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

Exercises

Exercise 13: Complete the following properties of the map f operator:

map f "" = ""
map f (w ++ y) =
map f "c" =

Hence provide your own version of map f .

�

Introduction Numbers Words Sentences Characters Programming recipes Exercises More about Haskell

More about Haskell

If you want to know more about Haskell (including its application
to music synthesis) have a look at the following (really good) book:

P. Hudak: The Haskell School of Expression - Learning
Functional Programming Through Multimedia.
Cambridge University Press, 2000. ISBN 0-521-64408-9.

	Introduction
	Numbers
	Words
	Sentences
	Characters
	Programming recipes
	Exercises
	More about Haskell

