
Data type invariants — starting where (static)

type checking stops

J.N. Oliveira

Dept. Informática,

Universidade do Minho

Braga, Portugal

DI/UM, 2007 (Updated 2008; 2009)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Types for software quality

Data type evolution:

• Assembly (1950s) — one single primitive data type: machine
binary

• Fortran (1960s) — primitive types for numeric processing
(INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and
LOGICAL data types)

• Pascal (1970s) — user defined (monomorphic) data types
(eg. records, files)

• ML, Haskell etc (≥1980s) — user defined (polymorphic)
data types (eg. List a for all a)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Type checking for software quality

Why data types?

• Fortran anecdote: non-terminating loop DO I = 1.10 once
went unnoticed due to poor type-checking

• Diagnosis: compiler unable to prevent using a real number
where a discrete value (eg. integer, enumerated type) was
expected

• Solution: improve grammar + static type checker

(static means done at compile time)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Data type invariants

In a system for monitoring the flight paths of aircrafts in a
controlled airspace, we need to define altitude, latitude and
longitude:

Alt = IR
Lat = IR
Lon = IR

However,

• altitude cannot be negative
• latitude ranges between -90 and 90
• longitude ranges between -180 and 180

In maths we would have defined:

Alt = {a ∈ IR : a ≥ 0}

Lat = {x ∈ IR : −90 ≤ x ≤ 90}

Lon = {y ∈ IR : −180 ≤ y ≤ 180}

Motivation Data Type invariants Quantifier notation Proof obligations Background

Data type invariants

In a system for monitoring the flight paths of aircrafts in a
controlled airspace, we need to define altitude, latitude and
longitude:

Alt = IR
Lat = IR
Lon = IR

However,

• altitude cannot be negative
• latitude ranges between -90 and 90
• longitude ranges between -180 and 180

In maths we would have defined:

Alt = {a ∈ IR : a ≥ 0}

Lat = {x ∈ IR : −90 ≤ x ≤ 90}

Lon = {y ∈ IR : −180 ≤ y ≤ 180}

Motivation Data Type invariants Quantifier notation Proof obligations Background

Data type invariants “a la” VDM

Standard notation (VDM family)

Alt = IR
inv a △ a ≥ 0

implicitly defines predicate

inv-Alt : IR→ IB
inv-Alt(a) △ a ≥ 0

known as the invariant of Alt.

Motivation Data Type invariants Quantifier notation Proof obligations Background

Data Type invariants

Recall the following requirements from mobile phone manufacturer

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store operation
should work in a way such that (a) the more recently a call is
made the more accessible it is; (b) no number appears twice in
a list; (c) each list stores up to 10 entries.

Clause (c) leads to

ListOfCalls = Call⋆

inv l △ length l ≤ 10

Exercise 1: Think of a natural language definition of clause (b) to
inv-ListOfCalls involving denotation l i of the i-th element of l , for
1 ≤ i ≤ length l .

�

Motivation Data Type invariants Quantifier notation Proof obligations Background

Invariants are inevitable

Modeling the Western dating system:

Year = IN

Month = IN
inv m △ m ≤ 12

Day = IN
inv d △ d ≤ 31

Date = Year ×Month × Day

However, 12 × 31 = 372, while one year has 365.2425... days.
Thus the Julian calendar (45 BC, which introduced leap years) and
the much more complex Gregorian calendar (1582), which fine
tuned it to

Motivation Data Type invariants Quantifier notation Proof obligations Background

Invariants are inevitable

Date = Year ×Month × Day
inv(y ,m, d) △ if m ∈ {1, 3, 5, 7, 8, 10, 12} then

d ≤ 31∧
((y = 1582 ∧m = 10)⇒ (d < 5 ∨ 14 < d))
else if m ∈ {4, 6, 9, 11} then d ≤ 30
else if m = 2 ∧ leapYear(y) then d ≤ 29
else if m = 2 ∧ ¬leapYear(y) then d ≤ 28
else False;

where

leapYear : IN→ IB
leapYear y △ 0 = rem(y , if y ≥ 1700 ∧ rem(y , 100) = 0

then 400 else 4)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Invariants are inevitable

Real-life conventions, laws, rules, norms, acts lead to invariants,
eg. RIAPA (U.Minho internal students’ course follow-up rules):

DbSAUM = . . .

inv db △ (a)/*student’s current degree course must exist */
(b)/*student’s current plan must belong to degree course */
(c)/*student’ past registrations obey to constraint (b) */
(d)/*students cannot do exams of courses they are not registered
(e)/*student is registered in one degree course only in the back
(f)/*courses in all academic years must belong to degree plan
(g)/*same as (f) concerning every student */
(. . .)/*............ etc etc */

Motivation Data Type invariants Quantifier notation Proof obligations Background

Summing up

• Given a datatype A and a predicate p : A→ IB, data type
declaration

B = A
inv x △ p x

means the type whose extension is

B = {x ∈ A : p x}

• p is referred to as the invariant property of B

• Therefore, writing a ∈ B means a ∈ A ∧ (p a).

Motivation Data Type invariants Quantifier notation Proof obligations Background

How does one write invariants?

We resort to first order predicate logic and set theory, which you
have studied in your 1st cycle degree. Let’s warm up:

Exercise 2: (adapted from exercise 5.1.4 in C.B. Jones’s Systematic
Software Development Using VDM):

Hotel room numbers are pairs (l , r) where l indicates a floor
and r a door number in floor l . Write the invariant on room
numbers which captures the following rules valid in a particular
hotel with 25 floors, 60 rooms per floor:

1. there is no floor number 13; (guess why)
2. level 1 is an open area and has no rooms;
3. the top five floors consist of large suites and these are

numbered with even integers.

�

Motivation Data Type invariants Quantifier notation Proof obligations Background

Quantifier notation

Most invariants require quantified expressions. Here is how we
write them:

• 〈∀ k : R : T 〉 meaning “for all k in range R it is the case
that T”

• 〈∃ k : R : T 〉 meaning “there exists k in range R case such
that T”

Exercise 3: Write clause (b) of inv-ListOfCalls (recall exercise 1) using
∀ notation.

�

Motivation Data Type invariants Quantifier notation Proof obligations Background

Invariant preservation

Proposed model for operation store in the mobile phone problem,

store : Call → ListOfCalls → ListOfCalls

store c l △ take 10 (c : [a | a← l , a 6= c])

the fact that ListOfCalls has invariant

ListOfCalls = Call⋆

inv l △ length l ≤ 10 ∧
〈∀ i , j : 1 ≤ i , j ≤ length l : (l i) = (l j)⇒ i = j〉

leads to proof obligation

〈∀ c , l : l ∈ ListOfCalls : (store c l) ∈ ListOfCalls〉 (1)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Invariant preservation (functions)

In general, given a function A
f

// B where both A and B have
invariants, extended type checking requires the following

Proof obligation

f should be invariant-preserving, that is,

〈∀ a : a ∈ A : (f a) ∈ B〉 (2)

equivalent to

〈∀ a : inv-A a : inv-B(f a)〉 (3)

holds.

(Our example above is a special case of this, for A = B .)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Dealing with proof obligations

• The essence of formal methods consists in regarding
conjectures such as (2) as proof obligations which, once
discharged, add quality and confidence to the design

• In lightweight approaches, one regards (2) as the subject of as
many test cases as possible, either using smart testing
techniques or model checking techniques.

• These techniques, however, only prove the existence of
counter-examples — not their absence:

test unveils errors ⇒ program has errors (p ⇒ q)
test unveils no errors 6⇒ program has no errors (¬p 6⇒ ¬q)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Dealing with proof obligations

• In full-fledged formal techniques, one is obliged to provide a
mathematical proof that conjectures such as (2) do hold for
any a.

• Such proofs can either be performed as paper-and-pencil
exercises or, in case of very complex invariants, be supported
by theorem provers

• If automatic, discharging such proofs can be regarded as
extended static checking (ESC)

• As we shall see, all the above approaches to adding quality to
a formal model are useful and have their place in software
engineering using formal methods.

Motivation Data Type invariants Quantifier notation Proof obligations Background

Background — Eindhoven quantifier calculus

When writing ∀, ∃-quantified expressions is useful to know a number of
rules which help in reasoning about them. Below we list some of these
rules 1:

• Trading:

〈∀ i : R ∧ S : T 〉 = 〈∀ i : R : S ⇒ T 〉 (4)

〈∃ i : R ∧ S : T 〉 = 〈∃ i : R : S ∧ T 〉 (5)

Exercise 4: Check rule

〈∃ i : R : T 〉 = 〈∃ i : T : R〉 (6)

�

1Warning: the application of a rule is invalid if (a) it results in the capture

of free variables or release of bound variables; (b) a variable ends up occurring

more than once in a list of dummies.

Motivation Data Type invariants Quantifier notation Proof obligations Background

Background — Eindhoven quantifier calculus

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉 (7)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉 (8)

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (9)

〈∃ k : k = e : T 〉 = T [k := e] (10)

Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (11)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (12)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Background — set-theoretical membership

Above we have seen the important rôle of membership (∈) tests in
(formal) type checking. How do we characterize ∈?

• given a set S , let (∈ S) denote the predicate such that

(∈ S)a
def
= a ∈ S

• the following universal property holds, for all S , p:

p = (∈ S) ⇔ S = {a : p a} (13)

Motivation Data Type invariants Quantifier notation Proof obligations Background

Exercises

Exercise 5: Infer tautologies

S = {a : a ∈ S} , p a ⇔ a ∈ {a : p a}

from (13).

�

Exercise 6: Check carefully which rules of the quantifier calculus need
to be applied to prove that predicate

〈∀ b, a : 〈∃ c : b = f c : r(c , a)〉 : s(b, a)〉

is the same as

〈∀ c , a : r(c , a) : s(f c , a)〉

where f is a function and r , s are binary predicates.

�

	Motivation
	Data Type invariants
	Quantifier notation
	Proof obligations
	Background

