
FUZZY OBJECT COMPARISON AND ITS APPLICATION
TO A SELF-ADAPTABLE QUERY MECHANISM

José Nuno OLIVEIRA

INESC Group 2361 / Dep. Informática, Universidade do Minho - 4700 Braga - Portugal

Abstract. This paper describes a generic strategy for “intelligently” querying hierarchical semantic networks whose objects
are characterized by fuzzy attributes. The strategy is self-adaptable in the sense that the network will keep structuring itself
(as long as the user queries the system) by adding more and more detail to an underlying semi-lattice built on top of a (fuzzy)
object comparison partial order.
Technical bounds are imposed on the fuzziness of the system by formally specifying the network and reasoning about it. In the
one direction, fuzziness is welcome insofar as it increases the flexibility and discriminating power of the comparison mechanism.
In the opposite direction, arbitrary fuzziness may be counterproductive because it will end up destroying the formal properties
desirable for such a mechanism.
An experimental illustration of the proposed strategy is presented which re-interprets Prieto-Diáz faceted (fuzzy) scheme for
software-component classification and reuse.

1 Introduction

This paper describes the formal basis of the mechanism adopted
in the SOUR 1 project for comparing, classifying and retriev-
ing information about large software systems. The unit of
information in SOUR is the so-called abstract object (AO), a
notion which combines the enumerative and faceted classifica-
tion [9, 8] schemes in the context of a conventional hierarchical
semantic network model extending the popular attributive view
of objects. It is because of the shortcomings of this attribu-
tive view, for classification purposes [9], that facets (or “fuzzy
attributes”) have been added to the model, in order to cope
with features of human reasoning such as classifying by anal-
ogy and terminological vagueness, as reported in the literature
[9, 8, 3, 7, 6].

However appealing from an intuitive point of view, the
implications of introducing fuzzyness in classification theory
have not been formally assessed in the above cited literature.
For instance, can the mathematics of Wille [13]’s concept lat-
tices be easily extended with fuzzyness?

The main purpose of this paper is to show that facets effec-
tively extend “sharp” attributes with respect to classification,
and to show how the overall classification scheme can help in
designing a self-adaptable query mechanism for user-interface
support. The SETS [4] notation is employed throughout the
paper for the technical material. Due to its closeness to con-
ventional set-theory notation, it should be easy to follow by
informal reader.

2 Motivation

The reuse based approach to software development is today
understood as a form of analogical problem solving strategy
whereby the software engineer attempts to transfer solutions
from one system (or problem) to another [11]. The basic ques-
tion is how to define a quantitative similarity relation between
software artifacts so as to promote their analogical reuse. Sim-
ilarity can be described as a relation determined by comparing

1SOUR is the acronym of EUREKA 379 project “SOftware Use and
Reuse”.

the distinct constituents of two entities. From a quantitative
viewpoint, comparison is normally interpreted as a measure of
closeness in some abstract space.

One of the main motivations of the SOUR project has been
to provide for reusability and user-friendliness not in an ad hoc
way but rather as a beneficial consequence of a formal knowl-
edge subsumption discipline defined beforehand. Although
this paper stresses on software reuse, it should be clear that the
framework is generally applicable to any kind of computational
objects matching the formal specification of the underlying in-
formation model.

3 Object Comparison

3.1 General View

Comparison in mathematics is usually expressed by an order-
ing on the specific domain of reasoning. One may expect that
some kind of partial ordering can be found on object descrip-
tors (ODs), because not every two descriptors will be linearly
comparable. However, should two given objects be incompa-
rable, one might expect that a least upper-bound object always
exists which is the least abstract object which contains the
“common information” of (i.e. which generalizes) the given
objects. Therefore, the discussion around object descriptor
comparison can be expressed in terms of a functioncomp : OD �OD �! OD (1)

which, given two object descriptors (ODs), “computes” their
least upper-bound.

Before going into details, one should assert some desirable
properties of any candidate comp function, the cornerstone of
every comparison algebra:� the comparison of an OD with itself should yield itself, that

is, comp(x; x) = x;� OD-comparison should be commutative, that is,comp(x; y) = comp(y; x) and associative, that is,comp(x; comp(y; z)) = comp(comp(x; y); z);� there must exist a “most abstract”OD,>, which generalizes
any other OD, that is, comp(>; x) = comp(x;>) = >.

1



�������@@@@@@@@@@@@@@�������� @@@@����@@@@����@@@@����@@@@����rr rr rr rrrr rrr r
>

ab comp(a; b)
Fig. 1: OD specialize/generalize hierarchy.ODs will thus be assembled in a specialize/generalize semi-

lattice with > at the top, see Fig. 1. One will say that x
specializes y (� y generalizes x) wherever comp(x; y) = y
holds, and will write x � y to denote such a specialization
order.

3.2 From Keywords to Facets

We may instantiate the above scheme in the context of spe-
cific classification techniques borrowed from classical library
theory [9, 8]. For instance, in the keyword-based approach (a
simple version of enumerative classification), object descrip-
tors are just sets of keywords capturing their most relevant
features. Thus we have, in this case:OD = 2Keyword
Comparing two ODs x and y means to obtain a “measure”
of what they have in common, that is, comp(x; y) = x \ y .
So the � OD-ordering is the inverse of set-inclusion and the
most abstract descriptor simply is the empty set of keywords,> = ; 2.

In the attributive version of enumerative classification, OD
descriptors are attribute tuples, i.e. functions from a domain of
attribute names to a domain of attribute values or terms 3:OD = Name ,! V alue (2)

This description technique encompasses not only record-based
descriptors (e.g. as in the conventional relational database
model) but also objects framed into a class-based inheritance
system [6]. In this case, what two ODs x and y have in com-
mon is captured by selecting every common attribute of bothx and y bearing the same value 4, i.e.:comp(x; y) = � ax(a) �a2dom(x)\dom(y)^x(a)=y(a) (3)

The most abstract OD is the totally undefined function,> = � �
and the �-ordering is the inverse of the function

definedness ordering:x � y def=
2For this approach to be sufficiently discriminant, Keyword must

be more elaborate than a mere collection of keywords. Normally,
classification power is increased by structuring the keyword domain
on the basis of a hierarchical taxonomy of subjects (e.g. the Dewey
Decimal Hierarchy), as explained in [9, 8] and specified in [6].

3ReadA ,! B informally as “arrays of B’s indexed by A’s”.
4As usual in many notations, dom(x) denotes the domain of defi-

nition of function x, see e.g. [2, 4].

dom(y) � dom(x)^ 8a 2 dom(y) : x(a) = y(a)
However, the “strictness” of this approach to OD-

comparison is well-known (it has been in use for a long
time in information retrieval), entailing a too “flat” special-
ize/generalize hierarchy. For instance, comparing descriptor

function: add
object: client
source: C++

with descriptor
function: insert
object: client
source: C

one would obtain

object: client

missing the fact that C and C++ are “close” programming
languages and that add and insert may be “synonyms” of
each other in the given context.

Clearly, term synonyms will produce different descriptors
for the same component unless the x(a) = y(a) test in Eq.(3)
is relaxed from strict equality to a broader equivalence relation
on terms. This problem has been widely discussed in the
literature, cf. e.g. [9, 8, 3, 7]. To avoid duplicate or ambiguous
descriptors, some kind of vocabulary control mechanism is on
demand. A term-thesaurus is required, grouping all synonyms
under similar concepts. However, term similarity is “fuzzy”
in the sense that it cannot simply be decided in the boolean
domain of “yes” (full similarity) or “no” (no similarity at all).
Similarity should perhaps be “measured” in the range of 0% to
100%. For instance, a vocabulary control expert may decide
that term add is 70% similar to sum (arithmetic operator)
and only 30% similar to insert (e.g. insertion of records in a
database, recall the example above).

In general, terminological fuzziness is a natural language
problem stemming from two aspects of man-machine com-
munication: term overloading (“metaphors”) and vocabulary
mismatch (“idioms”) [3]. The former is the use of the same
term to mean different concepts (eg. “add two numbers” dif-
ferent from “add a record to a database”). The latter is the use
of a local term (in the local idiom) different from the standard
term (eg. puntatore instead of pointer).

We are thus led to the introduction of facets, or “fuzzy
attributes”, which are discussed next.

4 Facet Comparison

This section provides our own formal fuzzy set interpretation
of a facet term thesaurus “a la Prieto-Diáz” [9, 8]. As in
[1], by a fuzzy set we mean a total function X : U ! V ,
where U is the universe of discourse and V is a completely
distributive lattice. ForV = f0; 1g (the lattice of truth values),
we are back to conventional “sharp” sets. For the remainder
of this paper we adopt as underlying lattice the usual intervalV = [0; 1], whose limits are 0 (no membership) and 1 (100%
membership), subject to lattice operations a ^ b = min(a; b)
and a_b = max(a; b). A given “level of accuracy” a 2 [0; 1]
induces a (sharp) subset of U which contains all elements
whose membership is guaranteed at (and above) that level of
accuracy:Xa = fx 2 U j X(x) � ag
Of course, X0 = U and higher accuracies mean smaller sets,
i.e. a � b implies Xb � Xa .

Let G � A2 be a (sharp) graph on a set A of nodes. A fuzzy
extension of G, or simply a fuzzy graph, is a fuzzy set X over

IFSA’95, S. Paulo, – Page 2 – July 22-28, 1995



r r rr rr
any

a cb d e@@@@I����� @@@@I���������� @@@@I 00:35:5:4:3
Fig. 2: A fuzzy term graph.G, that is, a function X : G ! [0; 1]. We will write x !a y

to mean an arc from x to y with membership (accuracy) a, that
is, X(hx; yi) = a.

A term graph is a fuzzy graph X on an acyclic graph G
whose nodes are terms and whose arcs x !a y express the
fact that x is a synonym of y at accuracy a. The fact that x is
100% synonym of itself is assumed although not recorded in
the graph (it would otherwise be cyclic). Transitive synonyms
are guaranteed at the lowest accuracy involved, that is, x!a y
and y !b z implies x!a^b z.

Now let us see under what conditions can a term graph X
support facet comparison. In a way, we want this graph to
represent a fuzzy equivalence relation on terms which should
introduce more and more synonyms as membership level de-
creases. At level 0 we become “absolutely blind” and every
term is a synonym of any other. At level 1, we are as strict
as possible, only equating 100% synonyms (thus including
the identity relation). In a way, we want our term graph to
behave like a “fuzzy extension” of the Fischer-Galler “forest
model” of equivalence relations [2], storing one equivalence
class per maximal element in the graph 5. Consider, for in-
stance, the term graph of Fig. 2. At any level l � :5 onlya !l c holds and thus we are very close to the identity re-
lation (only a and c are synonyms). Further down, within
interval [:35; :4], there are two more synonyms: b and d. At
0 < l � :35 equivalence classes fa; cg and fb; dg collapse
with each other: ffa; b; c; dg; fegg. Finally, at l = 0 allfa; b; c; d; eg are packed into the same equivalence class un-
der the most generic term of all, any (Fig. 2).

Note that not every arbitrary term graph can support the
above mechanism. The overall constraint to impose on term
fuzzyness is that, at any level a 2 [0; 1], the transitive prede-
cessors of all maximal elements of Xa are disjoint sets (the
desired “equivalence classes”). Formally, let #a x denote the
set of all transitive predecessors of node x inXa, for a 2 [0; 1],
and letMa be the set of maximal elements ofXa . The follow-
ing property must hold:8a 2 [0; 1]; m 6= m0 2Ma : #am \ #am0 = ;
As a counter-example, suppose that in Fig. 2 we had c!:2 d.
Which of c or d is the root term of a for the membership interval]:2; :3]? Because we want to equate everything at level 0 andX0 = G, it is easy to see that G must be universally upper-

5Every such element is termed a “root” in the Fischer-Galler ter-
minology or a “concept” in term-thesaurus terminology.

bounded by a single, most generic term (cf. any).
In this way, facet comparison works by “fuzzy unification”.

At a given membership level, every facet is unified with its
root (maximal term) and then comparison takes place. It is
interesting to note that, at level 0, we don’t get the trivial
ordering on facet descriptors. Since every facet is unified withany, it is as if V alue �= fanyg in Eq.(2). But, in the SETS

calculus we have fanyg �= 1 6 and lawA ,! 1 �= 2A
cf. [4]. So at level 0 it is as if we hadOD �= 2Name
that is, the OD-ordering becomes the inverse of the power-
set ordering on Names 7. On the whole, the OD special-
ize/generalize semi-lattice becomes fuzzy, a topic we have to
omit here for space economy (see [5] for details).

5 About the SOUR Information Model

The SOUR repository is a collection of abstract objects (AOs).
Each AO, which is internally identified by a unique identifier
(Id), is split into two main parts 8: the object descriptor for
classification purposes (OD) and a collection of links to other
objects (Links). Every OD is in turn a pair of descriptors,
one the enumerative descriptor (ED) and the other the faceted
descriptor (FD). Altogether, the AO repository is a hierar-
chical semantic network formally specified by the following
system of definitions:8>>>>><>>>>>: Repository = Id ,! AOAO = OD � LinksOD = ED� FDLinks = LnkName ,! 2IdED = AttName ,! AttV alueFD = FacName ,! Term (4)

where Id, LnkName, : : : , Term are primitive types. Terms
are handled in a (fuzzy) term-graph as explained in section 4.
The AO-specialize/generalize semi-lattice (Fig. 1) is another
component of the system, internally maintained in the form of
an Id-graph. At initialization time, this graph contains by de-
fault only the topmost object> (Fig. 1). Every time a newAO
is entered in the repository, its Id is saved in the appropriate
place of this graph by resorting to the comp OD-comparison
function Eq.(1) in a way that ensures that the graph always
keeps the minimal, finite sub-semi-lattice of the (denumerably
infinite) semi-lattice of all possible AOs 9.

6 Impact on the Query Mechanism and User Interface

Every time a query is fired in the system, the user specifies
the desired fuzzyness level. At level 1, only 100% synonyms
are considered on the faceted classification side. Should the

6The �= symbol denotes set-isomorphism, cf. [4].
7Intuitively, we are “blind” enough to be able only to record which

facet names have been assigned some value!
8Due to lack of space, the actual structure of AOs is here made

simpler, omitting the class inheritance mechanism and “compound-
ness” of AOs. See e.g. [10, 12] for details of the actual SOUR system
prototype.

9Note that, because two differentAOs can share the sameOD, the
actual AO-ordering induced by the OD-ordering is a pre-order and
not a partial order. In SOUR, an equivalence table of Ids is maintained
for this purpose [10]. The prospect of encompassing the whole AO
structure in the comparison is described in [5].

IFSA’95, S. Paulo, – Page 3 – July 22-28, 1995



enumerative component not be present, at fuzzyness level 0
the query would select almost all the objects currently stored
in the repository (see section 4).

At the user interface level, the repository can be browsed
in two main directions via a generic graph-browser tool (the
Result Manager): not only can the user navigate in the AO
semantic network, across user-defined links — cf. Links in
(4) — but also up and down the AO-comparison graph, across
specialize/generalize links. At any time, the user can select
objects, compare them and save the result of the comparison.
This is particularly useful for top-down search because every
object is positioned in this graph above all its known spe-
cializations, that is to say, AOs can be regarded as “search
templates”. For instance, the collection of AOs below theAO
which contains a single attribute source whose value is C++
coincides in fact with the result of the query

SELECT ALL ... WHERE SOURCE = C++

So the paradigm is to regard a “query as an abstract object”, ex-
tending the “query as a concept” paradigm of [3] 10. Complex
AND and OR-queries can be decomposed in the interveningAOs. These can be saved in the specialize/generalize graph
and their specializations adequately collected for computing
the result of the query. Because this process is not visible to
the user, the overall mechanism is self-adaptable in so far as
more and more detail is added, throughout interaction, into the
areas most focussed by the user attention.

Query optimization is another benefit of maintaining theAO specialize/generalize graph. For instance, by inspecting
this graph it can be deduced that the following query simplifi-
cations,q AND q0 � qq OR q0 � q0
can take place wherever q � q0, for q; q0 two AO-reducible
subqueries.

7 Conclusions and Future Work

The SOUR information retrieval mechanism has the expres-
sive power of what may be termed a “fuzzy SQL processor”
equipped with a highly interactive user interface [12].

Due to performance limitations, AO-comparison has been
implemented in the current SOUR prototype (running on WIN-
DOWS [10]) in a less complex way than described in this pa-
per and omitting some other aspects of the “full” comparison
mechanism investigated in [5], which has some theoretical
difficulties concerning arbitrary links and sub-objects. The
“query as an abstract object” paradigm is still subject of on-
going research due to the need to consider arbitrary queries
and not only the ones which can be easily mapped onto AO
counterparts.

The current approach to AO-comparison was inspired by
[13]’s lattice-theoretical illustration. The extension of the AO
specialize/generalize hierarchy to a full complete lattice is sug-
gested in section 4 but needs further research.

Acknowledgements

The author wishes to thank Dr. Henrik Larsen of Roskilde
University, Denmark, for his interest in this paper, and thank all

10But note that queries involving relational operators need further
elaboration of the paradigm.

his colleagues in the SOUR consortium (INESC, SYSTENA, SSS
and OIS RICERCA) who contributed to the many discussions
along the project’s lifetime.

References

[1] J. A. Goguen. Concept representation in natural and
artificial languages: Axioms, extensions and applications
for fuzzy sets. In Fuzzy Sets, pages 67–115, 1974.

[2] C. B. Jones. Software Development — A Rigorous Ap-
proach. Series in Computer Science. Prentice-Hall Inter-
national, 1980. C. A. R. Hoare.

[3] H. L. Larsen and R. R. Yager. The use of fuzzy rela-
tional thesauri for classificatory problem in information
retrieval and expert systems. IEEE Trans. Syst.,Man,
Cybern, SMC, 23(1):31–41, 1992.

[4] J. N. Oliveira. Software reification using the sets calcu-
lus. In Proc. of the BCS FACS 5th Refinement Workshop,
Theory and Practice of Formal Software Development,
London, UK, pages 140–171. Springer-Verlag, 8–10 Jan-
uary 1992.

[5] J. N. Oliveira. Fuzzy comparison of recursive objects:
A case study. Technical report, DI/INESC, 1995. (in
preparation).

[6] J. N. Oliveira and A. M. Cruz. Formal calculi applied
to software component knowledge elicitation. Technical
Report C19-WP2D, DI/INESC, December 1993. IMI
Project C.1.9. Sviluppo di Metodologie, Sistemi e Servizi
Innovativi in Rete.

[7] E. Ostertag, R. Prieto-Diáz, and C. Braun. Computing
similarity in a reuse library system: An ai-based ap-
proach. ACM Transactions on Software Engineering and
Methodology, 1(3):205–228, July 1992.

[8] R. Prieto-Diáz. Implementing faceted classification for
software reuse. CACM, 34(5):89–97, May 1991.

[9] R. Prieto-Diáz and P. Freeman. Classifying software for
reusability. IEEE Software, 4(1):6–16, January 1987.

[10] Syntax Sistemi Software. Comparator and modifer—
functional specification and architecture. Technical re-
port, SOUR Project, 1993. Ver.1.4, c SSS, Via Fanelli
206-16, Bari, Italy.

[11] G. Spanoudakis and P. Constantopoulos. Similarity for
analogical software reuse: A conceptual modelling ap-
proach. Technical Report 92-08, NATURE Report Series,
1992. ESPRIT Project 6353.

[12] Systena and Syntax Sistemi Software. Integrated sour
software system—demo session manual. Technical re-
port, SOUR Project, 1994. Ver.1.2, c Systena & SSS,
Via Zanardelli 34, Rome & Via Fanelli 206-16, Bari,
Italy.

[13] R. Wille. Restructuring lattice theory: An approach based
on hierarchies of concepts. In I. Rival, editor, Ordered
Sets, pages 445–470. D. Reidel Pub. Company, 1982.

IFSA’95, S. Paulo, – Page 4 – July 22-28, 1995


