
Exploiting Galois connections for ’Rely/Guarantee
Thinking’

José N. Oliveira

Techn. Report TR-HASLab:01:2016

May 2016

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt

TR-HASLab:01:2016
Exploiting Galois connections for ’Rely/Guarantee Thinking’
by José N. Oliveira

Abstract

This research report presents a basis for RG reasoning in the spirit of the Program-
ming from Galois connections [15] approach. The starting point is van Staden’s work
on On Rely-Guarantee Reasoning [20] together with Jones et al’s Laws and semantics
for rely-guarantee refinement [7] and Balancing expressiveness in formal approaches to
concurrency [14].

Exploiting Galois connections for ’Rely/Guarantee
Thinking’

José N. Oliveira

May 2016

Abstract

This research report presents a basis for RG reasoning in the spirit
of the Programming from Galois connections [15] approach. The start-
ing point is van Staden’s work on On Rely-Guarantee Reasoning [20]
together with Jones et al’s Laws and semantics for rely-guarantee refine-
ment [7] and Balancing expressiveness in formal approaches to concurrency
[14].

1 Context

For functional and concurrency-free imperative programs there are stable program
development methodologies. However, programs don’t run in isolation and rather
interfere with each other and, unfortunately, we haven’t got the same level of sta-
bility in concurrent programming. There are shared-state concurrency abstractions,
for instance separation logic and ”rely/guarantee (R/G) thinking”. Can we make
such abstractions algebraic and calculational? How can we ensure reliability in pres-
ence of interference?

This research report tries to set up a basis for RG reasoning in the spirit of
the Programming from Galois connections [15] approach. The starting point is van
Staden’s On Rely-Guarantee Reasoning [20] together with Jones et al’s Laws and
semantics for rely-guarantee refinement [7] and Balancing expressiveness in formal ap-
proaches to concurrency [14]. The approach is similar to [6] but perhaps simpler
to understand because not the full expressiveness of R/G is encompassed, which
calls for more studying.

In [15] a relational combinator R � S is introduced to express a superlative: we
want to specify the best (here is the superlative) approximation to specification R
(a binary relation) according to some optimization criterion S (another binary re-
lation). This combinator is expressive enough to encode adjoints of Galois connec-
tions, which are regarded as generic and mathematically rich specification devices.
For instance, using one of the examples of [15],

(÷y) = R � > where z R x ⇔ z × y 6 x

(for y > 0) specifies whole division: x ÷ y is the largest (here is the superlative)
integer z such that z × y 6 x holds. Of course, this is nothing but a (“pointfree”)

1

way of stating the equivalence

x × y 6 z ⇔ x 6 z ÷ y (1)

which is a Galois connection (GC). Leaving the ordering(s) implicit, the standard
(very succinct) way to express the same is:

(×y) a (÷y)

In words, multiplication (lower adjoint of the connection) is the (easy) operation
which helps to define the (difficult) operation of division (the upper adjoint of the
connection).

Paper [15] exploits the algebraic properties of combinator R � S applied to the
derivation of functional programs which implement adjoints of GCs regarded as
problem specifications. How much of this extends to concurrent programming?

2 R/G

Sequential programming and its fundamental concepts of choice, sequential com-
position and finite iteration has found an effective mathematical characterization
in the concept of a Kleene algebra (KA) [4]. This includes Hoare logic [10] and
what is commonly known as contract-oriented programming, a style based on pre/
post conditions. This logic enables us to reason about programs such as, for in-
stance,

{r := n; i := 0;
while (i < r) {
if p i then r := i
else i := i + 1}
}

that finds the least index i < n for which a predicate p holds.
The following alternative, concurrent program [8] achieves the same effect but

allows interference over a shared state:

l := n;
r := n;

i := 0;
while (i <min l r) {
if p i then l := i
else i := i + 2}

j := 1;
while (j <min l r) {
if p j then r := j
else j := j + 2}

What’s new is the P ||Q syntax enabling programs P and Q to run in parallel

and interfere with each other. This calls for an orthogonal dimension in contracts
based on so-called R/G (rely/guarantee) (R/G) conditions [12], so that interfer-
ence among concurrent processes becomes compositional too.

regime asset onus
sequential (;) pre (p) post (q)
concurrent (||) rely (r) guarantee (g)

The table alongside summa-
rizes such a two-dimensional frame-
work for contract-oriented, concur-
rent programming. In presence of
P || Q , Hoare triples {p} P {q } be-
come quintuples

2

{p} {r } P {g } {q }

where r (resp. g) is the rely (resp. guarantee) condition, a proof style pioneered by
Jones [11, 12, 13].

pre

��
guarantee relyoo

post

Contract-oriented, concurrent software there-
fore calls for two axes of compositionality, one
sequential and the other concurrent, leading to
two-dimensional contracts expressed by the picture
alongside. This impacts on the algebraic structures
needed to formalize such contracts, namely by requiring “bi”-extended algebras
in which two multiplicative operators exist, ”;” capturing sequential composition
and ”||” concurrent composition.

Defining the rely and guar constructs

An approach to specifying and reasoning about concurrent programs could be
based on combinators similar to �. Interestingly, this already seems to be the trend
in the R/G approach of [7, 14, 20, 6]: two combinators rely and guar are defined
which specify similar approximations (“superlatives”) in a context where concur-
rent programs can interfere with each other over a shared state:

• rely R P is the largest program which refines P under the interference of
other programs bound by rely-condition R (a binary relation on program
states).

• guar G P is the largest refinement of program P whose steps satisfy guarantee-
condition G (another such binary relation).

Reference [20] expresses (control of) external interference on a program Q by terms
of the form Q || traces R, where || is a “run in parallel” combinator and traces R
gives all possible program traces whose atomic steps are in R. Thus the GC

Q || traces R ⊆ P ⇔ Q ⊆ rely R P (2)

holds1, that is:

(|| traces R) a (rely R)

In words: rely R P specifies the largest program Q which, in spite of the inter-
ference captured by traces R, still approximates (refines) P . Similarly, given a
program P , the equivalence

steps Q ⊆ G ∧ Q ⊆ P ⇔ Q ⊆ guar G P (3)

is a GC on the refinement space of P : for each guarantee condition G , combinator
guar G P yields the largest refinement of P whose steps do not violate G .2 As GCs
compose, from (2,3) we get

steps Q ⊆ G ∧ Q || traces R ⊆ P ⇔ Q ⊆ guar G (rely R P) (4)

1This GC, also central to [6], corresponds to law 31 (rely-refinement) of [7], but note that
the ordering in [7, 6] is the converse of the one used in [20] and in this note.

2This corresponds to the generic dial (ect) operator on languages (46).

3

This is stated (as an implication from left to right) in law 32 (guar+rely) of [7].
Based on (4), reference [7] considers

guar G (rely R [S ,S ′]) (5)

as the “most general form of specification” of interfering programs, where [S ,S ′]
denotes standard (non-interfering) pre/post specification in Hoare style — [S ,S ′]
is the largest program Q such that S {Q } S ′ holds:3

Q ⊆ [S ,S ′] ⇔ S {Q } S ′ (6)

By expanding assertion

P ⊆ guar G (rely R [S ,S ′])

via (4) and (6) we obtain S {P || traces R} S ′ ∧ steps P ⊆ G , which [20] regards
as one of two possible trace semantics for RG-quintuple S R {P } G S ′.

In this report I stick to this meaning of RG-quintuples and try to exploit the
algebraic potential of “universal” properties (2) and (3) in the derivation of R/G
laws and inference rules. Some of these are immediately available from the defi-
nitions, for instance law 28 (Intro-g) of [14],

guar G P ⊆ P

which is nothing but one of the cancellation corollaries of (3):

steps (guar G P) ⊆ G ∧ guar G P ⊆ P (7)

(Replace guar G P for Q in (3) and simplify.)

RG-quintuples

I will denote RG-quintuples by arrows of the form S
P //

R→G
// S ′ — a notation which

extends a similar use of arrows to express Hoare triples in [17] — and define, as in
[20],

S
P //

R→G
// S ′ ⇔ P ⊆ guar G (rely R [S ,S ′]) (8)

equivalent to:

S
P //

R→G
// S ′ ⇔ S {P || traces R} S ′ ∧ steps P ⊆ G (9)

RG-quintuples such as e.g.

S
P //
⊥→>

// S ′ = S {P } S ′ (10)

— no interference, nothing to guarantee — suggest that the proposed arrow nota-
tion probably makes sense. (Symbols ⊥ / > denote the smallest / largest relations

3Cf. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst. 10,
403-419 (1988).

4

on program states.) The “limit situation” expressed by (10) arises from the mono-
tonicity of the operators involved in (9)

S1
P //

R1→G1

// S′1 ∧
{
S2 ⊆ S1

S′1 ⊆ S′2
∧
{
R2 ⊆ R1

G1 ⊆ G2
⇒ S2

P //
R2→G2

// S′2 (11)

Galois connections (2,3) arise from similar connections involving trace opera-
tors such as e.g. steps , || etc. Appendix A reviews such a background (languages
and alphabets), which is below instantiated to program traces and state steps, lead-
ing to a brief account of the R/G calculus expressed in such a way.

3 Programs, steps and traces

We follow [20] in regarding a program as a language of traces, a trace being a
sequence of steps. Each step is a pair (s, s ′) of two states — s is the before state and
s ′ is the after state. State pairs are needed because of program interference. We
define:

Step = S × S
Prog = PStep∗

Steps = PStep

Each R ∈ Steps is therefore a relation between before and after states. In [20], GC
steps a traces instantiates GC alph a lang detailed in appendix A, for A = Step:

steps P ⊆ R ⇔ P ⊆ traces R (12)

Thus traces R is the largest program P whose steps are in R:

traces R = {x | x ∈ Step∗, elems s ⊆ R}

Thus

〈∀ s, s ′ : (s, s ′) ∈ · ∈ traces R : s ′ R s〉

GC steps a traces grants a number of properties for free, for instance

• steps ans traces are monotonic

• lower (resp. upper) adjoint distributes by suprema (resp. infima) and thus:

steps (P ∪Q) = steps P ∪ steps Q (13)
traces (R ∩ S) = traces R ∩ traces S (14)

• the ranges of steps and traces are isomorphic posets.4

• composition traces · steps is a closure operator:

P ⊆ traces (steps P) (15)

• composition steps · traces is an interior operator:

steps (traces R) ⊆ R (16)
4Cf. the unity of opposites theorem of [2].

5

It turns out that this GC is perfect on the steps side, so (16) is actually an equality5

steps (traces R) = R (17)

meaning that steps is surjective and traces is injective. So the range of traces is
isomorphic to the Steps poset. Moreover, this ensures

traces R ⊆ traces R′ ⇔ R ⊆ R′ (18)

— instance of (45) in the appendix.
The closure operator free P = traces (steps P) (15) defined by the GC is the

largest program with the same steps as P : P ⊆ free P and free (free P) = free P .
We identify three special programs:

• skip, which has no steps, steps skip = ⊥. Then, by (12),

skip ⊆ traces R (19)

for any R: skip = {[]}.

• chaos = traces >, the largest of all programs.

• abort = { }, the zero of sequential and parallel composition.

Sequential composition. Instantiating the general definition (53), we define:

P ;Q = do {r ← P ; s ← Q ; return (r ++ s)} (20)

Instance of (56):

steps (P ;Q) = steps P ∪ steps Q (21)

Thus steps (P ; skip) = steps P , etc.

Concurrency. Instantiating (48), we define the shuffle product (interleaving) of
two programs (sets of traces) as a lower adjoint:

X ||Q ⊆ P ⇔ X ⊆ P //Q (22)

Operator (// Q) — referred to in [6] as rely quotient — is therefore the largest
program X which, running in parallel and interfering with Q , still refines P . From
property

P || skip = P = skip || P (23)

and the GC above we get P // skip = P . Analogy: x × 1 = x = x ÷ 1. Facts

(P || traces R) = traces R ⇐ 1 ⊆ P ⊆ traces R (24)
traces (R ∪ S) = traces R || traces S (25)
steps (P ||Q) = steps P ∪ steps Q (26)

hold — just instantiate (51), (52) and (49), respectively. Thus steps (P ;Q) =
steps (P ∪Q) = steps (P ||Q).

5Cf. (44) in the appendix.

6

Operator · // · enables a closed definition of rely (2):

rely R P = P // traces R (27)

cf:

Q ⊆ rely R P

⇔ { }

Q || traces R ⊆ P

⇔ { }

Q ⊆ P // traces R

�

From (3) we also get

guar G P = P ∩ traces G (28)

Thus (8) rewrites to:

S
P //

R→G
// S ′ ⇔ P ⊆ ([S ,S ′] // traces R) ∩ traces G (29)

A similar definition can be found in [6].

Relation with CKA Laws in [9] — commutativity (“fairness”)

P ||Q = Q || P (30)

Frame laws

P ;Q ⊆ P ||Q (31)
P ; (Q || R) ⊆ (P ;Q) || R (32)
(P ||Q);R ⊆ P || (Q ;R) (33)

Exchange law

(P ||Q); (R || S) ⊆ (P ;R) || (Q ;S) (34)

R/G consistency How large can rely R P and guar R P be? And how small are
they forced to be? This will give us some measure of the (in)consistency between R
and P .

From the cancellation of (3) — let Q := guar G P and simplify — we get
guar G P ⊆ P , as intended from the beginning. A similar argument shows rely R P ⊆
P , as also expected: from (2) we get another cancellation law, (rely R P) || traces R ⊆
P . Then:

(rely R P) || traces R ⊆ P

⇒ { (19) ; monotonicity }

(rely R P) || skip ⊆ P

⇔ { skip (23) }

rely R P ⊆ P

�

7

Concerning lower bounds, fact (24) leads to the following corollary of (2):

(traces R ⊆ P ⇔ Q ⊆ rely R P) ⇐ skip ⊆ Q ⊆ traces R (35)

Thus traces R ⊆ rely R P iff traces R ⊆ P iff skip ⊆ rely R P .
In the opposite direction, let us now show under what conditions we have

rely R P = ⊥, that is, R and P are incompatible. Since rely R P = ⊥ coincides
with ¬(skip ⊆ rely R P), by

traces R ⊆ P ⇔ skip ⊆ rely R P (36)

— corollary of (2) — rely R P = ⊥ is equivalent to ¬(traces R ⊆ P). This happens
e.g. when R allows transitions that are not steps of P .

4 R/G calculus

Recall definitions (2) and (3) of R/G combinators rely and guar as Galois connec-
tions, and the two equivalent definitions (8) and (9) of a RG-quintuple. This section
gives a first, brief account of the R/G calculus [7, 14] expressed in such a GC-based
way. Note that this is work in progress which is by no means complete.

A basic property such as e.g. law 26 (guarantee-true)

guar > P = P (37)

of [14] is immediate from (3) by indirect equality [19], since every relation is below
>. The no-interference law6

rely ⊥ P = P (38)

is also immediate from the corresponding GC by indirect equality:

Q ⊆ rely ⊥ P

⇔ { (2) ; traces ⊥ = skip and (23) }

Q ⊆ P

:: { indirect equality }

rely ⊥ P = P

�

From (38) and (37) the proof of (10) is also immediate:

S
P //
⊥→>

// S ′

⇔ { definition (8) }

P ⊆ guar > (rely ⊥ [S ,S ′])

6This corresponds to Law 35 (rely-id) of [7], since program traces ⊥ = skip =
skip; skip; . . . ; skip; . . . models stuttering steps. In this sense, traces id = skip too, but
this needs to be worked out in detail and seems to be related to the reflexivity of the rely
condition.

8

⇔ { upper adjoint guar preserves suprema (37) }

P ⊆ rely ⊥ [S ,S ′]

⇔ { (38) }

P ⊆ [S ,S ′]

⇔ { (6) }

S {P } S ′

�

The following proof of the Nested-g property

guar G (guar G ′ P) = guar (G ∩G ′) P

of [14] illustrates the typical, iterated use of GCs [15] in conjunction with indirect
equality:

Q ⊆ guar G (guar G ′ P)

⇔ { (3) twice }

steps Q ⊆ G ∧ steps Q ⊆ G ′ ∧ Q ⊆ P

⇔ { universal property of meet }

steps Q ⊆ G ∩G ′ ∧ Q ⊆ P

⇔ { (3) }

Q ⊆ guar (G ∩G ′) P

:: { indirect equality }

guar G (guar G ′ P) = guar (G ∩G ′) P

�

By indirect equality too we can derive a closed formula for guar,

guar G P = traces G ∩ P

corresponding to (9) in [14]:

Q ⊆ guar G P

⇔ { (3) }

steps Q ⊆ G ∧ Q ⊆ P

⇔ { GC (12) }

Q ⊆ traces Q ∧ Q ⊆ P

⇔ { universal property of meet }

Q ⊆ traces Q ∩ P

:: { indirect equality }

guar G P = traces Q ∩ P

�

9

Indirect equality is also the essence of the following calculation showing that,
wherever R ⊆ G , terms rely R (guar G P) and guar G (rely R P) are inter-
changeable:

Q ⊆ rely R (guar G P)

⇔ { GC (2) }

(Q || traces R) ⊆ guar G P

⇔ { (3) }

(Q || traces R) ⊆ P ∧ steps (Q || traces R) ⊆ G

⇔ { (26) ; (17) }

(Q || traces R) ⊆ P ∧ steps Q ⊆ G ∧ R ⊆ G

⇔ { R ⊆ G assumed }

(Q || traces R) ⊆ P

:: { indirect equality }

rely R (guar G P) = guar G (rely R P)

�

Thus:

rely R (guar G P) = guar G (rely R P) ⇐ R ⊆ G (39)

Side condition R ⊆ G is regarded in [7] as an inadvertent requirement for rely/guar
permutation; but then law 33 (swap-rely-guarantee) has no side condition at all,
so R ⊆ G does not seem to be necessary. (Study this!) The calculation of law 39
(nested-rely)

rely R1 (rely R2 P) = rely (R1 ∪R2) P

of [7] is similar:

Q ⊆ rely R1 (rely R2 P)

⇔ { GC (2) twice }

Q || traces R1 || traces R2 ⊆ P

⇔ { traces R1 || traces R2 = traces (R1 ∪R2), cf. (25) }

Q || traces (R1 ∪R2) ⊆ P

⇔ { GC (2) }

Q ⊆ rely (R1 ∪R2) P

:: { indirect equality }

rely R1 (rely R2 P) = rely (R1 ∪R2) P

�

10

Keeping with the style of the proofs thus far, we use indirect inclusion7 prove
law 29 of [6] — rely-distribute-conjunction:

rely (R1 ∪R2) P ⊆ rely R1 P ∩ rely R2 P

Proof:

Q ⊆ rely (R1 ∪R2) P

⇔ { CG (2) }

Q || (traces (R1 ∪R2)) ⊆ P

⇒ { monotonicity of traces and || }

Q || ((traces R1) ∪ (traces R2)) ⊆ P

⇔ { || is a lower adjoint }

(Q || (traces R1)) ∪ (Q || (traces R2)) ⊆ P

⇔ { universal property of ∪ ; CG (2) twice }

Q ⊆ rely R1 P ∧ Q ⊆ rely R2 P

⇔ { universal property of ∩ }

Q ⊆ rely R1 P ∩ rely R2 P

:: { indirect inclusion }

rely (R1 ∪R2) P ⊆ rely R1 P ∩ rely R2 P

�

Law 25 (guarantee-monotonic) [14] is proved in the same way, assuming P ⊆ P ′:

Q ⊆ guar G P

⇔ { (3) }

steps Q ⊆ G ∧ Q ⊆ P

⇔ { P ⊆ P ′ assumed }

steps Q ⊆ G ∧ Q ⊆ P ∧ P ⊆ P ′

⇒ { transitivity }

steps Q ⊆ G ∧ Q ⊆ P ′

⇔ { (3) }

Q ⊆ guar G P ′

:: { indirect inclusion }

guar G P ⊆ guar G P ′

�

7For any partial order, indirect equality arises from two indirect inclusions, by anti-
symmetry.

11

The cancellation property (7) of guar’s GC does all the work in the following proof
of (part of) Distribute-g-parallel (law 30 in [14]):8

(guar G P1 || guar G P2) ⊆ guar G (P1 || P2)

⇔ { (3) }{
steps (guar G P1 || guar G P2) ⊆ G
guar G P1 || guar G P2 ⊆ P1 || P2

⇔ { cancellation rule (7) ; (26) }

guar G P1 || guar G P2 ⊆ P1 || P2

⇐ {monotonicity of || }

guar G P1 ⊆ P1 ∧ guar G P2 ⊆ P2

⇔ { cancellation rule (7) }

TRUE

�

Concerning the logic of RG-quintuples, we prove law (Jconc) of [20] as example:
S1

P1 //
R1→G1

// S′1

S2
P2 //

R2→G2

// S′2

∧
{
G1 ⊆ R2

G2 ⊆ R1
⇒ S1 ∩ S2

P1||P2 //
R1∩R2→G1∪G2

// S′1 ∩ S′2

Proof : By transitivity of ⊆we have the premises:

steps P1 ⊆ R2 ∧ steps P2 ⊆ R1 (40)

Then:

S1 ∩ S2

P1||P2 //
R1∩R2→G1∪G2

// S′1 ∩ S′2

⇔ { (9) }{
(S1 ∩ S2 {P1 || P2 || traces (R1 ∩R2)} S′1 ∩ S′2)
steps (P1 || P2) ⊆ G1 ∪G2

⇔ { (26) ; Hoare triples }
{

(S1 ∩ S2 {P1 || P2 || traces (R1 ∩R2)} S′1)
(S1 ∩ S2 {P1 || P2 || traces (R1 ∩R2)} S′2)

(steps P1 ⊆ G1 ∪G2 ∧ steps P2 ⊆ G1 ∪G2)

⇐ { ⊆-transitivity }
{
S1 {P1 || P2 || traces (R1 ∩R2)} S′1
S2 {P1 || P2 || traces (R1 ∩R2)} S′2

(steps P1 ⊆ G1 ∧ steps P2 ⊆ G2)

⇐ { (40) ; Hoare logic }

8Note that (3) does not help in proving the equality — study this.

12

{
S1 {P1 || traces R1 || traces (R1 ∩R2)} S′1
S2 {traces R2 || P2 || traces (R1 ∩R2)} S′2

(steps P1 ⊆ G1 ∧ steps P2 ⊆ G2)

⇔ { (24) }
{
S1 {P1 || traces R1} S′1
S2 {traces R2 || P2} S′2

(steps P1 ⊆ G1 ∧ steps P2 ⊆ G2)

⇔ { (9) twice }
S1

P1 //
R1→G1

// S′1

S2
P2 //

R2→G2

// S′2

�

5 Concurrent Kleene algebras

The overall setting of R/G presented in this report is that of a concurrent Kleene
algebra (KA) [9]. A standard KA (or quantale) is an

idempotent semiring (S ,+, ; , 0, 1) in which a 6 b ⇔ a + b = b is a
complete lattice and ; distributes over arbitrary suprema.

A concurrent KA (CKA) is a “double quantale”

(S ,+, ; , ||, 0, 1) where the two multiplications (; , ||) are linked by a so-
called exchange axiom:

(a || b) ; (c || d) 6 (b ; c) || (a ; d) (41)

Example: take S the set of all (non-deterministic) programs under sequential and
parallel composition. CKAs offer quite rich a structure, namely the Galois connec-
tions

a ; b 6 c ⇔ a 6 c / b

a || b 6 c ⇔ a 6 c // b

which, together with the exchange law (41), yield a number of useful properties,
eg.

a || b = b || a
a ; b 6 a || b
(a || b) ; c 6 a || (b ; c)
a ; (b || c) 6 (a ; b) || c

etc.

13

CKAs + interference Add an “interference monoid” R to the overall scheme:

(S ,+, ; , ||, 0, 1)

(S ,+, ; , 0, 1)

66

(S ,+, ||, 0, 1)

hh

(R,∨,⊥)

g

OO

g :R → S is an injective monoid homomorphism telling how interference impacts
on programs. As (——) must be idempotent and commutative, monoid (R,∨,⊥)
becomes a bounded semilatice. So, by construction

g (r ∨ s) = g r || g s

g ⊥ = 1

Simple way of defining g : think of it as upper adjoint of a GC

f p ⊆ r ⇔ p 6 g r (42)

perfect on the interference-semilatice side: f · g = id. In our R/G setting, f = steps
and g = traces .

Overall picture, adapting a well-known diagram by Roland [2] – in case R is
also a lattice:

‘Unity of opposites’ — Theorem 6.42 in [2]:

f 1 = ⊥
f (p || q) = (f p) ∨ (f q)

— “inverse functions have inverse properties” — and so on. Thus we have all we need
to define the two generic combinators rely and guar,

g r || q 6 p ⇔ q 6 rely r p

f q ⊆ r ∧ q 6 p ⇔ q 6 guar r p

granting the R/G algebra briefly presented before.

14

6 Summary

This report first arose from studying [20]. RG-quintuples in which [S ,S ′] denotes
a pre/post pair where S ′ is binary are considered in [20] but not yet in this reportİ
use monadic notation for what the author of [20] writes in standard set theory,
implicitly relying on the powerset monad.9

The main reason for my monadic notation is the prospect of extending R/G
reasoning to other semantic models of programming. In particular, by switching
from the powerset to the (sub)distribution monad, one could eventually develop
a stochastic model of interfering programs using (hopefully) the same R/G laws,
possibly side-conditioned. Then we could reason about the risk of putting together
faulty programs over shared memory (or else correct programs over faulty shared
memory), in a similar way to the approach of [16] to calculating risk propagation
in functional programs developed by source-to-source transformation.

Prior to this, reference [6] should be studied carefully studied, as the two ap-
proaches share the same algebraic flavour. The generalization of R/G relations to
processes — mirrored in the use of GC (22) instead of (2) — is elegant and promises
a number of simplifications, e.g. it reduces (guar G) to (G ∩) — or is this
simplifying too much?

Whether a suitable strategy for (parallel) program development by shrinking
[15] — in the parallel rather than sequential context — could be defined, remains
for the moment speculative.

A Alphabets and languages

Let A = PS be a datatype of alphabets of symbols in S and L = PS∗ be a datatype
of languages (sets of strings of S). One can always get the alphabet of a language,

alph : L→ A
alph = (>>=elems)

where elems : X ∗ → PX is the operator which yields the elements of a finite list,
and monadic function >>=elems promotes elems from lists to sets of lists.

Clearly, alph is monotonic (a larger language cannot have a strictly smaller
alphabet) and distributes over suprema, 〈∪ i : i = 1, n : λi〉 >>= elems = 〈∪ i :
i = 1, n : λi >>= elems〉. Thus10 alph is the lower adjoint of a GC:

alph λ ⊆ α ⇔ λ ⊆ lang α (43)

What is the meaning of lang : A → L such that alph a lang holds? alph λ is the
alphabet of λ, the smallest set of symbols needed to understand λ. What (43)
means11 is that lang α is the largest language λ one can build by taking symbols
from alphabet α. From this we can infer a closed definition of the upper adjoint
lang :

lang α = 〈∪ λ : alph λ ⊆ α : λ〉
9Standard set theory notation is heavily monadic in this sense, even if it doesn’t look like

at first sight.
10By the Fundamental theorem of Galois connections [2].
11Read the⇒ part of the ⇔ .

15

= 〈∪ λ : 〈∪ s : s ∈ λ : elems s〉 ⊆ α : λ〉
= 〈∪ λ : 〈∀ s : s ∈ λ : elems s ⊆ α〉 : λ〉
= {s | elems s ⊆ α}

The smallest language is λ = empty , with empty alphabet. From (43) necessarily
alph empty = empty . Calculating lang (alph empty) we don’t get empty back but
rather { []}, the language with one sole sentence, the empty one. This illustrates
the cancellation property

λ ⊆ lang (alph λ)

which we get from (43) by replacing α by lang λ and simplifying. The other can-
cellation corollary is actually an equality,

alph (lang α) = α (44)

meaning that the GC is perfect on the alphabets’ side: lang is injective and alph is
surjective. To prove (44) we only need to prove:

α ⊆ alph (lang α)

⇔ { definitions of lang and alph }

α ⊆ {t | elems t ⊆ α}>>= elems

⇔ { monads: x >>= f = µ {f a | a ∈ x }where µ is big union }

α ⊆ µ {elems t | elems t ⊆ α}

⇔ { change of variable X := elems t }

α ⊆ µ {X | X ⊆ α}

⇔ { α is the largest of its subsets }

TRUE

�

From (44) we immediately get

lang α ⊆ lang β ⇔ α ⊆ β (45)

cf:

lang α ⊆ lang β

⇔ { (43) }

alph (lang α) ⊆ β

⇔ { (44) }

α ⊆ β
�

16

Dialects Let ρ ⊆ λ be a sub-language λ restricted to (sub) alphabet β, that is,
alph ρ ⊆ β. The dialect of λ characterized by only using symbols in β is the largest
such ρ, denoted by dial β λ:

dial ρ λ = 〈
⋃

ρ : ρ ⊆ λ ∧ alph ρ ⊆ β : ρ〉

Clearly, this is equivalent to GC:

ρ ⊆ λ ∧ alph ρ ⊆ β ⇔ ρ ⊆ dial β λ (46)

NB: the GC becomes more evident as we write:

〈alph, id〉 ρ ⊆2 (β, λ) ⇔ ρ ⊆ dial (β, λ)

Mixing languages. Quite often we mix languages, e.g. by saying sentences
such as

“o stack da esquerda está off”

which mixes English (stack, off) with Portuguese (o, da, esquerda, está). Given
two languages x , y ⊆ L we define their mixing, or shuffle product 12 by:

|| :L→ L→ L
x || y = do {t ← x ; t ′ ← y ; t ⊗ t ′}

where

(⊗) : S∗ × S∗ → PS∗

t ⊗ [] = return t
[]⊗ t = return t
(a : t)⊗ (b : p) = u ∪ s where

u = do {x ← t ⊗ (b : p); return (a : x)}
s = do {y ← (a : t)⊗ p; return (b : y)}

cf. [3]. Example mixing a language of letters with a language of numbers:

{"ab","xy"} || {"12","45"} =
{"12ab","1a2b","1ab2","a12b","a1b2","ab12",
"45ab","4a5b","4ab5","a45b","a4b5","ab45",
"12xy","1x2y","1xy2","x12y","x1y2","xy12",
"45xy","4x5y","4xy5","x45y","x4y5","xy45"}

As in [5], we use the following names for the two smallest languages: 1 = { []}
and 0 = empty . From the definition we get x || 1 = do {t ← x ; t ⊗ []} = do {t ←
x ; {t }} = x , similarly for 1 || x = x :

x || 1 = x = 1 || x (47)

If x || y can be thought of as “mixing two languages” together, we may also think
of the adjoint operator of “separating” (or “dividing”) languages:13

x || y ⊆ z ⇔ x ⊆ z // y (48)

12Also called Hurwitz product in [18].
13Mind the formal similarity with (1).

17

In this GC, the division z //y is the largest language which, mixed with y , does not
contain sentences foreign to z . From (48) we infer (0 || y) = 0 and z // 1 = z :

0 || y ⊆ z ⇔ 0 ⊆ z // y

⇔ { anything is larger than 0 }
0 || y ⊆ z

⇔ { only 0 is smaller than any z }
0 || y = 0

�

x || 1 ⊆ z ⇔ x ⊆ z // 1

⇔ { x || 1 = x (47) }
x ⊆ z ⇔ x ⊆ z // 1

:: { indirect equality over ⊆ }
z = z // 1

�

Moreover, we have

alph (x || y) = alph x ∪ alph y (49)
lang α || lang α = lang α (50)

the latter as a corollary of:

(x || lang α) = lang α ⇐ 1 ⊆ x ⊆ lang α (51)

Proof of (51): from the side condition, x ⊆ lang α ⇔ alph x ⊆ α including case
x = lang α. By (49) we get (x || lang α) ⊆ lang α. Moreover:

lang α ⊆ (x || lang α)

⇔ { (47) }

(1 || lang α) ⊆ (x || lang α)

⇐ { monotonicity of || }

1 ⊆ x

⇔ { side condition assumed }

TRUE

�

F x 6 y ⇔ x 6 G y

Unity of opposites. It is well known that the
ranges of the adjoints of a GC are isomorphic, as
so well depicted in the picture, taken from [1]. In
our case, GC (43) is perfect on the alphabets’ side
—- alph (lang α) = α (44) —- so A ∼= L′ where
L′ = { lang α | α ∈ A}. Let us solve equation
lang ω = lang α || lang β in L′ for ω:

lang ω = lang α || lang β

⇔ { alph is injective in L′ }

ω = alph (lang α || lang β)

⇔ { (49) }

ω = alph (lang α) ∪ alph (lang β)

⇔ { (44) }

ω = α ∪ β

18

and therefore

lang (α ∪ β) = lang α || lang β (52)

holds, generalizing (50).

Sequencing. In x || y we can identify the subset of sentences where all symbols
from alph x come first, followed by those from alph y :

x ; y = do {s ← x ; s ′ ← y ; return (s ++ s ′)} (53)

(NB: s++s ′ is the monad(plus) join in the list monad.) Alternatively, define (w ;) =
fmap ((w++)) and then

λ; ρ = do {w ← λ; (w ; ρ)} (54)

Clearly,

x ; y ⊆ x || y (55)

since s ++ s ′ ∈ s ⊗ s ′. Moreover:

alph (x ; y) = alph x ∪ alph y (56)

This stems from elems (s ++ s ′) = elems s ∪ elems s ′. Sequencing distributes by
language suprema and is therefore a lower-adjoint. To get the upper adjoint note
the GC [1]

w ;λ ⊆ ρ ⇔ λ ⊆ ∂wρ (57)

where ∂wx = do {w ++ t ← x ; return t }. Then [1]:

x ; y ⊆ z

⇔ { definition }

do {w ← x ; (w ; y)} ⊆ z

= { set monad }

〈∀ w : w ∈ x : w ; y ⊆ z 〉

= { (57) }

〈∀ w : w ∈ x : y ⊆ ∂w z 〉

= { infima }

y ⊆ 〈(∩) w : w ∈ x : ∂w z 〉

= { do-notation }

y ⊆
⋂

do {w ← x ; ∂w z }︸ ︷︷ ︸
x\z

�

19

Because sequencing is not commutative:

x ; y ⊆ z ⇔ y ⊆ x \ z
x ; y ⊆ z ⇔ x ⊆ z / y

Language x \ z (resp. z / x) is are said to be a right (resp. left) factor of z . Language
factorization is studied at length in [1].

Theorem 1 (Th.5.35 page 117, dualized) GC f a g holds iff

• f monotonic

• f (g y) ⊆ y

• f x ⊆ y ⇒ x v g y

Theorem 2 (Fundamental theorem of Galois connections) Let f preserve suprema,

f〈∪ i : i = 1, n : xi〉 = 〈∪ i : i = 1, n : f xi〉 (58)

and be monotonic. Define:

g y = 〈∪ x : f x ⊆ y : x〉 (59)

Then f a g holds.
Proof: we prove that the two last clauses of theorem 1 hold (f monotonic already):

f (g y) ⊆ y

⇔ { (59) }

f〈∪ x : f x ⊆ y : x〉 ⊆ y

⇔ { (58) }

〈∪ x : f x ⊆ y : f x 〉 ⊆ y

⇔ { univ-· ∪ · }

〈∀ x : f x ⊆ y : f x ⊆ y〉

⇔ { trivial }

TRUE

�

Now the third one:

〈∀ x : f x ⊆ y : x v g y〉

⇔ { univ-· ∪ · }

〈∪ x : f x ⊆ y : x〉 v g y

⇔ { (59) }

g y v g y

⇔ { trivial }

TRUE

�

20

B Aczel traces

The evolution from the simple program traces above to so-called Aczel traces first
of all calls for heterogeneus traces, that is, traces whose steps are marked as either
having been carried out by the program or by the environment.

We use disjoint union for this, furthermore relying on some arbitrary monad(plus)
F supporting program traces. Shuffling becomes more elaborate, generically:

|| :: F A∗ → F A∗ → F (A+A)
∗

x || y = do {t ← x ; t ′ ← y ; t ⊗ t ′}
t ⊗ [] = return (map i1 t)
[] ⊗ t = return (map i2 t)

(a : t) ⊗ (b : p) = u
+
∪ s where

u = do {x ← t ⊗ (b : p); return (i1 a : x)}
s = do {y ← (a : t) ⊗ p; return (i2 b : y)}

Note the property

π1(x || y) = x ∧ π2(x || y) = y (60)

where

π1· :: F (A+ B)
∗ → F A∗

π1· = fmap s where s x = [a | i1 a ← x]

π2· :: F (A+ B)
∗ → F B∗

π2· = fmap s where s x = [b | i2 b ← x]

Here is an example for F the distribution monad:

let y = D ["12" |− > 0.1,"23" |− > 0.9]
let x = D ["ab" |− > 0.7,"xy" |− > 0.3]

Then:

x || y =
[i1 ’a’, i1 ’b’, i2 ’2’, i2 ’3’] 15.8 %
[i2 ’2’, i2 ’3’, i1 ’a’, i1 ’b’] 15.8 %
[i1 ’a’, i2 ’2’, i1 ’b’, i2 ’3’] 7.9 %
[i1 ’a’, i2 ’2’, i2 ’3’, i1 ’b’] 7.9 %
[i2 ’2’, i1 ’a’, i1 ’b’, i2 ’3’] 7.9 %
[i2 ’2’, i1 ’a’, i2 ’3’, i1 ’b’] 7.9 %
[i1 ’x’, i1 ’y’, i2 ’2’, i2 ’3’] 6.8 %
[i2 ’2’, i2 ’3’, i1 ’x’, i1 ’y’] 6.8 %
[i1 ’x’, i2 ’2’, i1 ’y’, i2 ’3’] 3.4 %
[i1 ’x’, i2 ’2’, i2 ’3’, i1 ’y’] 3.4 %
[i2 ’2’, i1 ’x’, i1 ’y’, i2 ’3’] 3.4 %
[i2 ’2’, i1 ’x’, i2 ’3’, i1 ’y’] 3.4 %
[i1 ’a’, i1 ’b’, i2 ’1’, i2 ’2’] 1.8 %
[i2 ’1’, i2 ’2’, i1 ’a’, i1 ’b’] 1.8 %
[i1 ’a’, i2 ’1’, i1 ’b’, i2 ’2’] 0.9 %
[i1 ’a’, i2 ’1’, i2 ’2’, i1 ’b’] 0.9 %

21

[i2 ’1’, i1 ’a’, i1 ’b’, i2 ’2’] 0.9 %
[i2 ’1’, i1 ’a’, i2 ’2’, i1 ’b’] 0.9 %
[i1 ’x’, i1 ’y’, i2 ’1’, i2 ’2’] 0.8 %
[i2 ’1’, i2 ’2’, i1 ’x’, i1 ’y’] 0.8 %
[i1 ’x’, i2 ’1’, i1 ’y’, i2 ’2’] 0.4 %
[i1 ’x’, i2 ’1’, i2 ’2’, i1 ’y’] 0.4 %
[i2 ’1’, i1 ’x’, i1 ’y’, i2 ’2’] 0.4 %
[i2 ’1’, i1 ’x’, i2 ’2’, i1 ’y’] 0.4 %

Explicit termination leads to traces of type F (A+ 1)
∗. Our convention is that the

first occurence of the unit marks the end of the trace, irrespective of any possible
subsequent steps. Thus we can think of a function rep : A∗ → (A+ 1)

+ which
adds a termination check mark at the end of a simple trace and its adjoint trim
converting a trace with termination mark(s) into its longest termination-mark free
prefix,

rep x � y ⇔ x 6 trim y (61)

where z 6 y means z is a prefix of y and z � y means z 6 y and 〈∀ i :: z i v y i〉
where v is the ordering on A+ 1. Thus rep [] = [X]. Implementation:

trim [] = []
trim (X:) = []
trim (Just a : t) = a : trim t

Perfection: trim (rep x)) = x .

References

[1] R. Backhouse. Factor theory and the unity of opposites. JLAMP, 85(5, Part
2):824–846, 2016.

[2] R.C. Backhouse. Mathematics of Program Construction. Univ. of Nottingham,
2004. Draft of book in preparation. 608 pages.

[3] S.L. Bloom, N. Sabadini, and R.F.C. Walters. Matrices, machines and behav-
iors. Applied Categorical Structures, 4(4):343–360, 1996.

[4] J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, Lon-
don, 1971.

[5] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. ENTCS, 164(1):47–
65, 2006. Proceedings of CMCS 2006.

[6] I.J. Hayes. Generalised rely-guarantee concurrency: an algebraic foundation.
FAOC, 28(6):1057–1078, 2016.

[7] I.J. Hayes, C.B. Jones, and R.J. Colvin. Refining rely-guarantee thinking. Tech-
nical Report CS-TR-1334, Newcastle University, 2012.

[8] I.J. Hayes, C.B. Jones, and R.J. Colvin. Laws and semantics for rely-guarantee
refinement. Technical Report CS-TR-1425, Newcastle University, 2014.

22

[9] C.A. Hoare, S. van Staden, B. Möller, G. Struth, J. Villard, H. Zhu, and
P. OHearn. Developments in concurrent Kleene algebra. In RAMiCS, vol-
ume 8428 of LNCS, pages 1–18. 2014.

[10] C.A.R. Hoare. An axiomatic basis for computer programming. CACM,
12,10:576–580, 583, October 1969.

[11] C.B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, June 1981. Printed as: Program-
ming Research Group, Technical Monograph 25.

[12] C.B. Jones. Specification and design of (parallel) programs. In Proceedings of
IFIP’83, pages 321–332. North-Holland, 1983.

[13] C.B. Jones. The early search for tractable ways of reasoning about programs.
IEEE Annals of the History of Computing, 25(2):26–49, 2003.

[14] C.B. Jones, I.J. Hayes, and R.J. Colvin. Balancing expressiveness in formal
approaches to concurrency. Formal Aspects of Computing, 27(3):475–497, 2015.

[15] S.-C. Mu and J.N. Oliveira. Programming from Galois connections. JLAP,
81(6):680–704, 2012.

[16] D. Murta and J.N. Oliveira. A study of risk-aware program transformation.
SCP, 110:51–77, 2015.

[17] J.N. Oliveira. Extended Static Checking by Calculation using the Pointfree
Transform. volume 5520 of LNCS, pages 195–251. Springer-Verlag, 2009.

[18] J. Sakarovitch. Handbook of weighted automata. Springer Publishing Com-
pany, Incorporated, 2009.

[19] P.F. Silva and J.N. Oliveira. ’Galculator’: functional prototype of a Galois-
connection based proof assistant. In PPDP ’08: 10th int. ACM SIGPLAN conf.
on Principles and practice of declarative programming, pages 44–55. ACM, 2008.

[20] S. Staden. On rely-guarantee reasoning. In MPC 2015, pages 30–49, 2015.

23

