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Abstract

Inspired by pointfree relational data processing, this paper addresses the founda-

tions of an alternative roadmap for parallel online analytical processing (OLAP)
based on a separation of concerns: rather than depending on standard database
technology and heavy machinery, OLAP operations are performed by encoding
data in matrix format and relying thereupon solely on LA operations.

The paper investigates, in particular, how the generation of aggregation op-
erations such as cross tabulations and data cubes in OLAP can be expressed in
terms of matrix multiplication, transposition and the Khatri-Rao variant of the
Kronecker product.

This offers much potential for parallel OLAP, as such matrix operations have a
well-defined parallelization theory. Last but not least, the approach offers a formal
semantics for data aggregation which is useful in reasoning about OLAP operation
as a whole.
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1 Introduction

2 Introduction

This paper finds its motivation in the need to perform data mining and online ana-
lytical processing (OLAP) [5, 25, 13] in an efficient way. These techniques are very
useful for summarizing huge amounts of information in the form of histograms,
sub-totals, cross tabulations (vulg. pivot tables), roll-up / drill down transformations
and data cubes, whereby new trends and relationships hidden in raw data can be
found. The need for this kind of operation concerns not only large companies gen-
erating huge amounts of data every day (the “big data” trend), which need to be
consolidated overnight, but also the laptop spreadsheet user who wants to make
sense of the data stored in a particular workbook.

"Document history: first version - July 2011; this version: Nov. 2011



OLAP is resource-demanding and calls for parallelization. With the advent
of multi-core personal machines, code parallelization has become a wide concern,
ranging from large main-frames to laptops. Placed at this end of the spectrum,
even the anonymous Microsoft Excel user might in fact legitimately ask: is the
generation of pivot tables in Excel actually taking advantage of the underlying multi-core
hardware? How parallel is such a construction?

There are essentially two ways to reach parallel OLAP. One is the development
of dedicated systems such as eg. PARSIMONY [11], which provides a parallel and
scalable infrastructure for multidimensional analysis and data mining targeting at
distributed memory parallel machines such as the IBM SP-2, for instance. Still in
this trend, existing tools intended for other areas (eg. scientific computing) have
been adapted to scalable data cube construction [35].

The other way proceeds by splitting the problem in two steps: first, one finds a
mathematical framework exhibiting well-known and developed potential for par-
allel execution and encodes OLAP operations in such a framework; second, one
relies on such parallelization theories and reuses general purpose software already
available, possibly taken from another application area. This second approach is
beneficial in the sense that there is a separation of concerns — one does not need
to “think parallel” in the first place, parallelism coming “for free” thanks to the
general theory.

A roadmap to parallel OLAP. In this paper we follow the latter strategy, find-
ing inspiration in relatively recent developments in the remote area of digital sig-
nal processing (DSP) which, as is well-known, relies on linear algebra (LA). Gen-
eration of fast (parallel) code for DSP has witnessed great advances in recent years
under the motto “can we teach computers to write fast libraries?” [26]. Domain spe-
cific languages (DSLs) and systems such as (respectively) SPL and SPIRAL [27],
for instance, have shown how automatic generation of high performance libraries
for LA applications relies on very high-level specification scripts written in index-
free matrix algebra, in which matrix multiplication plays a major role, given its
amenability to parallelization via divide-and-conquer algorithms [32, 29].

Our approach is similar: we will show how to translate OLAP into linear al-
gebra, the benefits being two-fold: not only one is able to reason about OLAP in
this way, thanks to the well-known calculus of matrices, but also it (indirectly)
provides a mainstream way to achieve parallelism in OLAP. For easy illustration,
the proposed translation is supported by a small set of combinators extending the
widespread MATLAB ! library of matrix operations.

Contribution. The ideas presented in this paper derived from the authors’ work
on typing linear algebra [16] which eventually drove them into the proposed syn-
ergy between linear algebra and OLAP.

Such a synergy is, to the best of their knowledge, novel in the field. Rather than
relying on standard OLAP state of the art developments, a cross field perspective
is put forward that may open new ways of looking at this body of knowledge.

Remark concerning terminology: the more widespread acronym OLAP is pre-
ferred to ROLAP (‘relational OLAP”) [25] throughout the paper, even knowing
that ROLAP is most often intended.

'MATLAB ™ is a trademark of The MathWorks ®.



3 Background

Parallelism is intimately related to so-called divide and conquer algorithms, or breakdown-
rules [27] which are naturally adapted for execution in multi-processor machines.

It turns out that the construction of such algorithms is the “natural” way to write
programs in the so-called functional programming style [2, 14]. Thus parallelism
blends well with this programming discipline, evidence of this being, for instance,
how easily Google’s MAPREDUCE is expressed using functional combinators [15,

7]. Functional programming has witnessed great advances over the years in many
respects, namely in the development of an algebra of programming (AoP) [2] which
puts emphasis on the “type structure” which is central to modern functional lan-
guages such as Haskell, for instance [14].

The authors have shown in a recent paper [16] how close to the AoP a “matrices
as arrows” typed approach to linear algebra is. This is easy to understand after all
since functions are special cases of binary relations which in turn are nothing but
Boolean matrices 2. Elsewhere, it has been shown how to take advantage of binary
relation algebra in reasoning about data dependencies in databases [20, 22] and
data transformation in general [21]. Needless to say, relations play a major role in
data processing since Codd’s pioneering work on the foundations of the relational
data model theory [4].

Given this proximity between relation and matrix algebra, the question arises:
how much gain can one expect from translating results from one side to the other?
In this paper we will show how a particular construction in relation algebra — that
of building binary relational projections, used in [20, 22] to reason about functional
dependencies in databases — translates into building cross tabulations (pivot ta-
bles) which are central to OLAP and data-mining. On the relational side, such
projections are always of the form

f-R-g° 1)

where R is the binary relation being projected and f and g are observing func-
tions, usually associated to attributes. The dot (-) between the symbols denotes
relational composition ® and (_)° expresses the converse operation, whereby pair
(b, a) belongs to relation R° iff pair (a,b) belongs to R.

Pattern (1) turns up very often in relation algebra [2]. In its particular use to
express data dependencies, such projections take the form

fa-[T]- /5 @

where T is a database file, or table (set of data records, or tuples), A and B are
attributes of the schema of T, fa4 (resp. fp) is the function which captures the
semantics of attribute A (resp. B) *, and [T7] captures the semantics of 7" in the
form of a binary relation known as a coreflexive [2]: [T] = {(t,t)|t e T}. However
strange and redundant this construction may look like, it proves essential to the

*Indeed, relation algebra and matrix algebra can be regarded as instances of the allegory
concept [9], the latter under some restrictions on the algebra of matrix elements.

3Recall from discrete maths that, given two relations R and S, pair (c,a) will be in the
composition R - S iff there is some b such that (¢,b) isin R and (b,a) isin S.

“That is, given a tuple t € T, fa(t) yields the value of attribute A in ¢, usually denoted
by t[A] (similarly for attribute B).



reasoning, as shown in [20, 22]. Expressed in set-theoretical notation, projection
(2) is set-comprehension

{(t[AL¢[B]) |teT}

where t[ A] (resp. t[ B]) denotes the value of attribute A (resp. B) in tuple ¢.

Essential to (2) is its emphasis on the very basic combinators of relation al-
gebra: composition and converse. These generalize to matrix multiplication and
transposition, respectively, which are easy to parallelize. The following law of the
calculus of (blocked) matrices

[RS][g] = R-U+S-V 3)
— where R, S, U, V are matrix-blocks — is given in [16] to capture the essence of
(parallelizable) divide-and-conquer matrix multiplication.

Under this motivation, we will show below that cross tabulations in OLAP can
be expressed by a formula similar to (2),

la- [Tﬂ M’ t?B 4)

where M is a measure and A and B are the dimensions chosen for the particular cross
tabulation to build. Notation ¢4 (resp. tp) expresses the membership matrix of the
column addressed by dimension A (resp. B) whose construction will be explained
later. Also explained later, [T ,, means the diagonal matrix capturing column M
of T.

The construction of matrices ¢4, tp and [17],, will be first illustrated with ex-
amples. Cross tabulations will be pictured as displayed by Microsoft Excel.

Structure of the paper. The remainder of this paper is structured as follows.
Section 4 introduces cross tabulations, one of the kernel operations of OLAP. Sec-
tion 5 gives a brief overview of the typed linear algebra notation adopted in the pa-
per, taken from [16]. Section 6 expresses cross tabulations solely in terms of linear
algebra matrix operations. Section 7 builds up on cross-tabbing and “rolls-up” on
functional dependencies, introducing dimension hierarchies into the game. Sec-
tion 8 proves that construction of cross-tabulations is incremental. Section 9 goes
higher-dimensional into the LA construction of OLAP cubes. Finally, section 10
reviews related work and Section 11 draws some conclusions, giving a prospect of
future work.

4 Cross-tabulations

In data processing, a cross tabulation (or pivot table) provides a particular sum-
mary or view of data extracted from a raw data source. As example of raw data
consider the table displayed in Figure 1 where each row records the number of
vehicles of a given model and color sold per year.

In general, the raw-data out of which cross tabulations are calculated is not
normalized and is collected into a central database (termed a data warehouse, or de-
cision support database) containing huge amounts of information obtained from
disparate sources. Such a central warehouse — typically, a table with an absurd
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Model |Year |Color |Sales
Chevy 1990 |Red 5
Chevy 1990 [Blue 87
Ford 1990 |Green 64
Ford 1990 |Blue 99
Ford 1991 (Red 8
Ford 1991 [Blue 7

Figure 1: Collection of raw data (adapted from [10]).

number of lines — is not easy (if at all possible) to manually inspect and analyse.
To obtain useful information from it one needs to summarize the data by selecting
attributes of interest and exhibiting their inter-relationships.

Different summaries answer to different questions such as, for instance “how
many vehicles were sold per color and model?”, For this particular question, the at-
tributes Color and Model are selected as dimensions of interest, Sales is regarded
as measure and the corresponding cross tabulation is depicted in Figure 2, as gen-
erated via the pivot table menu in Excel.

Sum of Sales [Model |

Color Chevy Ford |Grand Total
Blue 87 106 193
Green 64 64
Red 5 8 13
Grand Total 92 178 270

Figure 2: Pivot table in Excel extracted from the data in Figure 1.

Large scale cross tabulation generation is an essential part of OLAP. Broadly
speaking, OLAP refers to the technique of performing sophisticated analysis over
the information stored in a data warehouse, whose complexity is well-known [24].
As mentioned in [5], numerous SQL extensions are offered by many vendors of
OLAP products trying to address this problem. The solution we put forward in
this paper does not try to solve it inside the OLAP and data warehousing tech-
nologies, but rather calls for a synergy with the field of linear algebra application,
where satisfactory solutions have been found for similarly complex operations in
other domains such as eg. computer graphics and DSP [27].

The key resides in expressing OLAP operations in the form of matrix algebra
expressions which can be parallelized [1, 32]. In the particular case of reporting
multi-dimensional analyses of data, one should be able to build three matrices,
according to the hint given by formula (4): two associated to the dimensions (at-
tributes) A and B being analysed and a third recording which measure or metric
attribute is to be considered for consolidation.

This encoding of data into LA is quite smooth if matrix operations are typed in
the way presented in [16]. For self-containedness we give a very brief overview of
such typed LA notation below.



5 Typed linear algebra
Matrices as arrows. A matrix A with n rows and m columns is a function
A(r,c) which tells the value occupying each cell (r,c), for1 <r <mn,1<c<m.

In this paper we will follow the arrow notation of [16] and write n 2 m to
denote that matrix A is of type n<——m (m columns, n rows). Thus matrix
multiplication can be expressed by arrow composition:

n<?_m<Z (5)
C=AB
For every n there is a matrix of type n<——n which is the unit of composi-
. .. . . . . . idnp,
tion. This is nothing but the identity matrix of size n, denoted by n<—"—n or
n<—n, indistinguishably. Therefore:
idy
n<——n
Al / lA
A
m-=<——m
idm,

idp-A = A= A-id, (6)

Subscripts m and n can be omitted wherever the underlying diagrams are as-
sumed.

Vectors as arrows. Vectors are special cases of matrices in which one of the
dimensions is 1, for instance

Column vector v is of type m <—— 1 (m rows, one column) and row vector w is of

type 1 <——n (onerow, n columns). Our convention is that lowercase letters (eg.
v, w) denote vectors and uppercase letters (eg. A, M) denote arbitrary matrices.

Types. Matrix types (the end points of arrows) can be generalized to arbitrary
(finite) sets thanks to addition and multiplication being commutative and asso-
ciative. This ensures unambiguous definition of matrix composition because the
summation inside the inner product of two vectors can be calculated in any order.
Typewise, our convention is that lowercase letters (eg. n, m) denote the traditional
dimension types (natural numbers), letting uppercase letters denote other types.

Converse of a matrix. One of the kernel operations of linear algebra is transpo-
sition, whereby a given matrix changes shape by turning its rows into columns and

. . . A . A° .
vice-versa. Given matrix n <—— m , notation m <——n denotes its transpose,
or converse. The following idempotence and contravariance laws hold:

(49 = A %
(A-B)° = B°-A° ®)



Block notation. Matrices can be built of other matrices using block notation.
Two basic binary combinators are identified in [16] for building matrices out of
other matrices, say A and B, regarded as blocks, either stacking these vertically,

[g , or horizontally, [ A | B |. Dimensions should agree, as shown in the dia-

gram below, taken from [16], where m, n, p and ¢ are types:

2P
AN

u.—<:q+ +———3

Special matrices i1, 72, 71 and 7y are fragments of the identity matrix and play an
important role in explaining the semantics of the two combinators. This, however,
can be skipped for the purposes in the current paper. (The interested reader is
referred to [16] for details.)

The exchange law

[A|B]] _ A B [ A|B ©)
C|D - C D - C|D
tells the equivalence between row-major and column-major construction of matri-
ces by blocks. Thus the four-block notation on the right [16].

Direct sums. Given two arbitrary matrices A and B, the direct sum of A and B
is defined as follows, using block notation:

A0
AeB = [ﬂ?] (10)

Mind the types (dimensions):

n m n+m
o] e
k J k+j

Direct sum is a standard linear algebra operator enjoying many useful properties
[16]. The following equation, termed the absorption law, specifies how block oper-
ator [ | ]absorbs direct sum @, for suitably typed matrices A, B,C and D:

[A|B]-(CeD) = [ A-C|B-D ] (11)

Khatri-Rao matrix product. Given matrices n <2 i and D 2 m , the

so-called Khatri-Rao [28] matrix product of A and B, denoted n x p 298 L isa



column-wise Kronecker product,

UV = Uu®U

[ A1 | A2 Jo[ Bi| B2 ] = [ 41081 | A20B; | (12)

where u,v are column-vectors and A;, B; are suitably typed matrices. As an ex-
ample of operation relying on this product consider row vector

s=[5 87 64 99 8 7]

of type 1 <"— 6, capturing the transposition of the Sales column of Figure 1.
Then Khatri-Rao product s @ id is the corresponding diagonal matrix:

0

s@id

6<—6 = (13)

O OO OO L
oo
oo o o
D
oo o Koo
©
R A =]
O 0O OO
OO OO o

EN

This conversion is essential to the LA encoding of cross tabulations, as shown next.

6 Cross tabulations in LA

Recall that the core of cross tabulation generation is formula (4), which is the ma-
trix counterpart to relational projection (2). This section explains this construct
starting by showing how the move from relations to matrices is obtained by en-
coding functions as matrices.

Building projection functions. Let A be an attribute of raw-data table 7" and
let n» be the number of records in T' (vulg. rows, or lines in a spreadsheet). We
write T'(A) to denote the column of T identified by attribute A, T'(A, y) to denote
the element occupying the y-th position (row) in such a column, and |A| to denote
the range of values which can be found in T'(A). Column T'(A) can be regarded as
a function which tells, for each row number 1 < r < n, which value z of |A| can be
found in row r of such a column. Such a function can be encoded as an elementary

matrix of type |A] <, defined as follows >:

1 ifT(Ar)=x

ta(a,r) = { 0 otherwise (14)

In our running example (Figures 1 and 2), n = 6 and we want to build these matri-

ces for attributes Model and Color. The projection |M odel| 2iedel ) associated to

dimension M odel is matrix

1 2 3
Chevy 1 1 0
Ford 0 0 1

= O
= O Ot

6
0
1

®These projections can be identified with the bitmaps of [34], regarded as matrices.



c . tcolor . . . . .
and projection |Color| <—— n associated to dimension Color is matrix

1 2 3 4 5 6

Blue 01 0 1 0 1
Green 0 0 1 0 0 O
Red 1 0 0 0 1 O

Note that, typewise, the composition of matrices {co0r and t9,,.; makes sense,
leading to a matrix of type |Color| <—— |Model|,

Chevy Ford
o Blue 1 2
bootor “thtodel = Green 0 1 (15)
Red 1 1

which essentially counts the number of sale records per colour and model. This
situation (counting), which is what Excel outputs wherever the measure attribute
chosen in pivot table calculation is not numeric, corresponds to formula (4) wher-
ever the middle matrix is the identity.

The diagonal construction. In order to sum up the number of vehicles sold
rather than just counting sale records we need to identify a measure attribute, that
is, a numeric attribute of T to be used for consolidation. In the case of Figure
1 only Sales applies. Because such numeric data have to become available for
both projection matrices, the column chosen is converted into a diagonal matrix,
as already shown as an illustration of Khatri-Rao (13).

Notation [T7],, will be used to denote the diagonal matrix representation of
measure attribute M in T'. Index-wise, this corresponds to the following definition:

T(M,j)  ifi=j
0 otherwise

71, Gri) = {

LA script for cross tabulation. We are now in position to run formula (4) for
T as in Figure 1, A = Colour and B = Model, obtaining another matrix of type

|Color| <—— |Model|

Chevy Ford
R Blue 87 106
toolor [[T]]Sales : tModel Green 0 64 (16)
Red 5 8

If compared to Figure 2, cross tabulation (16) misses the two row and column
grand totals. These are easily obtained via “bang” matrices. Let us explain what
these are and our choice of terminology.

In functional programing, the popular “bang” function, which is of type 1 < A
and usually denoted by symbol “!”, is a polymorphic constant function yielding
the unique value which inhabits the singleton type 1 °. The encoding of this func-

tion in LA format will be matrix 1 <2— A wholly filled up with 1s — a row

%See [2]. In Haskell, both this type and its inhabitant are denoted by “()”. For the pur-
poses in this paper, 1 can be regarded as the singleton set {ALL}.



vector. For instance, !|5/04¢ Will be the row vector with |Model]-many positions

all holding number 1. The MATLAB equivalent to 1 <'— n is ones (1,n), see
Listing 1 in the appendix.

Clearly, the composition of row vector 1 <~ A with any column vector of

type A<——1 computes the singleton vector holding the sum of all cells in v.
Thus one can extend formula (4) with bang vectors so as to equip cross tabulations
with grand totals, by defining

CtCLbA,B;M(T) : |A| + 1« |B| +1
t tp |’
ctaba g (T) = [,A] [T [ :B ] (17)

which computes the cross tabulation of raw data table 7" with respect to dimen-
sions A, B and measure M. Note that types (dimensions) have been added a new
entry (1), which can be understood as a singleton type containing a distinguished
element, say ALL, labelling grand totals. This corresponds, in our running exam-
ple, to enriching (16) with the extra row and column corresponding to the added
bang vectors, both labeled with ALL,

Chevy Ford ALL
Blue 87 106 193
CtabColor,]V]odel;Sales (T) = Green 0 64 64 (18)
Red 5 8 13
ALL 92 178 270

finally achieving the effect of Figure 2 with LA operations only. The MATLAB script
for formula (17) is given in Listing 1 provided in the appendix.
Among the many properties of “bang” matrices we single out

['[!] = ! (19)
and
oA = A = Aol (20)

which tells ! the unit of Khatri-Rao product. Since this is associative too, we can
rely on its extension to n argument matrices A4; (1 < ¢ < n) by writing ®j; A; or
even
O 4 (21)
i+s
where s is a sequence of indices. This extension will be useful in the generation of

data cubes given in Section 9. Prior to this, we address below another operation
central to OLAP: roll-up.

7 “Rolling-up” on functional dependencies

It can be shown via blocked matrix algebra [16] that the matrix composition of (17)
unfolds into four blocks, namely

tA'[TﬂM'tOB ‘ tA'[[T]]M'iO
PITTats | V1T

(22)
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whose pre- and post-compositions with “bang matrices” can already be regarded
as examples of the OLAP operation known as roll-up.

Rolling-up means replacing a dimension by another which is more general
in some sense (eg. grouping, classification, containment). The latter is therefore
“higher” in a dimension hierarchy which somehow acts as a classification or taxon-
omy of data records.

A simple way of seeing roll-up at work is the acknowledgement of functional
dependencies (FDs) [17] in data. Let us, for instance, augment the raw data of our
running example with two new columns recording the month and season of each
sale, as displayed in Figure 3.

Model |Year [Color [Sales |Month |Season

Chevy 1990 |Red 5[March |Spring
Chevy 1990|Blue 87| April Spring
Ford 1990|Green 64|August |Summer
Ford 1990(Blue 99| October |Autumn
Ford 1991 |Red 8|January |Winter
Ford 1991 |Blue 7|January |Winter

Figure 3: Augmented collection of raw data.

Look, for instance, at the column labelled Season in Figure 3, telling in which
season (Spring, Summer, Autumn or Winter) the particular sales took place. It is
clear that FD Season < Month holds, as every month belongs to one and only one
season. In other words, Season is higher in the dimension hierarchy than Month”’.

Roll-up matrices. In general, functional dependency B < A will hold in a table
T iff no pair of rows can be found in which the values of attribute A are the same
and those of attribute B differ (“B is determined by A”). That is, B acts as a
classifier for A, meaning that every cross tabulation involving A can be rolled-up
into another (less detailed) involving B instead.

B+ A

Interestingly, the roll-up matrix |B| oa |A| associated to FD B « Ais simply
given by
tpea = tp-t (23)

(We hope (23) convinces the reader of the advantage of writing FDs the other way
round, namely B « A instead of the more conventional A - B [17].) For instance,
the roll-up matrix calculated from FD Season < Month is:

January March April August October

Spring 0 1 1 0 0

tSeason " tfontn, =  Summer 0 0 0 1 0 (24)
Autumn 0 0 0 0 1
Winter 2 0 0 0 0

Note how matrix (24) is “functional” in the sense that at most one non-zero cell
can be found in each column.

"The fact that T is not normalized in general reflects the preparation process of merging
into the same data warehouse different tables of a (normalized) database.

11



So, given a cross tabulation matrix |A|+ 1 S |C|+ 1, the effect of rolling it
up across a given FD B « A is another cross tabulation given by matrix

(tpea®id)- X

of type |B|+1<——|C|+1. Notice how (& id) handles the tabulation’s ALL field

not present in the roll-up matrix. Converse (transpose) caters for the same effect
on the right-hand side: rolling X up across another FD C' « D is matrix

X (tDeC @’id)o

of type |A|+1 PR |D|+1 . We illustrate this below by instantiating X with a
cross tabulation from M odel to Month

Chevy Ford ALL

January 0 15 15
March 5 0 5
CtabMonth,Model;Sales(T) = April 87 0 87
August 0 64 64
October 0 99 99
ALL 92 178 270

which, once composed with roll-up matrix (24) extended with totals, yields the
expected rolling up effect:

Chevy Ford ALL

Spring 92 0 92

. Summer 0 64 64

(tSeasoneIMonth @ Zd) : CtabMonth,JWodel;Sales(T) = Autumn 0 99 99
Winter 0 15 15

ALL 92 178 270

Checking for FDs. Construction (23) enables us to check for functional depen-

dencies. In general, FD B « A will hold wherever matrix tp.4 is functional, or

simple. This terminology is imported from relational algebra and allegory theory

[9]: a Np-valued matrix S will be said to be simple iff its image S - S° is diagonal.
It can be checked that the image of roll-up matrix (24) is diagonal

Spring Summer Autumn Winter

Spring 2 0 0 0
Summer 0 1 0 0
Autumn 0 0 1 0
Winter 0 0 0 4
while that of (15)
Blue Green Red

Blue 5 2 3

Green 2 1 1

Red 3 1 2

is not. Thus, FD Color < Model does not hold.
Of course, projections are functional (simple) — in fact, they are matrix rep-
resentations of surjections (surjective functions), recall (14). A simple matrix A is

12



said to be a surjection iff the sum of each column of A is 1, in which case A- A° = id.
So, ! matrices are surjections and the following natural law holds:

1.A=1 < Aisafunction (25)

This law is enough to ensure the following property: roll-up preserves cross tabu-
lation grand totals.

Further developments. The matrix representation of FDs opens further per-
spectives on the roll-up OLAP operation, as the following matrix

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Spring 0 0 0.3 1 1 0.7 0 0 0 0 0 0
Summer 0 0 0 0 0 0.3 1 1 0.7 0 0 0
Autumn 0 0 0 0 0 0 0 0 0.3 1 1 0.7
Winter 1 1 0.7 0 0 0 0 0 0 0 0 0.3

of type Season <—— Month shows. In this case, FD Season < Month does not
strictly hold, for equinoctial and solsticial months are doubly classified in the sea-
sons they border, in different proportions (70% for the season which ends, 30% for
the one which starts up).

Perhaps one might say that a “fuzzy” data dependency holds in this situation.
In spite of the possible complexity that this extension of the previous situation
might raise in the traditional OLAP perspective, in our setting it doesn’t change
anything, as such “fuzzy” months-into-seasons roll-up process would work pre-
cisely in the same way, always relying on matrix multiplication and transposition.

8 Incremental construction

Cross tabulations as defined by formula (17) are amenable to incremental con-
struction under certain conditions. For instance, suppose one is given yesterday’s
cross tab and today’s new data. Then today’s cross tab (in matricial form) will be
obtained by adding to the former (matrix-wise) the cross tab of the latter.

As an illustration of how LA support helps in proving facts about data mining
operations, we give below the proof of incremental cross tabulation construction.
Let T be yesterday’s raw data and 7" be the new data. Assuming that T has re-
mained the same (no updates, no deletes), let 7" = T'; T’ denote the append of the
two data sources. Then the following facts hold,

tho o= [talthy] (26)
ty = [ts|ty ] (27)
7T = [Tl ey (28)

where @ builds a diagonal matrix by direct sum (10) of two diagonal matrices.
The proof that cross tabulation is incremental

CtabA’B;]w(T;T,) = ctabA,B;MT+ctabA’B;MT' (29)
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stems from its definition (17) and follows by simple equational reasoning, using
the laws of matrix algebra:

CtabA,B;M(T; T’)

At { 7) }
t% ] AT T [t%]
< { (26); (27) and (28) }
Lot L. qny oy, [ L
< { (19) twice ; exchange law (9) twice }
] oo [ [ [
< { absorption (11) }
o | ]
/ [
o o )
! ! [ F]
< { divide and conquer matrix multiplication (3) }
] ]
< { (17) twice }

ctaba p.mT + ctaba g1’

In retrospect, this proof establishes ctab as a structure preserving map between
raw data collection and (cross tabulation) matrix addition.

9 Higher-dimensional OLAP

In this section we proceed beyond cross tabulations generation to achieve higher-
dimensionality. The aim is to formulate a general LA theory for n-dimensional
OLAP, dealing with all data summary levels presented in [12], from 0 to 3-dimensional
summaries, respectively: aggregate, group-by, cross-tab and cube. The approach
goes further by allowing any number n of dimensions.

The proposed generalization depends on the Khatri-Rao product (12) that works
as a Cartesian product operator on the types of the matrix, thus a Cartesian prod-
uct of the dimensions. As an illustration, remember the projections of our running
example and apply this product to taroder and tcooior. The outcome is a matrix
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bearing type |Model x Color| <——6 :

1 2 3 4 5 6
Chevy Blue 0 1 0 0 0 0
Chevy Green 0 0 0 0 0 O
Chevy Red 10 0 0 0O
Ford Blue 0 0 0 1 0 1
Ford Green 0 0 1 0 0 O
Ford  Red 000010

It tells in which rows the particular dimension pairs appear, compare with Figure
1. Put in other words, this matrix is the higher-rank projection ¢ asodeixcoior Of the
Cartesian product of the two dimensions. In general,

taxB = 1taAOtp (30)
Thus

tModeleeaerolor

t]\/[odel © ﬁYear © tColor

(31)

Chevy 1990 Blue
Chevy 1990 Green
Chevy 1990 Red
Chevy 1991 Blue
Chevy 1991 Green
Chevy 1991 Red
Ford 1990 Blue
Ford 1990 Green
Ford 1990 Red
Ford 1991 Blue
Ford 1991 Green
Ford 1991 Red

oleolelalolaolaolel=) ==l
OO OO OO OO OO O
OO OO OO0 o oW
DO O OO ODDODOO OO
_ O O OO OO OO oo o u
OO O OO oo oo

is the projection capturing the whole dimensional part of the raw-data table of
Figure 1.

Multidimensional cross tabulations are obtained via the same formula (17) just
by supplying higher-rank projections, for instance

1990 1991 ALL
Chevy Blue 87 0 87
Chevy Green 0 0 0

Chevy Red 5 0 5
CtabModelxC’olor,Year;S’ales (T) = FO?”dy Blue 99 7 106
Ford Green 64 0 64
Ford  Red 0 8 8
ALL 255 15 270

corresponding to A = Model x Color and B = Year in (17). Furthermore, by com-
posing [1]g,;., With the projection of all dimensions which, as we have seen (31),
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is obtained by the Khatri-Rao product, we obtain the three dimensional part of the
CUBE operator:

Sales

Chevy 1990 Blue 87
Chevy 1990 Green 0
Chevy 1990 Red 5
Chevy 1991 Blue 0
Chevy 1991 Green 0
tModelxY earxColor * [[T]]Sales A0 = Chevy 1991 Red 0
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1990 Red 0
Ford 1991 Blue 7
Ford 1991 Green 0
Ford 1991 Red 8

A generalization follows from this example. Given an ordered set of dimen-
sions D and a measure M, to calculate the corresponding cube iterate over the
powerset of D and, for each set of dimensions s in the powerset (regarded as a se-
quence induced by the predefined order on dimensions) build the corresponding
projection using an iteration of (30) over s — recall also (21). Finally, multiply by
the measure and bang converse as presented in:

cubeD;M(T) = @ (@ td) . HTHM . !o (32)

sefPD d«s

Remember that ©, the n-ary extension of vertical blocking (recall Section 5), stacks
blocks vertically and is therefore just a glue of the intermediate results provided
by the outermost iteration.

CUBE as a MATLAB script. To close the illustration of our approach, we detail
an implementation of formula (32) made available as a MATLAB script Cube .m.
The core of our experimental script (see Listing 2 in the appendix) is a function
with the same name which receives as input an array of the projections for each
dimension (proj) and the measure diagonal (dnum). It then outputs the result
of the CUBE operator. It is tuned for the example in paper [10], and to run it one
needs to pass as parameters the projection matrices as defined in the current paper.
By running

>> CleanAndShow(Cube({m,y,c},d))

in MATLAB, where variables m,y,c and d respectively hold tarodei, tyear, tcoior and
T'(Sales), we will obtain the result displayed below.
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Sales

Chevy 1990 Blue 87
Chevy 1990 Red 5
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1991 Blue 7
Ford 1991 Red 8
Chevy 1990 ALL 92
Ford 1990 ALL 163
Ford 1991 ALL 15
Chevy ALL Blue 87
Chevy ALL Red 5

Ford ALL Blue 106
Ford ALL Green 64

Ford ALL Red 8
ALL 1990 Blue 186
ALL 1990 Green 64
ALL 1990 Red 5
ALL 1991 Blue 7
ALL 1991 Red 8
Chevy ALL ALL 92

Ford ALL ALL 178
ALL 1990 ALL 255
ALL 1991 ALL 15
ALL ALL Blue 193
ALL ALL Green 64
ALL ALL Red 13
ALL ALL ALL 270

Generic Matricial Aggregation. A general formula for calculating aggrega-
tions on a given ordered set D of dimensions and measure M from a database
table T is given by

© (O ta)-[T]y "

jeF(D) dej

where generic set construct F(D) tells how dimensions in D are handled. Different
operations are obtained by instantiating F(D). For instance, by making F(D) = @
one obtains an AGGREGATE [12] ; for F(D) = {D} the result is a GROUP-BY; for
F(D) issuing the set of prefixes of D, one gets a ROLL-UP; finally, for F providing
the powerset of D one obtains, as shown in (32), a data CUBE.

10 Related Work

An overview of data warehousing and OLAP technology can be found in [3]. Since
Gray et al delivered their seminal data cube paper in 1996 [12], most work in the
field has been concerned with techniques for efficient OLAP, given the small time
window (usually at night) when warehouses can go offline for data refreshing.
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Yang et al [35] focus on the problem of data cube construction and show how a
cluster middleware, called ADR (originally developed for scientific data intensive
applications) can be used for carrying out scalable data cube construction imple-
mentation.

Bearing the ideal of making OLAP “truly online”, Ng et al [19] develop a col-
lection of parallel algorithms directed towards online and offline creation of data
cubes using low cost PC clusters to parallelize computations.

Goil and Choudhary [11] address scalability in multidimensional systems for
OLAP and multidimensional analysis and describe the PARSIMONY system pro-
viding a parallel and scalable infrastructure for multidimensional online analyti-
cal processing, used for both OLAP and data mining. Sparsity of data sets is han-
dled by using chunks to store data either as a dense block using multidimensional
arrays or as sparse representation using a bit encoded sparse structure. Parallel
algorithms are developed for data mining on the multidimensional cube structure
for attribute-oriented association rules and decision-tree-based classification. Per-
formance results for high dimensional data sets on a distributed memory parallel
machine (IBM SP-2) show good speedup and scalability.

Recent publications in “end-to-end” system proposals for parallel OLAP servers
are scarce. SIDERA [6] is one such proposal, providing OLAP-specific functional-
ity gathering recent results in a common framework: “the most comprehensive OLAP
platform described in the current research literature” [6].

Closer to our approach, Sun and others [30, 31] introduce a technique based on
the use of tensors in the area of pattern discovery. (Tensors generalize vectors and
matrices, as happens in the mathematical domain, and can be used to represent
data-cubes.) To capture temporal evolution one uses tensor streams or sequences
that are time indexed structures of tensors, the advantage of this kind of streams
being the generalization of traditional streams and sequences.

On the background stays singular value decomposition (SVD), whose matricial
expression conspicuously resembles our starting point (4) and suggests a link be-
tween the two approaches which we intend to study in the future.

Our work also intersects with the area of index based database query (re-
sponse time) optimization, namely in what respects bitmap indices [34]. Clearly,
the projection matrices built in the current paper are bitmaps regarded as ma-
trices. Bitmaps were first implemented in IBM’s Model 204 [23], becoming a “de
facto” device after compression techniques solved their outrageous memory space
demands. They are still in use in today’s commercial database systems, see [34]
for details.

Concerning LA kernels for parallel machines, Bell and Garland [1] explore the
design of efficient sparse matrix-vector kernels for throughput oriented proces-
sors and implement these kernels in a parallel computing architecture developed
by NVIDIA. The Optimized Sparse Kernel Interface (OSKI) Library [32] is a col-
lection of low-level C primitives that provide automatically tuned computational
kernels on sparse matrices, for use in solver libraries and applications. OSKI has
a BLAS-style interface, providing basic kernels like sparse matrix-vector multiply
and sparse triangular solve, among others.

Last but not least, Yang et al [36] propose architecture-aware optimizations
for sparse matrix multiplication on GPUs and study the impact of their efforts
on graph mining. This work is another piece of evidence suggesting that future
OLAP and data mining should rely on linear algebra.
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11 Conclusions and Future Work

This paper proposes a separation of concerns in approaching parallel OLAP. The
strategy consists in first encoding OLAP functionality solely in terms of LA (ma-
trix) operations, and then relying on the theory of parallel sparse matrix/matrix
and matrix/vector multiplication to achieve parallelism [32]. All operations in the
approach, namely

¢ the conversion of dimension attributes into projection matrices
* the conversion of measure attributes into diagonal matrices

¢ the calculation of cross tabulations

¢ the calculation of cubes

are embarassingly parallel [8]. Both projection and diagonal matrices are sparse,
therefore calling for suitably optimization in a parallel environment [32].

The paper focuses on the first part of the approach — something one might
call LAOLAP (for “linear algebra OLAP”) — letting the actual parallel implemen-
tation over multi-core LA kernels for future work, as explained below. Moreover,
it illustrates how the kinship between relation and matrix algebra suggests how
the LA approach to OLAP should proceed. To the best of the authors” knowledge
this technique is novel in the field and deserves further attention.

Although the overall strategy can be regarded as a noSQL [18], or “SQL-free”
approach to OLAP data processing, an LA semantics could be developed for SQL
accordingly, think for instance of syntactic constructs such as GROUP BY. Further
to these and to the matricial projections dealt with already in the current paper, the
Khatri-Rao product can be used to perform selections using attribute membership
vectors as representations of sets of values.

Future work. Given the two separate steps of our approach, future work will
proceed in two independent directions, one going deeper into the LA encoding of
data mining operations and the other actually implementing the overall approach
and benchmarking it with respect to state-of-the-art parallel OLAP technology.

On the foundations side, much work has to be carried out, namely in provid-
ing a proper “justification” of the approach. In particular, we have to cross-check
our matrix encoding of OLAP (and FDs) with already existing OLAP formal mod-
els, such as given in [5, 24] and likely elsewhere. Mimicking OLAP algebra (what-
ever this means) in terms of linear algebra may provide better and simpler proofs
for existing results and possibly generate new ones, as our experience in pointfree
calculation already shows, in the relational algebra field [20, 22]. And, of course, a
closer look at [30] is also in the research agenda.

Extending LA support for other forms of data consolidation such as eg. av-
eraging is at immediate reach. For instance, averaging rather than summing up
measure vectors is obtained once again via bang matrices, as the following formula
shows,

wgv = s

for n<—1 and 1<—n, reducing v into the scalar which holds its sum. Av-

eraging holds since (!-1°)is 1 =<—— 1, also a scalar. This generalizes to weighted
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. . v, w .
averaging: given two vectors n <—— 1 where w records weights,

szf where [m]:[v' ]-w
Y Y :

Back to our case study, it is easy to see that obtaining cross tabulations consoli-
dated by averaging is a question of augmenting equation (4) with the (index-wise)
division of the cross tabulation matrix by the corresponding counting matrix:

ta-[T]y -t5
ta- t%

Extremes (min and max) are easy to calculate, achievable by changing the seman-
tics of the multiplication and sum of elements in the matrix. But calculating more
exotic data consolidation forms as eg. population’s standard deviation is a chal-
lenge to overcome due to the complexity of the formulas. We have been able to
achieve it with intensive use of Khatri-Rao products and other non-trivial matrix
operations, but further research is needed to evaluate the practicality of such us-
age.

On the practical side, our main expectations reside in actually implementing
our LA OLAP formule over a fast kernel for parallel implementation of sparse
matrix algebra, such as eg. [1, 32], and benchmark the overall result with respect
to standard parallel OLAP implementations such as eg. PARSIMONY [11].

It will be interesting to see how much of current bitmap technology [34] can be
used in our approach to obtain optimal projection function implementations. We
point out that further study of the relationship between bitmap compression and
sparse matrix representation techniques is of interest to the whole spectrum of this
research field.

The prospect of extending such techniques to spreadsheet software running
on multi-core laptops is also of interest ®. We are currently getting involved in an
open source initiative targeting at incorporating our ideas into the calculation of
summary tables in OpenOffice taking advantage of lap-top multi-core hardware
architecture.

Last but not least, it would be interesting to see how much could be gained
from implementing our approach in computational software programs used in
scientific engineering such as eg. Mathematica ° [33], namely by putting its matrix
tools and support for sparse arrays in the service of packages such as eg. BEST
Viewpoints 7, everything tuned for multi-core platforms.
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A Listings of MATLAB scripts

Listing 1 provides both the calculation of cross tabulation for projections A, B and
measure M and the generation of a bang matrix for size r.

function R = bang(r)
R = ones(1,r);
end

function B = ctab(A,M,B)

[m, k] = size(M);

B=[A;bang(m) ]+ M= [ B; bang(k)]’;
end

Listing 1: MATLAB encodings of bang (!) and cross table calculation (ctab).

The script presented in Listing 2 consists of a loop that builds a row partitioned
matrix, as prescribed by the © operator and its indices. It iterates over the result
sets generated by the powerset construction §D, corresponding to P(proj) in the
script.

We observe that a richer type system along the lines proposed by [16] would
be useful by letting MATLAB to infer (size(meas, 1)) in the penultimate line, or
even eliminate its need if in the construction of the partitioned matrix [C; kr(psj)]
a bang of size 6 were inferred as the empty Khatri-Rao matching the type.

The final result relies on a Khatri-Rao product implementation £ made avail-
able in the MATLAB Central repository by Laurent Sorber from K.U. Leuven. The
script CleanAndShow removes 0 valued entries and shows the types of the result
to increase the visualization of the result.

function C = Cube(proj,meas)

C=[L

ps = P(proj);

for j=1:size(ps,2)-1

C = [C; ke(ps{i)l;

end

C =[C; bang(size(meas,1))];

C = C # meas * bang(size(meas,1))’;
end

Listing 2: MATLAB encodings of the Cube operator.

Although useful to put our ideas to work and as a validation of our approach,
we have to disclaim and acknowledge the limitations of this script that was hand-
crafted to capture this particular example, but easily generalizable. Our intention
is to exemplify and make it a hands-on resource to aid in the understanding of the
approach.

The function encoding the powerset construction for the example data cube is
presented in Listing 3. It generates the powerset from the bigger sets with three
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components to the smaller ones. The empty set is not included because it is hard
coded in the Cube . m script.

function PS = P(set)

length = size(set,2);
PS = cell(1,2"1ength);

PS={};
x=1;
for i=length:-1:0

ind = nchoosek(1:length,i);

for j=1:size(ind,1)
PS{x} = set(ind(j,));
x=x+1;
end
end

end

Listing 3: MATLAB encodings a powerset operator.

Listing 4 gives the script that labels the resulting vector of using Cube .m to the
running example presented. It contains the labels hardcoded, joins them with the
resulting vector and in the end iterates over the result by removing zero sale lines.
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function column = CleanAndShow(totals)

labels = [’ Chevy, 1990, Blueuu,
"Chevy_1990_Green_
"Chevy_1990, Reduuu ,
"Chevy, 1991, Blue_ '/,
"Chevy_1991 Green,
"Chevy_1991 | Reduuu ,
"Ford_ ,1990_Blue_ /',
"Ford_ ,1990_Green,
"Ford_ ,1990 Reduuu ,
’Forduul99luBlueuu ,
"Ford_ 1991 _Green_
"Ford_ 1991 _Red
’Chevy_,1990_ALL
"Chevy 1991 _ALL
"Ford__,1990_ALL
"Ford_ 1991 _ALL__.",
"Chevy_ALL_, _Blue_ /',
"Chevy_ALL_, _Green_
"Chevy_ALL_, Reduuu p
"Ford_, ALL_, Blue_ ./,
"Ford_ ALL_, Green,
'Ford_, ALL,_, Reduuu ,
"ALL_.,.1990_Blue_ /',
"ALL_,.,1990_Green
"ALL_..1990 Reduuu ,
’ALLuuul99luBlueuu ,
"ALL__ 1991 Green,
"ALL_..1991_Red
’ChevyuALL _ALL
"Ford_ ALL _,  ALL
"ALL__.1990_ALL
"ALL__.1991 _ALL__..,
’ALLHHHAL LoBlue_ 7,
"ALL__, ALL_, Green
"ALL,_, ALL Reduuu ,
’ALLHHHALLHHALLHHH
I;

columnaux = [labels num2str(totals)];

e/
[ESTENTEN R4
[ESyEuT /

e/

e/
[ESTENTEN R4
[ESyEuT /

e/

column = [];
for i=1:size(columnaux,1)
if(stremp(columnaux(i,19:20),” ,07) ==0)
column = [column; columnaux(i,:)];
end
end
end

Listing 4: MATLAB encodings of the CleanAndShow operator.
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