
Calculating Fault Propagation in Functional
Programs using the LAoP

J.N. Oliveira

High Assurance Software Laboratory
INESC TEC and University of Minho, Portugal

Joint work with D. Murta
QAIS Project - Grant PTDC/EIA-CCO/122240/2010

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Motivation

Research questions:

• How do software faults propagate in computer programs?

• Can faulty behavior be predicted in some way, eg. by
calculation?

• Are there versions of the same program or system which are
”better” than others concerning fault propagation?

In this talk:

• Faulty behavior can be mimicked probabilistically

• Faults can be injected and simulated using monadic
programming

• Better: Instead repeated simulation, programs can be
converted into (inductive) matrices and reasoned about in
LAoP, an extension of the AoP towards quantitative
reasoning.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Trustworthiness in software design

Two dual approaches to software trustworthiness:

1. “Angelic” — prevent bad things from happening — weakest
pre-conditions (Dijkstra): the least one should impose for a
program not blow up.

2. “Demonic” — force bad things to happen — strongest
post-conditions: evaluate worst blow-up scenario arising
from fault.

Fault injection: expensive techniques and tools based on extensive
simulation of faults (eg. CSW Xception+Xtract).

Can’t fault propagation be calculated as a pen & paper exercise?

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Example: fault-injected multiplication

Safe multiplication (over IN0):

(a∗) = for (a+) 0

that is, a ∗ 0 = 0

a ∗ (n + 1) = a + a ∗ n

Bad multiplication, fault-injected — 5% probability of a wrong
base case

a ∗ 0 =.95 0

a ∗ 0 =.05 a

a ∗ (n + 1) =1 a + a ∗ n

in “extended” functional notation.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Example: fault propagation

What is the fault pattern in the pipeline

f n = fsucc(fmul a n)

where fsucc is a faulty successor function,

fsucc n =q n + 1

fsucc n =1−q n

and fmul is the even more seriously faulty multiplication,

fmul a 0 = 0

fmul a (n + 1) =p fmul a n

fmul a (n + 1) =1−p a + fmul a n

for 0 ≤ p, q ≤ 1 in general?

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Implementing the “extended notation”

How do we implement our probability annotated (Haskell)
programs?

• We propose to use distribution-valued functions.

Do such functions compose?

• Yes, provide you program this.

Do you need heavy machinery to program in such a way?

• Not in Haskell — distributions form a monad and therefore
handling distributions is as easy as handling lists, for instance.

• PFP library by Erwig and Kollmansberger (2006) offers the
distribution monad and a wide range of utility functions on
probabilities.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

About the distribution monad

The datatype ofdistributions on X which supports the monad:

DX = {µ : X → [0, 1] |
∑
x∈X

µ(x) = 1} (1)

For instance:

Standard monadic function return a is the Dirac distribution µ
such that µ a = 1 and µ x = 0 for x 6= a.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Using the PFP library

The monad

newtype Dist a = D {unD :: [(a,ProbRep)]}

instance Monad Dist where

return x = D [(x,1)]

d >>= f = D [(y,q*p) | (x,p) <- unD d, (y,q) <- unD (f x)]

fail _ = D []

is available from Probability.hs.

Example: base-case fault-injected multiplication

a * 0 = D [(0,0.95),(a,0.05)]

a * (n+1) = do x <- a * n

return (a + x)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Other (generic) examples in PFP

Faulty add : yields 0 with probability p

fadd p a x = choose p 0 (a+x)

Faulty multiplication: propagates fadd faults

fmul p a 0 = return 0

fmul p a n = do { x <- fmul p a (n-1) ;

fadd p a x

}

Faulty succ: does nothing with probability q

fsucc q = schoice q id succ

Functions choose and schoice are suitable library functions.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Experiments

Running (Haskell) composition fsucc q • fmul p, yields for a = 2
and input 3 (1 + 2× 3 = 7),

0 1 2 3 4 5 6 7
0

20

40

60

for p = 20%, q = 10% (in blue) and for p = 10%, q = 20% (in
red).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

However

Problem:

• Complete probabilistic model but...

• Combinatorial explosion of recursive probability layers limits
experiments

• Would need Monte Carlo simulation and the like...

Alternative:

Reason about the monadic code (Gibbons & Hinze).

Our approach:

(Pointwise) monads are better for programming than
for calculating. Fortunately, they “never come alone”...

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Winding back: ND functions

Nondeterministic outputs — set-valued functions are relations

f = ΛR ⇔ 〈∀ b, a :: b R a⇔ b ∈ f a〉 (2)

that is,

A→ PB

(∈·)
**∼= A→ B

Λ

jj (3)

where A→ B on the right hand side is the relational type A→ B
of all relations R ⊆ B × A.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Nondeterministic functions

An adjunction, offering two ways for reasoning — one relational
(Rel)

PA

B

f

OO PA
∈ // A

B

f

OO

R=∈·f

==

the other monadic (Set):

A

R
��

B

PA

ER
��

A
returnoo

f = ER · return
where (ER)s = {b|a← s; bRa}

}}
PB

The same duality in “going probabilistic” (next slide).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic functions

Outputs become distributions,

A→ DB
**∼= A→ Bjj (4)

where DB is the B-distribution data type

DB = {µ ∈ [0, 1]B |
∑
b∈B

µ b = 1} (5)

and where [0, 1] is the interval of all non-negative reals at most 1.

However, what does A→ B on the right hand side of (4) mean?

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic functions

One has:

A→ [0, 1]B

⇔ { uncurrying }

A× B → [0, 1]

⇔ { swapping }

B × A→ [0, 1]

where B × A→ [0, 1] can be identified with the set of all matrices
taking elements from [0, 1] with as many columns (resp. rows) as
elements in A (resp. B).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Column stochastic matrices
In fact:

A→ DB
++

∼= A→CS Bjj (6)

where CS denotes the category of column-stochastic matrices
(columns in such matrices add up to 1).

Such a matrix-transform is captured by the universal property, for
all f :: A→ DB and CS-matrix M:

M = [[f]] ⇔ 〈∀ b, a :: b M a = (f a)b〉 (7)

Research question:

Is CS “as useful” to probabilistic reasoning as Rel is to
non-deterministic reasoning in the AoP (Bird and
de Moor, 1997) ?

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Towards a LAoP

My answer:

I believe so — in general and in fault-propagation, in
particular

Still, several things to be explained:

• categories of matrices — what’s this?

• category of CS matrices — what’s this?

• the AoP is pointfree — universal property (7) above is
pointwise...

Answering these questions will generalize the AoP into something
one may identify as a Linear Algebra of Programming (LAoP) —
details in (Oliveira, 2012)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Arrow notation for matrices

In a category of matrices, these are typed: arrow A
M // B

denotes a matrix M from A (source) to B (target).

A,B are types. Writing B A
Moo means the same as A

M // B .
We represent source types column-wise and target types rows-wise.

For instance, coefficient matrix
aside is of type 3←{x , y , z}.

Matrices of types A← 1 (resp.
1← A) are known as column
(resp. row) vectors.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Arrow notation for matrices

Compositionality — matrices compose with each other:

B A
Moo C

Noo

M·N

gg

where

b(M · N)c = 〈
∑

a :: (bMa)× (aNc)〉 (8)

Matrix composition normally referred to as multiplication. The
minimal algebraic structure for (8) to make sense is that of a
semiring (S; +,×, 0, 1).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Typed linear algebra

For matrices M and N of the same type B Aoo , we can
extend cell level algebra to matrix level, eg. by adding or
multiplying matrices,

M + N , M × N

the latter known as the Hadamard product.

Expressions such as eg. M + N, M × N for M and N of different
types won’t typecheck.

The underlying type system is
polymorphic and type inference
proceeds by unification. For
instance, the identity matrix is
of polymorphic type A Aoo .

id =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Converse

Given matrix n m
Moo , notation m n

M◦oo denotes its
transpose, or converse.

Thus M changes shape by turning its rows into columns and
vice-versa.

The following idempotence and contravariance laws hold:

(M◦)◦ = M (9)

(M · N)◦ = N◦ ·M◦ (10)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Polymorphic (block) combinators

Two ways of putting matrices together to build larger ones:

• X = [M|N] — M and N side by side (“‘junc”)

• X =
[
P
Q

]
— P on top of Q (“‘split”).

Mind the (polymorphic) types:

m

n

M

>>

n + p

[M|N]

OO

p

N

``

t

P

``
[
P
Q

]OO
Q

>>

(A so-called biproduct)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Blocked linear algebra

Rich set of laws, for instance

• Divide-and-conquer:

[A|B] ·
[

C

D

]
= A · C + B · D (11)

• “Fusion”-laws:

C · [A|B] = [C · A|C · B] (12)[
A

B

]
· C =

[
A · C
B · C

]
(13)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Special matrices

The following (Boolean) matrices are relevant:

• The bottom matrix B A
⊥oo — wholly filled with 0s

• The top matrix B A
>oo — wholly filled with 1s

• The identity matrix B B
idoo — diagonal of 1s

• The bang (row) vector 1 A
!oo — wholly filled with 1s

Thus, (typewise) bang matrices are special cases of top matrices:

1 A
>oo = !

Also note that, on type 1 1oo :

> = ! = id

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Useful for matrix index manipulation

Two useful rules of thumb,

y(f · N)x = 〈
∑

z : y = f z : zNx〉 (14)

y(g◦ · N · f)x = (g y)N(f x) (15)

(adapted from relation algebra) where N is an arbitrary matrix and
f , g are functions.

Wondering about how do functions f , g fit into matrix

expressions? Easy: every A
f // B can be represented by a

matrix [[f]] of the same type defined by

b[[f]]a 4 (b =S f a)

where y =S x is 1 if y = x and 0 otherwise. Thus matrix [[f]]
represents the graph of f .

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Useful for matrix index manipulation

Example: [[succ]], where
succ n = n + 1, is the matrix
aside. We normally drop the
parentheses for improved
readability.

In general, the Eindhoven-styled trading-rule

〈
∑

x : p x : e x〉 = 〈
∑

x :: (p x)× (e x)〉 (16)

holds for Boolean term p x which, on the right is such that
p x = 1 if p x holds, 0 otherwise.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Matrix transformed probabilistic functions

Given probabilistic function A
f // DB , its matrix transform

A
[[f]] // B is such that

! · [[f]] = ! (17)

that is, all columns of [[f]] add up to one.

For A = B, probabilistic function f can be regarded as a Markov
chain.

Example — probabilistic negation:

True False
True
False

(
0.1 0.8
0.9 0.2

)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Linear algebra of probabilistic functions

Every sharp function is probabilistic — it offers a Dirac
distribution for every input. This includes the identity function id
represented by the identity matrix [[id]].

Compositionality: probabilistic functions compose, under
monad-flavoured definition

[[f • g]] = [[f]] · [[g]] (18)

In monad-speak:

[[λa. do {b← g a; f b}]] = [[f]] · [[g]]

(It is easy to show that (18) preserves probabilistic functions.)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic “junc”

Probabilistic A + B
[f ,g] // DC — run either f or g — transposes

into

[[[f , g]]] = [[[f]]|[[g]]] (19)

where (recall) [M|N] denotes M and N put side by side.

Checking the 100% constraint (17):

! · [[[f]]|[[g]]]

⇔ { fusion-+ (12) }

[! · [[f]]|! · [[g]]]

⇔ { f and g probabilistic (17) ; [!|!] = ! }

!

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic choice

In their programming language pGCL, McIver and Morgan (2005)
introduce notation

prog p� prog ′

as a form of probabilistic choice between two branches of a
program prog , chosen with probability p, and prog ′ chosen with
probability 1− p.

This corresponds to the choice between two probabilistic functions
f and g of the same type defined by

[[f p� g]] = p[[f]] + (1− p)[[g]] (20)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic choice

Probabilistic choice “is probabilistic”:

! · [[f p� g]]

= { definition (20) ; bilinearity }

! · (p[[f]]) + ! · ((1− p)[[g]])

= { p is a scalar }

p(! · [[f]]) + (1− p)(! · [[g]])

= { f and g are probabilistic }

p! + (1− p)!

= { bilinearity }

(p + 1− p)!

= { cancellation }

!

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Properties

Probabilistic choice enjoys many properties easy to derive from the
definition, eg. basic

f p� f = f (21)

f 0� g = g (22)

f p� g = g 1−p� f (23)

fusion-laws

(f p� g) • h = (f • h) p� (g • h) (24)

h • (f p� g) = (h • f) p� (h • g) (25)

and the exchange law:

[f , g] p� [h, k] = [f p� h, g p� k] (26)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic sums

The direct sum of two matrices,

M ⊕ N = [i1 ·M|i2 · N] =

[
M · π1

N · π2

]
=

[
M 0
0 N

]
(27)

which has type A
M ��

B
N ��

A + B
M⊕N��

C D C + D

(a bifunctor) enables us to

sum probabilistic functions:

[[f ⊕ g]] = [[f]]⊕ [[g]]

Distribution over choice

h ⊕ (f p� g) = (h ⊕ f) p� (h ⊕ g) (28)

is central to probabilistic function calculation.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic recursion

Recall

fmul p a 0 = return 0

fmul p a (n+1) = do { x <- fmul p a n ; fadd p a x }

Converting this to its matrix-transpose we get fmul as the unique
solution to LAoP equation

X = [0|(0 p� (a+)) · X] · [0|succ]◦

where matrix 0 p� (a+) represents fadd . Thus, using
divide-and-conquer (11):

fmul = 0 · 0◦ + fadd · fmul · succ◦

How do we reason about this equation?

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic recursion
We might introduce indices, cf.:

fmul = 0 · 0◦ + fadd · fmul · succ◦

⇔ { linearity and composition }

y fmul x = y(0 · 0◦)x +

〈
∑

z :: y(fadd · fmul)z × (z succ◦ x)〉

Term y(0 · 0◦)x = 1 iff both y = x = 0, otherwise it equals 0, in which
case

y fmul x = 〈
∑

z , k : z + 1 = x : y(fadd)k × k(fmul)z〉

where

y(fadd)k = y(0 p� (a+))k = p(y0k) + (1− p)(y(a+)k)

= p(y = 0) + (1− p)(y = a + k)

Hmmmm...

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic recursion

Far better: inspired by the AoP (Bird and de Moor, 1997), we regard
fmul as a catamorphism in its category of matrices, cf.

IN0

in◦=
[

0◦
succ◦

]
**

fmul

��

∼= 1 + IN0

in=[0|succ]

hh

id⊕fmul

��
IN0 1 + IN0

[0|0p�(a+)]

hh

Following the usual notation for the unique solution of diagrams of this
kind, we write fmul = (|[0|0 p� (a+)]|).

Catamorphisms have several useful properties which are rather

advantageous in calculations.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic cata-fusion

For instance, the cata-fusion law:

(|h|) = f · (|g |) ⇐ f · g = h · (id ⊕ f) (29)

Application: suppose f and (|g |) are probabilistic functions
denoting faulty programs.

Then their fusion (|h|) will record how their faults combine with
each other and propagate to outer evaluation levels.

Example in the following slides : (static) prediction (pen & paper
calculation) of how the faults of fsucc and fmul “fuse” with each
other.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic cata-fusion

Altogether, this is the exercise of calculating catamorphism fprog
such that

fprog = fsucc · fmul (30)

in the LAoP (Oliveira, 2012), given faulty

fsucc = id q� succ

and faulty

fmul = (|[0|0 p� (a+)]|)

The exercise clearly fits with cata-fusion (29).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic cata-fusion

In fact, by (29) the outcome
will be

fprog = (|[stop|step]|)

provided the lower rectangle
aside commutes; thus we just
have to solve the equation
below for stop and step:

IN0

in◦
++

fmul

��

∼= 1 + IN0

in

kk

id⊕fmul

��
IN0

fsucc

��

1 + IN0

[0|0p�(a+)]

kk

id⊕fsucc
��

IN0 1 + IN0

[stop|step]

kk

fsucc · [0|0 p� (a+)] = [stop|step] · (id ⊕ fsucc)

that is, fsucc · 0 = stop and fsucc · (0 p� (a+)) = step · (id ⊕ fsucc).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic cata-fusion

The first equality yields stop almost immediately:

fsucc · 0 = stop · id
⇔ { definition of fsucc }

stop = (id q� succ) · 0

⇔ { choice-fusion (24) ; succ 0 = 1 }

stop = 0 q� 1

The calculation of step follows from the other equality in the
diagram:

fsucc · (0 p� (a+)) = step · fsucc

(next slide)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic cata-fusion

fsucc · (0 p� (a+)) = step · fsucc

⇔ { choice-fusion (25) ; fsucc · 0 = stop }

stop p� (fsucc · (a+)) = step · fsucc

⇔ { fsucc commutes with (a+) since succ commutes with (a+) }

stop p� ((a+) · fsucc) = step · fsucc

⇔ { stop is (probabil.) constant, thus stop · f = stop, ∀f ; (24) }

(stop p� (a+)) · fsucc = step · fsucc

⇐ { Leibniz }

step = stop p� (a+)

In summary:

fprog = fsucc · fmul = (|[stop|stop p� (a+)]|) , for stop = 0 q� 1

expresses the combined impact of the faults of the two functions.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Back to programming

Once we map our calculated solution into its monadic equivalent,

fprog’ p q a 0 = stop q 0

fprog’ p q a b = do { x <- fprog’ p q a (b-1);

step p q a x

}

where

stop q = schoice q (const 0) (const 1)

step p q a = choice p (stop q) (return.(a+))

and experiment with it, we confirm that the two programs —
before and after fusion — are probabilistically indistinguishable.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Recall experiments

Both programs (before and after “fault-fusion”) have the same
behaviour, eg. for a = 2 and input 3 (1 + 2× 3 = 7),

0 1 2 3 4 5 6 7
0

20

40

60

for p = 20%, q = 10% (in blue) and for p = 10%, q = 20% (in
red).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Last but not least: mutual recursion

The programs we have handled thus far are relatively uninteresting:
for-loops with one variable only.

We would like to reason about faults in programs such as eg. the
following C program

int sq(int n)

{

int s=0; int o=1; int 1;

for (i=1;i<n+1;i++) {s+=o; o+=2;}

return s;

};

computing the square of a natural number (two variables s and o).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Program genetics

First of all, we investigate the genetics of this program: how can
we be sure this program computes sq n = n2?

Easy: using standard AoP we get, from sq n = n2, two mutually
recursive functions,

sq 0 = 0

sq (n + 1) = sq n + odd n

odd 0 = 1

odd(n + 1) = 2 + odd n

since (n + 1)2 = n2 + 2n + 1, and odd n = 2n + 1 is the n-the odd
number, etc.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Program genetics

Now, tally (pair up) the two functions

(sq, odd)x = (sq x , odd x)

and derive

(sq, odd)0 = (sq 0, odd 0) = (0, 1)

(sq, odd)(a + 1) = (sq(a + 1), odd(a + 1))

= (sq a + odd a, 2 + odd a)

whose second clause can be re-written into

(sq, odd)(a + 1) = (q + i , 2 + i) where (q, i) = (sq, odd)a

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Program genetics

Thus, the pair (sq, odd) is the for-loop

(sq, odd) = for loop (0, 1) where loop(q, i) = (q + i , 2 + i)

which we may incorporate into

sq n = s

where (s, o) = for loop (0, 1) n

where loop(s, o) = (s + o, o + 2)

matching with the C encoding we’ve
started from (aside).

int sq(int n)

{

int s=0; int o=1;

int 1;

for (i=1;i<n+1;i++)

{s+=o; o+=2;}

return s;

};

(Look how “wise” the syntax of C is compared to what we’ve just

calculated...)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Pairing faulty programs

The lesson learnt from the previous calculation is that, to handle
multi-variable faulty for-loops we need to investigate about pairing
in the CS-matrix category.

The general result is known as the mutual recursion theorem in
the AoP: multi-variable programs arise by calculation from systems
of mutually recursive functions by pairing.

For this to work for probabilistic functions, pairing has to be a
product in the CS category.

The following slides investigate probabilistic pairing, eventually
enabling calculation about faults injected in programs such as sq
above.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Pairing

Pairing the outputs of probabilistic functions C
f // DA and

C
g // DB is captured by the Khatri-Rao product of the

corresponding matrices (parentheses again omitted):

k = f M g ⇒
{

fst · k = f
snd · k = g

(31)

cf. diagram

A× B A A× B
fstoo snd // B

C

f Mg

OO

C

f Mg

OO

g

<<

f

bb

(Warning: mind ⇒, thus a weak categorial product in CS — cf.
“forks” in Rel.)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Pairing

Khatri-Rao easily captured in terms of the well-known Kronecker
product M ⊗ N of two arbitrary matrices:

(y , x)(M ⊗ N)(b, a) = (yMb)× (xNa) (32)

Khatri-Rao coincides with Kronecker for column vectors u and v ,

u M v = u ⊗ v (33)

and expands column-wise as shown by the exchange law

[M1|M2] M [N1|N2] = [M1 M N1|M2 M N2] (34)

Projections:

fst = id ⊗ !

snd = !⊗ id

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Pairing

Example:

2 2× 3
fst=

[
1 1 1 0 0 0
0 0 0 1 1 1

]
oo

snd=

[
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

]
// 3

4

f Mg=

0.15 0.12 0 0
0.35 0.06 0 0.75

0 0.12 0 0
0.15 0.28 0.1 0
0.35 0.14 0.2 0.25

0 0.28 0.7 0

OO

g=

[
0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

]

>>

f =
[

0.5 0.3 0 0.75
0.5 0.7 1 0.25

]

``

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Pairing

The monadic equivalent to Khatri-Rao (probabilistic pairing) is
quite intuitive:

(f ‘kr‘ g) a = do { b <- f a ;

c <- g a ;

return (b,c)

}

mfst d = do { (b,c) <- d ;

return b

}

msnd d = do { (b,c) <- d ;

return c

}

Matrix-wise, much more about Khatri-Rao product etc in the PhD
thesis by Hugo Macedo (2012).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

The AoP mutual recursion law, also known as Fokkinga law,{
f · in = h · F (f M g)
g · in = k · F (f M g)

⇔ f M g = (|h M k|) (35)

(for polynomial F) extends to the LAoP under some conditions,
related to pairing (Khatri-Rao) being a weak product in category
CS .

The square of a natural number

sq 0 = 0

sq(n + 1) = sq n + 2n + 1

is not a for-loop (cata over IN0) for F X = id ⊕ X , but it becomes
so thanks to (35) — as we did before in a pointwise manner.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

The matrix transpose of the pair (sq, odd)

(sq, odd) = for loop (0, 1) where loop(q, i) = (q + i , 2 + i)

we’ve calculated before is, using the Khatri-Rao combinator,

(sq M odd) · in =
[
(1, 0)|(+) M (2+) · snd

]
· (id ⊕ (sq M odd))

thanks to the (probabilistic) mutual-recursion law (35).

This calculation leads to the following probabilistically
indistinguishable versions of sq (next slide).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

Recursive version:

fsq 0 = return 0

fsq(n+1) = do { x <- fsq n ; x ‘fadd‘ (2*n+1) }

Linear version:

fsql n = do (s,i) <- floop n ; return s

where floop 0 = return (0,1)

floop (n+1) = do (s,i) <- floop n ;

s’ <- s ‘fadd‘ i ;

return (s’,2+i)

Both over the same faulty addition, eg.:

x +. y = D [(y,0.1),(x+y,0.9)]

x .+ y = D [(x,0.1),(x+y,0.9)]

x .+. y = mynormal (x+y)

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

Another example of application of mutual recursion is the
calculation of Fibonacci numbers, as the doubly recursive
mathematical definition,

fib 0 = 1

fib 1 = 1

fib(n + 2) = fib(n + 1) + fib n

converts — by introducing f n = fib(n + 1) — into a
mutual-recursive pair (“mutumorphism”)

f · [0|suc] = [1|add · (f M fib)]

fib · [0|suc] = [1|f]

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

The same reasoning we did before concerning the sq function will
yield the following linear version from the given system of mutually
recursive functions:

int fib(int n)

{

int x=1; int y=1; int i;

for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}

return y;

};

Does this transformation extend to the probabilistic (faulty)
setting?

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

In this case, experiments in Haskell show that the doubly recursive

ffib 0 = return 1

ffib 1 = return 1

ffib n = do a <- ffib(n-1) ;

b <- ffib(n-2);

(a ‘fadd‘ b)

and its linear version

ffibl n = do (a,b) <- auxm n ; return b

where auxm 0 = return (1,1)

auxm n = do (a,b) <- auxm(n-1);

s <- a ‘fadd‘ b;

return (s,a)

perform differently — probabilistic behavior of linear version performs

better. Why?

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

We’ve developed a Matlab library for checking (finite approximations to)
faulty recursive functions encoded as matrices, cf. eg (Fibonacci):

function R = execFibl10(fAdd,n,m,N)

R = snd(n,n)*aux(fAdd,n,m,N);

end

where

function R = aux (fAdd,n,m,N)

if (N==0)

R = fibl10(fAdd,zeros(n*n,m));

else

R = fibl10(fAdd,aux(fAdd,n,m,N-1));

end

end

computes the N first iterations of the fixpoint (Kleene theorem) of linear

Fibonacci — see the next slide.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

function R = fibl10(fAdd,Rec)

[rRec cRec] = size(Rec);

m = sqrt(rRec);

%Defining out

coref1 = [1 zeros(1,cRec-1);zeros(cRec-1,cRec)]; %Equal to zero coref

coref2 = [zeros(1,cRec);zeros(cRec-1,1) eye(cRec-1)]; %Not equal to zero coref

pred = zeros(cRec,cRec);

for k=0:(cRec-1)

if (k>0)

pred(k,k+1) = 1;

end

end

out = juncMat(inj1Mat(1,1+cRec)*bang(cRec),inj2Mat(cRec,1+cRec)*pred)*splitMat(coref1,coref2);

%Defining recursive call

FRec = sumMat(idMat(1),Rec);

%Defining algebra

one = zeros(m,1);

one(1+1,1) = 1;

zero = zeros(m,1);

zero(1+0,1) = 1;

a = juncMat(kr(one,zero),kr(fAdd(rRec,m),fst(div(rRec,m),m)));

R = a*FRec*out;

end

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Probabilistic mutual recursion

Thanks to this library we have found sufficient conditions for the
mutual recursion law (35) to hold probabilistically.

For instance, if the first projection of a probabilistic function is a
sharp function, then Khatri-Rao is a (strong) product — ⇒ in
(31) becomes ⇔ — and probabilistic mutual recursion holds.

This explains the difference in faulty behaviour between the linear
versions of sq and fib — odd is a sharp function (no faults),
compare the dependency graphs:

sq

��

// odd

��

fib // f

��

??

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Closing

The research question which motivated this talk splits in two other
questions, in fact two sides of the same coin:

(a) Can the AoP be extended quantitatively in some useful way?

(b) What happens to the discipline once we generalize from
relations to matrices?

The answer leads us into linear algebra, which eventually provides
a surprisingly simple framework for calculating with set-theory,
probabilities, functions and relations, provided it is typed — as
advocated by Macedo (2012).

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Closing

The comment by Sir Arthur Eddington in his Relativity Theory of

Electrons and Protons

“I cannot believe that anything so ugly as multiplication of
matrices is an essential part of the scheme of nature”

can be understood as a call for better laid out linear algebra — perhaps

typed :-)? And — is this kind of foundation that sought in 1967, in the

Garmisch NATO workshop:

In late 1967 the Study Group recommended the holding of a
working conference on Software Engineering. The phrase
‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to
be based on the types of theoretical foundations and
practical disciplines, that are traditional in the established
branches of engineering. (Naur and Randell, 1969)

? Only time and experience will tell.

Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall International, 1997.

M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic
functional programming in Haskell. J. Funct. Program., 16:
21–34, January 2006.

H. Macedo. Matrices as Arrows — Why Categories of Matrices
Matter. PhD thesis, University of Minho, October 2012. MAPi
PhD programme.

A. McIver and C. Morgan. Abstraction, Refinement And Proof For
Probabilistic Systems. Monographs in Computer Science.
Springer-Verlag, 2005. ISBN 0387401156.

P. Naur and B. Randell, editors. Software Engineering: Report on
a conference sponsored by the NATO SCIENCE COMMITTEE,
Garmisch, Germany, 7th to 11th October 1968, 1969. Scientific
Affairs Division, NATO. URL http://www.cs.ncl.ac.uk/

people/brian.randell/home.formal/NATO/.

José N. Oliveira. Towards a linear algebra of programming. Formal
Asp. Comput., 24(4-6):433–458, 2012.

http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/
http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/

	Motivation
	PFP
	Stochastic matrices
	LAoP
	Fault-fusion
	Mutual recursion

