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Motivation

Research questions:

• How do software faults propagate in computer programs?

• Can faulty behavior be predicted in some way, eg. by
calculation?

• Are there versions of the same program or system which are
”better” than others concerning fault propagation?

In this talk:

• Faulty behavior can be mimicked probabilistically

• Faults can be injected and simulated using monadic
programming

• Better: Instead repeated simulation, programs can be
converted into (inductive) matrices and reasoned about in
LAoP, an extension of the AoP towards quantitative
reasoning.
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Trustworthiness in software design

Two dual approaches to software trustworthiness:

1. “Angelic” — prevent bad things from happening — weakest
pre-conditions (Dijkstra): the least one should impose for a
program not blow up.

2. “Demonic” — force bad things to happen — strongest
post-conditions: evaluate worst blow-up scenario arising
from fault.

Fault injection: expensive techniques and tools based on extensive
simulation of faults (eg. CSW Xception+Xtract).

Can’t fault propagation be calculated as a pen & paper exercise?
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Example: fault-injected multiplication

Safe multiplication (over IN0):

(a∗) = for (a+) 0

that is, a ∗ 0 = 0

a ∗ (n + 1) = a + a ∗ n

Bad multiplication, fault-injected — 5% probability of a wrong
base case

a ∗ 0 =.95 0

a ∗ 0 =.05 a

a ∗ (n + 1) =1 a + a ∗ n

in “extended” functional notation.
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Example: fault propagation

What is the fault pattern in the pipeline

f n = fsucc(fmul a n)

where fsucc is a faulty successor function,

fsucc n =q n + 1

fsucc n =1−q n

and fmul is the even more seriously faulty multiplication,

fmul a 0 = 0

fmul a (n + 1) =p fmul a n

fmul a (n + 1) =1−p a + fmul a n

for 0 ≤ p, q ≤ 1 in general?
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Implementing the “extended notation”

How do we implement our probability annotated (Haskell)
programs?

• We propose to use distribution-valued functions.

Do such functions compose?

• Yes, provide you program this.

Do you need heavy machinery to program in such a way?

• Not in Haskell — distributions form a monad and therefore
handling distributions is as easy as handling lists, for instance.

• PFP library by Erwig and Kollmansberger (2006) offers the
distribution monad and a wide range of utility functions on
probabilities.
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About the distribution monad

The datatype ofdistributions on X which supports the monad:

DX = {µ : X → [0, 1] |
∑
x∈X

µ(x) = 1} (1)

For instance:

Standard monadic function return a is the Dirac distribution µ
such that µ a = 1 and µ x = 0 for x 6= a.
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Using the PFP library

The monad

newtype Dist a = D {unD :: [(a,ProbRep)]}

instance Monad Dist where

return x = D [(x,1)]

d >>= f = D [(y,q*p) | (x,p) <- unD d, (y,q) <- unD (f x)]

fail _ = D []

is available from Probability.hs.

Example: base-case fault-injected multiplication

a * 0 = D [(0,0.95),(a,0.05)]

a * (n+1) = do x <- a * n

return (a + x)
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Other (generic) examples in PFP

Faulty add : yields 0 with probability p

fadd p a x = choose p 0 (a+x)

Faulty multiplication: propagates fadd faults

fmul p a 0 = return 0

fmul p a n = do { x <- fmul p a (n-1) ;

fadd p a x

}

Faulty succ: does nothing with probability q

fsucc q = schoice q id succ

Functions choose and schoice are suitable library functions.
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Experiments

Running (Haskell) composition fsucc q • fmul p, yields for a = 2
and input 3 (1 + 2× 3 = 7),

0 1 2 3 4 5 6 7
0

20

40

60

for p = 20%, q = 10% (in blue) and for p = 10%, q = 20% (in
red).
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However

Problem:

• Complete probabilistic model but...

• Combinatorial explosion of recursive probability layers limits
experiments

• Would need Monte Carlo simulation and the like...

Alternative:

Reason about the monadic code (Gibbons & Hinze).

Our approach:

(Pointwise) monads are better for programming than
for calculating. Fortunately, they “never come alone”...
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Winding back: ND functions

Nondeterministic outputs — set-valued functions are relations

f = ΛR ⇔ 〈∀ b, a :: b R a⇔ b ∈ f a〉 (2)

that is,

A→ PB

(∈·)
**∼= A→ B

Λ

jj (3)

where A→ B on the right hand side is the relational type A→ B
of all relations R ⊆ B × A.
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Nondeterministic functions

An adjunction, offering two ways for reasoning — one relational
(Rel)

PA

B

f

OO PA
∈ // A

B

f

OO

R=∈·f

==

the other monadic (Set):

A

R
��

B

PA

ER
��

A
returnoo

f = ER · return
where (ER)s = {b|a← s; bRa}

}}
PB

The same duality in “going probabilistic” (next slide).
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Probabilistic functions

Outputs become distributions,

A→ DB
**∼= A→ Bjj (4)

where DB is the B-distribution data type

DB = {µ ∈ [0, 1]B |
∑
b∈B

µ b = 1} (5)

and where [0, 1] is the interval of all non-negative reals at most 1.

However, what does A→ B on the right hand side of (4) mean?
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Probabilistic functions

One has:

A→ [0, 1]B

⇔ { uncurrying }

A× B → [0, 1]

⇔ { swapping }

B × A→ [0, 1]

where B × A→ [0, 1] can be identified with the set of all matrices
taking elements from [0, 1] with as many columns (resp. rows) as
elements in A (resp. B).
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Column stochastic matrices
In fact:

A→ DB
++

∼= A→CS Bjj (6)

where CS denotes the category of column-stochastic matrices
(columns in such matrices add up to 1).

Such a matrix-transform is captured by the universal property, for
all f :: A→ DB and CS-matrix M:

M = [[f ]] ⇔ 〈∀ b, a :: b M a = (f a)b〉 (7)

Research question:

Is CS “as useful” to probabilistic reasoning as Rel is to
non-deterministic reasoning in the AoP (Bird and
de Moor, 1997) ?
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Towards a LAoP

My answer:

I believe so — in general and in fault-propagation, in
particular

Still, several things to be explained:

• categories of matrices — what’s this?

• category of CS matrices — what’s this?

• the AoP is pointfree — universal property (7) above is
pointwise...

Answering these questions will generalize the AoP into something
one may identify as a Linear Algebra of Programming (LAoP) —
details in (Oliveira, 2012)



Motivation PFP Stochastic matrices LAoP Fault-fusion Mutual recursion References

Arrow notation for matrices

In a category of matrices, these are typed: arrow A
M // B

denotes a matrix M from A (source) to B (target).

A,B are types. Writing B A
Moo means the same as A

M // B .
We represent source types column-wise and target types rows-wise.

For instance, coefficient matrix
aside is of type 3←{x , y , z}.

Matrices of types A← 1 (resp.
1← A) are known as column
(resp. row) vectors.
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Arrow notation for matrices

Compositionality — matrices compose with each other:

B A
Moo C

Noo

M·N

gg

where

b(M · N)c = 〈
∑

a :: (bMa)× (aNc)〉 (8)

Matrix composition normally referred to as multiplication. The
minimal algebraic structure for (8) to make sense is that of a
semiring (S; +,×, 0, 1).
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Typed linear algebra

For matrices M and N of the same type B Aoo , we can
extend cell level algebra to matrix level, eg. by adding or
multiplying matrices,

M + N , M × N

the latter known as the Hadamard product.

Expressions such as eg. M + N, M × N for M and N of different
types won’t typecheck.

The underlying type system is
polymorphic and type inference
proceeds by unification. For
instance, the identity matrix is
of polymorphic type A Aoo .

id =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
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Converse

Given matrix n m
Moo , notation m n

M◦oo denotes its
transpose, or converse.

Thus M changes shape by turning its rows into columns and
vice-versa.

The following idempotence and contravariance laws hold:

(M◦)◦ = M (9)

(M · N)◦ = N◦ ·M◦ (10)
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Polymorphic (block) combinators

Two ways of putting matrices together to build larger ones:

• X = [M|N] — M and N side by side (“‘junc”)

• X =
[
P
Q

]
— P on top of Q (“‘split”).

Mind the (polymorphic) types:

m

n

M

>>

n + p

[M|N]

OO

p

N

``

t

P

``
[
P
Q

]OO
Q

>>

(A so-called biproduct)
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Blocked linear algebra

Rich set of laws, for instance

• Divide-and-conquer:

[A|B] ·
[

C

D

]
= A · C + B · D (11)

• “Fusion”-laws:

C · [A|B] = [C · A|C · B] (12)[
A

B

]
· C =

[
A · C
B · C

]
(13)
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Special matrices

The following (Boolean) matrices are relevant:

• The bottom matrix B A
⊥oo — wholly filled with 0s

• The top matrix B A
>oo — wholly filled with 1s

• The identity matrix B B
idoo — diagonal of 1s

• The bang (row) vector 1 A
!oo — wholly filled with 1s

Thus, (typewise) bang matrices are special cases of top matrices:

1 A
>oo = !

Also note that, on type 1 1oo :

> = ! = id
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Useful for matrix index manipulation

Two useful rules of thumb,

y(f · N)x = 〈
∑

z : y = f z : zNx〉 (14)

y(g◦ · N · f )x = (g y)N(f x) (15)

(adapted from relation algebra) where N is an arbitrary matrix and
f , g are functions.

Wondering about how do functions f , g fit into matrix

expressions? Easy: every A
f // B can be represented by a

matrix [[f ]] of the same type defined by

b[[f ]]a 4 (b =S f a)

where y =S x is 1 if y = x and 0 otherwise. Thus matrix [[f ]]
represents the graph of f .
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Useful for matrix index manipulation

Example: [[succ]], where
succ n = n + 1, is the matrix
aside. We normally drop the
parentheses for improved
readability.

In general, the Eindhoven-styled trading-rule

〈
∑

x : p x : e x〉 = 〈
∑

x :: (p x)× (e x)〉 (16)

holds for Boolean term p x which, on the right is such that
p x = 1 if p x holds, 0 otherwise.
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Matrix transformed probabilistic functions

Given probabilistic function A
f // DB , its matrix transform

A
[[f ]] // B is such that

! · [[f ]] = ! (17)

that is, all columns of [[f ]] add up to one.

For A = B, probabilistic function f can be regarded as a Markov
chain.

Example — probabilistic negation:

True False
True
False

(
0.1 0.8
0.9 0.2

)
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Linear algebra of probabilistic functions

Every sharp function is probabilistic — it offers a Dirac
distribution for every input. This includes the identity function id
represented by the identity matrix [[id ]].

Compositionality: probabilistic functions compose, under
monad-flavoured definition

[[f • g ]] = [[f ]] · [[g ]] (18)

In monad-speak:

[[λa. do {b← g a; f b} ]] = [[f ]] · [[g ]]

(It is easy to show that (18) preserves probabilistic functions.)
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Probabilistic “junc”

Probabilistic A + B
[f ,g ] // DC — run either f or g — transposes

into

[[[f , g ]]] = [[[f ]]|[[g ]]] (19)

where (recall) [M|N] denotes M and N put side by side.

Checking the 100% constraint (17):

! · [[[f ]]|[[g ]]]

⇔ { fusion-+ (12) }

[! · [[f ]]|! · [[g ]]]

⇔ { f and g probabilistic (17) ; [!|!] = ! }

!
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Probabilistic choice

In their programming language pGCL, McIver and Morgan (2005)
introduce notation

prog p� prog ′

as a form of probabilistic choice between two branches of a
program prog , chosen with probability p, and prog ′ chosen with
probability 1− p.

This corresponds to the choice between two probabilistic functions
f and g of the same type defined by

[[f p� g ]] = p[[f ]] + (1− p)[[g ]] (20)
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Probabilistic choice

Probabilistic choice “is probabilistic”:

! · [[f p� g ]]

= { definition (20) ; bilinearity }

! · (p[[f ]]) + ! · ((1− p)[[g ]])

= { p is a scalar }

p(! · [[f ]]) + (1− p)(! · [[g ]])

= { f and g are probabilistic }

p! + (1− p)!

= { bilinearity }

(p + 1− p)!

= { cancellation }

!
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Properties

Probabilistic choice enjoys many properties easy to derive from the
definition, eg. basic

f p� f = f (21)

f 0� g = g (22)

f p� g = g 1−p� f (23)

fusion-laws

(f p� g) • h = (f • h) p� (g • h) (24)

h • (f p� g) = (h • f ) p� (h • g) (25)

and the exchange law:

[f , g ] p� [h, k] = [f p� h, g p� k] (26)
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Probabilistic sums

The direct sum of two matrices,

M ⊕ N = [i1 ·M|i2 · N] =

[
M · π1

N · π2

]
=

[
M 0
0 N

]
(27)

which has type A
M ��

B
N ��

A + B
M⊕N��

C D C + D

(a bifunctor) enables us to

sum probabilistic functions:

[[f ⊕ g ]] = [[f ]]⊕ [[g ]]

Distribution over choice

h ⊕ (f p� g) = (h ⊕ f ) p� (h ⊕ g) (28)

is central to probabilistic function calculation.
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Probabilistic recursion

Recall

fmul p a 0 = return 0

fmul p a (n+1) = do { x <- fmul p a n ; fadd p a x }

Converting this to its matrix-transpose we get fmul as the unique
solution to LAoP equation

X = [0|(0 p� (a+)) · X ] · [0|succ]◦

where matrix 0 p� (a+) represents fadd . Thus, using
divide-and-conquer (11):

fmul = 0 · 0◦ + fadd · fmul · succ◦

How do we reason about this equation?
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Probabilistic recursion
We might introduce indices, cf.:

fmul = 0 · 0◦ + fadd · fmul · succ◦

⇔ { linearity and composition }

y fmul x = y(0 · 0◦)x +

〈
∑

z :: y(fadd · fmul)z × (z succ◦ x)〉

Term y(0 · 0◦)x = 1 iff both y = x = 0, otherwise it equals 0, in which
case

y fmul x = 〈
∑

z , k : z + 1 = x : y(fadd)k × k(fmul)z〉

where

y(fadd)k = y(0 p� (a+))k = p(y0k) + (1− p)(y(a+)k)

= p(y = 0) + (1− p)(y = a + k)

Hmmmm...
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Probabilistic recursion

Far better: inspired by the AoP (Bird and de Moor, 1997), we regard
fmul as a catamorphism in its category of matrices, cf.

IN0

in◦=
[

0◦
succ◦

]
**

fmul

��

∼= 1 + IN0

in=[0|succ]

hh

id⊕fmul

��
IN0 1 + IN0

[0|0p�(a+)]

hh

Following the usual notation for the unique solution of diagrams of this
kind, we write fmul = (|[0|0 p� (a+)]|).

Catamorphisms have several useful properties which are rather

advantageous in calculations.
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Probabilistic cata-fusion

For instance, the cata-fusion law:

(|h|) = f · (|g |) ⇐ f · g = h · (id ⊕ f ) (29)

Application: suppose f and (|g |) are probabilistic functions
denoting faulty programs.

Then their fusion (|h|) will record how their faults combine with
each other and propagate to outer evaluation levels.

Example in the following slides : (static) prediction (pen & paper
calculation) of how the faults of fsucc and fmul “fuse” with each
other.
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Probabilistic cata-fusion

Altogether, this is the exercise of calculating catamorphism fprog
such that

fprog = fsucc · fmul (30)

in the LAoP (Oliveira, 2012), given faulty

fsucc = id q� succ

and faulty

fmul = (|[0|0 p� (a+)]|)

The exercise clearly fits with cata-fusion (29).
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Probabilistic cata-fusion

In fact, by (29) the outcome
will be

fprog = (|[stop|step]|)

provided the lower rectangle
aside commutes; thus we just
have to solve the equation
below for stop and step:

IN0

in◦
++

fmul

��

∼= 1 + IN0

in

kk

id⊕fmul

��
IN0

fsucc

��

1 + IN0

[0|0p�(a+)]

kk

id⊕fsucc
��

IN0 1 + IN0

[stop|step]

kk

fsucc · [0|0 p� (a+)] = [stop|step] · (id ⊕ fsucc)

that is, fsucc · 0 = stop and fsucc · (0 p� (a+)) = step · (id ⊕ fsucc).
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Probabilistic cata-fusion

The first equality yields stop almost immediately:

fsucc · 0 = stop · id
⇔ { definition of fsucc }

stop = (id q� succ) · 0

⇔ { choice-fusion (24) ; succ 0 = 1 }

stop = 0 q� 1

The calculation of step follows from the other equality in the
diagram:

fsucc · (0 p� (a+)) = step · fsucc

(next slide)
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Probabilistic cata-fusion

fsucc · (0 p� (a+)) = step · fsucc

⇔ { choice-fusion (25) ; fsucc · 0 = stop }

stop p� (fsucc · (a+)) = step · fsucc

⇔ { fsucc commutes with (a+) since succ commutes with (a+) }

stop p� ((a+) · fsucc) = step · fsucc

⇔ { stop is (probabil.) constant, thus stop · f = stop, ∀f ; (24) }

(stop p� (a+)) · fsucc = step · fsucc

⇐ { Leibniz }

step = stop p� (a+)

In summary:

fprog = fsucc · fmul = (|[stop|stop p� (a+)]|) , for stop = 0 q� 1

expresses the combined impact of the faults of the two functions.
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Back to programming

Once we map our calculated solution into its monadic equivalent,

fprog’ p q a 0 = stop q 0

fprog’ p q a b = do { x <- fprog’ p q a (b-1);

step p q a x

}

where

stop q = schoice q (const 0) (const 1)

step p q a = choice p (stop q) (return.(a+))

and experiment with it, we confirm that the two programs —
before and after fusion — are probabilistically indistinguishable.
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Recall experiments

Both programs (before and after “fault-fusion”) have the same
behaviour, eg. for a = 2 and input 3 (1 + 2× 3 = 7),

0 1 2 3 4 5 6 7
0

20

40

60

for p = 20%, q = 10% (in blue) and for p = 10%, q = 20% (in
red).
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Last but not least: mutual recursion

The programs we have handled thus far are relatively uninteresting:
for-loops with one variable only.

We would like to reason about faults in programs such as eg. the
following C program

int sq(int n)

{

int s=0; int o=1; int 1;

for (i=1;i<n+1;i++) {s+=o; o+=2;}

return s;

};

computing the square of a natural number (two variables s and o).
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Program genetics

First of all, we investigate the genetics of this program: how can
we be sure this program computes sq n = n2?

Easy: using standard AoP we get, from sq n = n2, two mutually
recursive functions,

sq 0 = 0

sq (n + 1) = sq n + odd n

odd 0 = 1

odd(n + 1) = 2 + odd n

since (n + 1)2 = n2 + 2n + 1, and odd n = 2n + 1 is the n-the odd
number, etc.
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Program genetics

Now, tally (pair up) the two functions

(sq, odd)x = (sq x , odd x)

and derive

(sq, odd)0 = (sq 0, odd 0) = (0, 1)

(sq, odd)(a + 1) = (sq(a + 1), odd(a + 1))

= (sq a + odd a, 2 + odd a)

whose second clause can be re-written into

(sq, odd)(a + 1) = (q + i , 2 + i) where (q, i) = (sq, odd)a
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Program genetics

Thus, the pair (sq, odd) is the for-loop

(sq, odd) = for loop (0, 1) where loop(q, i) = (q + i , 2 + i)

which we may incorporate into

sq n = s

where (s, o) = for loop (0, 1) n

where loop(s, o) = (s + o, o + 2)

matching with the C encoding we’ve
started from (aside).

int sq(int n)

{

int s=0; int o=1;

int 1;

for (i=1;i<n+1;i++)

{s+=o; o+=2;}

return s;

};

(Look how “wise” the syntax of C is compared to what we’ve just

calculated...)
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Pairing faulty programs

The lesson learnt from the previous calculation is that, to handle
multi-variable faulty for-loops we need to investigate about pairing
in the CS-matrix category.

The general result is known as the mutual recursion theorem in
the AoP: multi-variable programs arise by calculation from systems
of mutually recursive functions by pairing.

For this to work for probabilistic functions, pairing has to be a
product in the CS category.

The following slides investigate probabilistic pairing, eventually
enabling calculation about faults injected in programs such as sq
above.
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Pairing

Pairing the outputs of probabilistic functions C
f // DA and

C
g // DB is captured by the Khatri-Rao product of the

corresponding matrices (parentheses again omitted):

k = f M g ⇒
{

fst · k = f
snd · k = g

(31)

cf. diagram

A× B A A× B
fstoo snd // B

C

f Mg

OO

C

f Mg

OO

g

<<

f

bb

(Warning: mind ⇒, thus a weak categorial product in CS — cf.
“forks” in Rel.)
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Pairing

Khatri-Rao easily captured in terms of the well-known Kronecker
product M ⊗ N of two arbitrary matrices:

(y , x)(M ⊗ N)(b, a) = (yMb)× (xNa) (32)

Khatri-Rao coincides with Kronecker for column vectors u and v ,

u M v = u ⊗ v (33)

and expands column-wise as shown by the exchange law

[M1|M2] M [N1|N2] = [M1 M N1|M2 M N2] (34)

Projections:

fst = id ⊗ !

snd = !⊗ id
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Pairing

Example:

2 2× 3
fst=

[
1 1 1 0 0 0
0 0 0 1 1 1

]
oo

snd=

[
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

]
// 3

4

f Mg=


0.15 0.12 0 0
0.35 0.06 0 0.75

0 0.12 0 0
0.15 0.28 0.1 0
0.35 0.14 0.2 0.25

0 0.28 0.7 0



OO

g=

[
0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

]

>>

f =
[

0.5 0.3 0 0.75
0.5 0.7 1 0.25

]

``
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Pairing

The monadic equivalent to Khatri-Rao (probabilistic pairing) is
quite intuitive:

(f ‘kr‘ g) a = do { b <- f a ;

c <- g a ;

return (b,c)

}

mfst d = do { (b,c) <- d ;

return b

}

msnd d = do { (b,c) <- d ;

return c

}

Matrix-wise, much more about Khatri-Rao product etc in the PhD
thesis by Hugo Macedo (2012).
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Probabilistic mutual recursion

The AoP mutual recursion law, also known as Fokkinga law,{
f · in = h · F (f M g)
g · in = k · F (f M g)

⇔ f M g = (|h M k|) (35)

(for polynomial F) extends to the LAoP under some conditions,
related to pairing (Khatri-Rao) being a weak product in category
CS .

The square of a natural number

sq 0 = 0

sq(n + 1) = sq n + 2n + 1

is not a for-loop (cata over IN0) for F X = id ⊕ X , but it becomes
so thanks to (35) — as we did before in a pointwise manner.
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Probabilistic mutual recursion

The matrix transpose of the pair (sq, odd)

(sq, odd) = for loop (0, 1) where loop(q, i) = (q + i , 2 + i)

we’ve calculated before is, using the Khatri-Rao combinator,

(sq M odd) · in =
[
(1, 0)|(+) M (2+) · snd

]
· (id ⊕ (sq M odd))

thanks to the (probabilistic) mutual-recursion law (35).

This calculation leads to the following probabilistically
indistinguishable versions of sq (next slide).
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Probabilistic mutual recursion

Recursive version:

fsq 0 = return 0

fsq(n+1) = do { x <- fsq n ; x ‘fadd‘ (2*n+1) }

Linear version:

fsql n = do (s,i) <- floop n ; return s

where floop 0 = return (0,1)

floop (n+1) = do (s,i) <- floop n ;

s’ <- s ‘fadd‘ i ;

return (s’,2+i)

Both over the same faulty addition, eg.:

x +. y = D [(y,0.1),(x+y,0.9)]

x .+ y = D [(x,0.1),(x+y,0.9)]

x .+. y = mynormal (x+y)
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Probabilistic mutual recursion

Another example of application of mutual recursion is the
calculation of Fibonacci numbers, as the doubly recursive
mathematical definition,

fib 0 = 1

fib 1 = 1

fib(n + 2) = fib(n + 1) + fib n

converts — by introducing f n = fib(n + 1) — into a
mutual-recursive pair (“mutumorphism”)

f · [0|suc] = [1|add · (f M fib)]

fib · [0|suc] = [1|f ]
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Probabilistic mutual recursion

The same reasoning we did before concerning the sq function will
yield the following linear version from the given system of mutually
recursive functions:

int fib(int n)

{

int x=1; int y=1; int i;

for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}

return y;

};

Does this transformation extend to the probabilistic (faulty)
setting?
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Probabilistic mutual recursion

In this case, experiments in Haskell show that the doubly recursive

ffib 0 = return 1

ffib 1 = return 1

ffib n = do a <- ffib(n-1) ;

b <- ffib(n-2);

(a ‘fadd‘ b)

and its linear version

ffibl n = do (a,b) <- auxm n ; return b

where auxm 0 = return (1,1)

auxm n = do (a,b) <- auxm(n-1);

s <- a ‘fadd‘ b;

return (s,a)

perform differently — probabilistic behavior of linear version performs

better. Why?
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Probabilistic mutual recursion

We’ve developed a Matlab library for checking (finite approximations to)
faulty recursive functions encoded as matrices, cf. eg (Fibonacci):

function R = execFibl10(fAdd,n,m,N)

R = snd(n,n)*aux(fAdd,n,m,N);

end

where

function R = aux (fAdd,n,m,N)

if (N==0)

R = fibl10(fAdd,zeros(n*n,m));

else

R = fibl10(fAdd,aux(fAdd,n,m,N-1));

end

end

computes the N first iterations of the fixpoint (Kleene theorem) of linear

Fibonacci — see the next slide.
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Probabilistic mutual recursion

function R = fibl10(fAdd,Rec)

[rRec cRec] = size(Rec);

m = sqrt(rRec);

%Defining out

coref1 = [1 zeros(1,cRec-1);zeros(cRec-1,cRec)]; %Equal to zero coref

coref2 = [zeros(1,cRec);zeros(cRec-1,1) eye(cRec-1)]; %Not equal to zero coref

pred = zeros(cRec,cRec);

for k=0:(cRec-1)

if (k>0)

pred(k,k+1) = 1;

end

end

out = juncMat(inj1Mat(1,1+cRec)*bang(cRec),inj2Mat(cRec,1+cRec)*pred)*splitMat(coref1,coref2);

%Defining recursive call

FRec = sumMat(idMat(1),Rec);

%Defining algebra

one = zeros(m,1);

one(1+1,1) = 1;

zero = zeros(m,1);

zero(1+0,1) = 1;

a = juncMat(kr(one,zero),kr(fAdd(rRec,m),fst(div(rRec,m),m)));

R = a*FRec*out;

end
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Probabilistic mutual recursion

Thanks to this library we have found sufficient conditions for the
mutual recursion law (35) to hold probabilistically.

For instance, if the first projection of a probabilistic function is a
sharp function, then Khatri-Rao is a (strong) product — ⇒ in
(31) becomes ⇔ — and probabilistic mutual recursion holds.

This explains the difference in faulty behaviour between the linear
versions of sq and fib — odd is a sharp function (no faults),
compare the dependency graphs:

sq

��

// odd

��

fib // f

��

??
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Closing

The research question which motivated this talk splits in two other
questions, in fact two sides of the same coin:

(a) Can the AoP be extended quantitatively in some useful way?

(b) What happens to the discipline once we generalize from
relations to matrices?

The answer leads us into linear algebra, which eventually provides
a surprisingly simple framework for calculating with set-theory,
probabilities, functions and relations, provided it is typed — as
advocated by Macedo (2012).
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Closing

The comment by Sir Arthur Eddington in his Relativity Theory of

Electrons and Protons

“I cannot believe that anything so ugly as multiplication of
matrices is an essential part of the scheme of nature”

can be understood as a call for better laid out linear algebra — perhaps

typed :-)? And — is this kind of foundation that sought in 1967, in the

Garmisch NATO workshop:

In late 1967 the Study Group recommended the holding of a
working conference on Software Engineering. The phrase
‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to
be based on the types of theoretical foundations and
practical disciplines, that are traditional in the established
branches of engineering. (Naur and Randell, 1969)

? Only time and experience will tell.
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