
Calculating (Haskell) programs from Galois
connections

J.N. Oliveira 1 Shin-Cheng Mu 2

1CCTC, University of Minho, Portugal

2IIS, Academia Sinica, Taiwan, Taiwan

HASLab Seminar Series

3rd October 2010

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Motivation

Questions:

• Why is computer programming “hard” in general?

• Is there a generic skill, or competence, that one such acquire
to become a “good programmer”?

Need for abstraction:

• Technology (mess) — don’t fall in the trap: simply abstract
from it!

• Requirements — again abstract from these as much as
possible — write formal models or specs

One is led to formal models, or specifications. But, once again,

• What is it that makes the specification hard to fulfill?

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Problems = Easy + Hard

Superlatives in problem statements, eg.

• ”... the smallest such number”

• ”... the longest such list”

• ”... the best approximation”

suggest two layers in specifications:

• the easy layer — broad class of solutions (eg. a prefix of a
list)

• the difficult layer — requires one particular such solution
regarded as optimal in some sense (eg. “shortest with
maximal density”).

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example

Requirements for whole division x ÷ y :

• Write a program which computes number z which, multiplied
by y , approximates x .

• Check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• Ups! Forgot to tell that I want the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of x ÷ y?

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example

Requirements for whole division x ÷ y :

• Write a program which computes number z which, multiplied
by y , approximates x .

• Check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• Ups! Forgot to tell that I want the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm... from what?

... where is the formal specification of x ÷ y?

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example — writing a spec

First version (literal):

x ÷ y = 〈
∨

z :: z × y ≤ x〉 (1)

Second version (involved):

z = x ÷ y ⇔ 〈∃ r : 0 ≤ r < y : x = z × y + r〉 (2)

Third version (clever!):

z × y ≤ x ⇔ z ≤ x ÷ y (y > 0) (3)

— a Galois connection.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Why (3) is better than (1,2)

It captures the requirements:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y ≤ x

(let z := x ÷ y in (3) and simplify)

• It is the best solution because it provides the largest such
number:

z × y ≤ x ⇒ z ≤ x ÷ y (y > 0)

(the ⇒ part of ⇔).

Advantages:

“Generous” and highly calculational!

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

“Generosity” of GCs

“GCs as specs” offer the possibility of reasoning about the operation one
whishes to implement prior to the actual implementation. For instance,
the following facts about whole division stem directly from (3):

(n ÷m)÷ d = n ÷ (d ×m)

n ÷ 1 = n

n ÷ d ≥ 1 ⇔ d ≤ n

From another GC, specifying the take function on lists,

len ys ≤ n ∧ ys v xs ⇔ ys v take(n, xs) (4)

(v denoting prefix) one immediately infers properties such as eg.

take(n, take(m, xs)) = take(min(n,m), xs) (5)

etc — see detials in Oliveira (2010).

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Dissecting GCs

• Elsewhere, Silva and Oliveira (2008) follow the “GCs as specs”
motto and show how to derive x ÷ y from its defining GC.

• Today I would like to focus on a particular class of GCs in
which the easy+hard split is particularly apparent.

• Such GCs will be handled in the relational pointfree style,
eventually leading to specs elegantly captured by a binary
combinator of shape

E � H

where E (=easy) provides the broad class of solutions and H
(=hard) provides the criterion for optimizing E so as to obtain
the “superlative effect”.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

GC = E � H

Let us PF-transform one of the several alternative definitions of a
Galois connection f ` g — Theorem 5.29 of (Aarts et al., 1992):

• f is monotonic
• (f · g)x ≤ x
• (f x) ≤ y ⇒ x v (g y)

Two bullets in a single line, in PF-notation:

f · g ⊆ ≤ ∧ f ◦ · ≤ ⊆ v · g

These are equivalent to (shunting, converses)

g ⊆ f ◦ · ≤︸ ︷︷ ︸
“easy”

∧ g · (f ◦ · ≤)◦ ⊆ w︸ ︷︷ ︸
“hard”

We will use a special notation for this, to be explained shortly:

g ⊆ (f ◦ · ≤) �w (6)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Intuition about R � S

Combinator R � S (read: “R optimized by S”) was proposed by Ferreira
and Oliveira (2010) for induction-less reasoning about Alloy sequences.
Example of R � S in data-processing (“choose the best mark”):

Mark Student
10 John
11 Mary
12 John
15 Arthur

 � ≥ =

Mark Student
11 Mary
12 John
15 Arthur

Example of R � S in list-processing: given a sequence A IN
Soo ,

A IN
nub Soo 4 (S◦ �≤)◦

removes all duplicates while keeping the first instances. (Data in IN could

be regarded as “time stamps”.)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

GC = E (easy) � H(ard)

Thanks to the algebra of R � S (to be discussed shortly) (6) can be
strengthened to equality and therefore

g = (f ◦ · ≤) �w (7)

This provides us with a method for calculating algorithmic versions
of the adjoints of a GC, by exploiting the properties of the “shrink”
combinator �. Example: GC

k × b ≤ a ⇔ k ≤ a÷ b (b > 0)

(whole division) PF-transforms into

÷b = ((×b)◦ · ≤) �≥ (b > 0)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Definition of R � S

Given relation B A
Roo and

optimization criterion B B
Soo on its

outputs,

A

R
��

R�S

����
��

��
�

B B
S

oo

define R � S by universal property:

X ⊆ R � S ⇔ X ⊆ R ∧ X · R◦ ⊆ S (8)

This ensures R � S as the largest
sub-relation X of R such that, for all
b′, b ∈ B, if there exists a ∈ A such that
b′Xa ∧ bRa, then b′Sb holds (“b′ better
than b”).

a_

R
��

>
X

��~~
~~

~~
~

b′ b
�

S
oo

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Definition of R � S

The same in a closed formula,

R � S = R︸︷︷︸
easy

∩S/R◦︸ ︷︷ ︸
hard

(9)

thanks to the GC of relational division (compare with integer
division):

X · R ⊆ S ⇔ X ⊆ S / R (10)

With points:

c(S / P)a ⇔ 〈∀ b : a P b : c S b〉 a?
S/P

����
��

��
��

c b
_
P

OO

�
S

oo

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Definition of R � S

Thus, b′(R � S)a means

b′ R a ∧ 〈∀ b : b R a : b′ S b〉

Comments:

• Reasoning with such quantified expressions would mean
“going one century back”.

• Instead, we resort on the algebra of relational division — see
eg. next slide.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Role of division (“hard” part)

From GC X · R ⊆ S ⇔ X ⊆ S / R infer:

• (Right) cancellation:

(S/R) · R ⊆ S (11)

• Upper-adjoint distribution:

(S ∩ P)/R = (S/R) ∩ (P/R) (12)

• Lower-adjoint distribution:

(X ∪ Y) · R = X · R ∪ Y · R (13)

etc

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Basic properties

Chaotic optimization:

R �> = R (14)

Impossible optimization:

R �⊥ = ⊥ (15)

Force determinism:

R � id = largest deterministic fragment of R (16)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Basic properties

Function fusion (where Rf abbreviates f ◦ · R · f):

(R � S) · f = (R · f) � S (17)

(f · S) � R = f · (S � Rf) (18)

Ensure simplicity (determinism):

R � S is simple ⇐ S is anti-symmetric (19)

Deterministic (simple) = already optimized: for R simple,

R � S = R ⇔ img R ⊆ S (20)

Thus (functions)

f � S = f ⇐ S is reflexive (21)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Basic properties

Union:

(R ∪ S) � Q = (R � Q) ∩ Q/S◦ ∪ (S � Q) ∩ Q/R◦ (22)

This has a number of corollaries, namely conditionals:

(P → R , T) � S = P → (R � S) , (T � S) (23)

Disjoint union:

[R,S] � U = [R � U,S � U] (24)

where the junc operator

[R,S] 4 R · i◦1 ∪ S · i◦2 (25)

is associated to relational coproducts.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

The “function competition” rule

Finally, a corollary of the union rule,

(f ∪ g) � S = (f ∩ S · g) ∪ (g ∩ S · f) (26)

since S/g◦ = S · g . Comments:

• For S anti-symmetric, (f ∪ g) � S is always simple at the cost
of not being entire.

• If furthermore one function (say g) “always wins” over the
other with respect S — (g x)S(f x) for all x — then
(f ∪ g) � S = g .

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Optimizing inductive relations

Quite often, the orderings involved in optimization are inductive
relations.

• Inductive orderings lead to recursive programs

• “Greedy algorithms” and “dynamic programming” studied in
this way in the Algebra of Programming book (Bird and
de Moor, 1997).

• Complexity of the approach puts many readers off (need for a
tabular, power allegory; always transposing relations to
powerset functions; ...)

• R � S algebra greatly simplifies and generalizes the
calculation of programs from such specifications. (Notably,
there is no need for power transpose.)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Folds (kαταs)

In general, for F a polynomial functor (relator) and initial

µF F(µF)
inoo ,

µF

(|R|)
��

in◦

**
∼= F(µF)

F(|R|)
��

in

hh

A F A
R

oo

there is a unique solution to equation X = R · F X · in◦ — thus
universal property:

X = (|R|) ⇔ X = R · F X · in◦ (27)

(Read (|R|) as “fold R” or“κατα R”.)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Fold essentials

Therefore, by Knaster-Tarski: (|R|) is both the least prefix point

(|R|) ⊆ X ⇐ R · F X · in◦ ⊆ X (28)

and the greatest postfix point:

X ⊆ (|R|) ⇐ X ⊆ R · F X · in◦ (29)

Corollaries include reflexion,

(|in|) = id (30)

and two forms of κατα-fusion:

S · (|R|) ⊆ (|T |) ⇐ S · R ⊆ T · F S (31)

(|T |) ⊆ S · (|R|) ⇐ T · F S ⊆ S · R (32)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

“Greedy” theorem

Our version of theorem 7.2 by Bird and de Moor (1997):

(|R � S |) ⊆ (|R|) � S ⇐ S◦ F S◦Roo (33)

for S transitive. (NB: R S
Xoo means X · S ⊆ R · X) In a

diagram, where the side condition is depicted in dashed arrows:

µF

in◦

++

(|R|)�S

{{vvvvvvvvvvv

(|R|)
��

(|R�S |)

��

∼= F(µF)

F(|R|)
��

in

jj

A A
Soo FA

Roo

R�S

kk

⊇

A

S◦

OO�
�
�
�

FA
R

oo_ _ _ _ _ _ _ _ _ _ _ _

FS◦

OO�
�
�
�

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Calculational proof

(|R � S |) ⊆ (|R|) � S

⇔ { universal property of (�) (8) }

(|R � S |) ⊆ (|R|) ∧ (|R � S |) · (|R|)◦ ⊆ S

⇔ { monotonicity, since X � Y ⊆ X in general }

(|R � S |) · (|R|)◦ ⊆ S

⇔ { hylomorphisms: (|S |) · (|R|)◦ = 〈µ X :: S · F X · R◦〉 }

〈µ X :: (R � S) · F X · R◦〉 ⊆ S

⇐ { least (pre)fixpoint }

(R � S) · F S · R◦ ⊆ S

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Calculational proof (closing)

(R � S) · F S · R◦ ⊆ S

⇐ { side-condition S◦ F S◦Roo ; converses ; monotonicity }

(R � S) · R◦ · S ⊆ S

⇐ { since R � S ⊆ S/R◦ }

(S/R◦) · R◦ · S ⊆ S

⇐ { division cancellation (11) }

S · S ⊆ S

⇐ { S assumed transitive }

True

(Re-worked from (Bird and de Moor, 1997).)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example of greedy programming

The mps problem,

mps :: [Int] → [Int]
y mps x = y is a prefix of x that yields the maximum
sum

which translates straight into

y mps x ⇒ y v x ∧ 〈∀ z : z v x : sum y ≥ sum z〉

(where v = ([nil , cons ∪ nil]) is the prefix ordering) which in turn
PF-transforms into

mps ⊆ v �≥sum

(NB: not a GC, this is nevertheless a good example to warm up.)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example of greedy programming

We calculate:

mps ⊆ v �≥sum

⇔ { definition of prefix ordering }

mps ⊆ ([nil , cons ∪ nil]) �≥sum

⇐ { greedy theorem for folds }

mps ⊆ ([[nil , cons ∪ nil] �≥sum])

⇔ { junc-rule (24) ; determinism of nil }

mps ⊆ ([nil , (cons ∪ nil) �≥sum])

⇔ { function competition rule (26) }

mps ⊆ ([nil , (cons ∩ ≥sum · nil) ∪ (nil ∩ ≥sum · cons)])

(Side condition ignored for brevity.)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example of greedy programming

Let R abbreviate (nil ∩ ≥sum · cons) ∪ (cons ∩ ≥sum · nil). Then
y R (a : x) will mean

y = [] ∧ 0 ≥ a + sum x ∨ y = a : x ∧ a + sum x ≥ 0

The case a + sum x = 0 being ambiguous, we still have a relational
fold. Thus we need to further shrink what we started from,

mps = (v �≥sum) �v (34)

to obtain a function. In Haskell, the overall outcome will be:

mps [] = []
mps(a:s) = let x = mps s

in if sum x > -a then a:x else []

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Dynamic programming (DP) in the E � H style

Variant of theorem 9.1 of (Bird and de Moor, 1997,page 220):

Theorem
Given

• algebra R F R
hoo for transitive R:

• hylomorphism (|h|) · (|T |)◦ = µg (for g X = h · F X ·T ◦) where
T is entire.

Then

〈µ X :: (g X) � R〉 ⊆ µg � R (35)

holds, that is,

〈µ X :: (h · F X · T ◦) � R〉 ⊆ (|h|) · (|T |)◦ � R (36)

�

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Corollary for unfolds

NB: Unfolds are converses of folds, of shape (|R|)◦.

Corollary (Unfold shrinking)

Given transitive R such that R F R
inoo and entire T ,

〈µ X :: (in · F X · T ◦) � R〉 ⊆ (|T |)◦ � R (37)

�

Provides a way of interweaving optimization (�R) with the unfold
recursion path.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Calculation of DP theorem

〈µ X :: (g X) � R〉 ⊆ µg � R

⇐ { fixpoint rule }

(g(µg � R)) � R ⊆ µg � R

⇔ { universal property of “shrink” }

(g(µg � R)) � R ⊆ µg ∧ ((g(µg � R)) � R) · (µg)◦ ⊆ R

⇐ { X � R ⊆ X (twice) }

g(µg) ⊆ µg ∧ ((g(µg � R)) � R) · (µg)◦ ⊆ R

⇔ { least fixpoint is a prefixpoint }

((g(µg � R)) � R) · (µg)◦ ⊆ R

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Calculation of DP theorem

We are left with ((g(µg � R)) � R) · (µg)◦ ⊆ R which rewrites to

((h · F M · T ◦) � R) · T · F H◦ · h◦ ⊆ R (38)

by expanding µg = g(µg) and using abbreviations H = µg and
M = H � R.

The calculation of (38) is given in the next slide. A property of the
“shrink” combinator,

(S · T) � R ⊆ (R · S)/(T ◦) (39)

(for S entire, see calculation below) plays the main role.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Calculation of DP theorem

((h · F M · T ◦) � R) · T · F H◦ · h◦ ⊆ R

⇐ { (39) for S := h · F M, T := T ◦ etc }

R · (h · F M) · F H◦ · h◦ ⊆ R

⇔ { relator F; substitutions }

R · h · F((H � R) · H◦) · h◦ ⊆ R

⇐ { (�)-cancellation }

R · h · F R · h◦ ⊆ R

⇐ { R F R
hoo , that is, h · F R · h◦ ⊆ R }

R · R ⊆ R

⇔ { R transitive }

True

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Auxiliary

For entire S ,

(S · T) � R ⊆ (R · S)/(T ◦) C

T
��

(S ·T)�R

����
��

��
��

��
��

��
�

B

S
��R·S||xxxxxxxxx

A A
R

oo

Calculation:

(S · T) ∩ R/(S · T)◦ ⊆ (R · S)/(T ◦)

⇐ { monotonicity }

R/(T ◦ · S◦) ⊆ (R · S)/(T ◦)

⇔ { (41) below }

True

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Auxiliary

Generalization of

R/(T · f ◦) = (R · f)/T (40)

to

R/(T · S◦) ⊆ (R · S)/T ⇐ S entire (41)

Calculation:

X ⊆ R/(T · S◦)

⇒ { division ; monotonicity of composition }

X · T · S◦ · S ⊆ R · S
⇒ { S is entire }

X · T ⊆ R · S
⇔ { division }

X ⊆ (R · S)/T

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example: calculation of whole division

Recall

÷b = ((×b)◦ · ≤)︸ ︷︷ ︸
“easy”

� ≥︸︷︷︸
“hard”

Strategy: appeal to corollary for unfolds of DP-theorem,

〈µ X :: (in · F X · T ◦) � R〉 ⊆ (|T |)◦ � R

provided we fuse pair-algebra (×b)◦ · ≤ into some unfold (|T |)◦:

(|T |)◦ = (×b)◦ · ≤

⇔ { converses }

(|T |) = ≥ · (×b)

where ×b = ([0, (+b)]) and ≥ = ([>, suc]).

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example: calculation of whole division

Since ≥ · zero = > and ≥ · (+b) = (+b) · ≥ — cf.

y ≥ x + b ⇔ 〈∃ z :: y = z + b ∧ z ≥ x〉

— by fold-fusion we obtain

T = [>,+b]

Therefore, we can rely on:

〈µ X :: ([zero, suc] · (id + X) · [>,+b]◦) � R〉 ⊆ ([>,+b])◦ �≥

the lower side of which collapses into

〈µ X :: (zero ∪ suc · X · (+b)◦) �≥〉

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example: calculation of whole division

The final step is to remove the � combinator from

〈µ X :: (zero ∪ suc · X · (+b)◦) �≥〉

using the union rule, recall

(R ∪ S) � Q = (R � Q) ∩ Q/S◦ ∪ (S � Q) ∩ Q/R◦

We obtain (with S abbreviating suc · X · (+b)◦ in the
denominator)

〈µ X :: (zero ∩ ≥/S◦) ∪ suc · X · (+b)◦〉

since

• zero �≥ = zero

• ≥/zero◦ = > and ≤ · zero = zero

• S is simple (deterministic)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Example: calculation of whole division

We observe that

• zero ∩ ≥/S◦ is the fragment of function zero restricted to all
points where S is undefined. (Details in the annex.)

• This happens outside the domain of (+b)◦ = (−b) — a
partial function in IN0 —, that is, for inputs below b.

• We are left with unfold

÷b = 〈µ X :: (< b) → zero , suc · X .(−b)〉

that is

÷b = (< b) → zero , suc · (÷b).(−b)

With points:

x ÷ b = if x < b then 0 else 1 + ((x − b)÷ b)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Last but not least

We stepped over side condition

≥ (id+ ≥)
in=[zero,suc]oo

— that is,

[zero, suc] · (id+ ≥) ⊆ ≥ · [zero, suc]

— which can be dealt with in more generic terms by recalling that

≥ = ([>, suc])

and appealing to the generic result which follows.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Orderings which “extend” in

Let in be “the” initial F -algebra and R = (|I |) where in ⊆ I . Then

R F R
inoo always holds, cf:

in · F(|I |) ⊆ (|I |) · in

⇔ { fold-cancellation }

in · F(|I |) ⊆ I · F(|I |)

⇐ { monotonicity }

in ⊆ I

Thus, for instance, ≥ (id+ ≥)
in=[zero,suc]oo holds in the natural

numbers since ≥ = (|[>, suc]|) and zero ⊆ >. Similarly for

≤ (id+ ≤)
in=[zero,suc]oo since ≤= (|[zero, zero ∪ suc]|) and

suc ⊆ zero ∪ suc .

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Going generic

• What we have done for whole division generalizes to a broad
class of algorithms which can be identified with GC adjoints,
for instance take and trim, respectively

len y ≤ n ∧ y v x ⇔ y v take(n, x)

sum y ≤ n ∧ y v x ⇔ y v trim(n, x)

where v = ([nil , nil ∪ cons]) is the prefix ordering.

• The process repeats itself, eg.

trim = (〈sum, id〉◦ · (≤×v)) �v◦

where 〈sum, id〉 becomes a fold via “banana-split”, and so on
and so forth (Details in a forthcoming paper.)

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Winding up — related work

• The R � S combinator corresponds to what Bird and de Moor

(1997) write as min S · ΛR where PB A
ΛRoo (a function) is

the power-transpose of relation B A
Roo and B PB

min Soo

computes the minimum of a set (if it exists) according to
relation S .

• By exploiting the algebra of R � S we show that there is no
need for powersets (power allegory, in general).

• We hope our approach makes the last chapters of (Bird and
de Moor, 1997) more accessible to a wider community, by
simplifying both the notation and the main results.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Winding up — related work

• However, still a lot of relational machinery — need for
auxiliary results.

• Currently studying the GC approach to algorithm design more
deeply, recall a previous talk of one of us (Oliveira, 2010).

• Also trying to calculate more complex adjoints, for instance
the best Gantt chart (schedule) induced by a task-dependency
graph G , knowing tasks time spans, which is the upper
adjoint of GC

sc ∗ G
.
≥ sp ⇔ sc

.
≥ sp ÷ G (42)

where sc ∗G reads “the laziest span for sc allowed by G”, and
where sp ÷ G reads “the best schedule for task span sp
allowed by G”.

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Annex — Reasoning about zero ∩ ≥/S◦

Recall that S abbreviates suc · X · (+b)◦. We first show that
zero ∩ ≥/S◦ and S are domain-disjoint:

(zero ∩ ≥/S◦) · S◦ ⊆ ⊥

⇐ { (R ∩ S) · U ⊆ R · U ∩ S · U }

zero · S◦ ∩ (≥/S◦) · S◦ ⊆ ⊥

⇐ { division (cancelation) ; Dedekind }

zero · (S◦ ∩ zero◦ · ≥) ⊆ ⊥

⇔ { ≤ · zero = zero }

zero · (S◦ ∩ zero◦) ⊆ ⊥

⇔ { S ∩ zero = ⊥ }

zero · ⊥ ⊆ ⊥

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

Reasoning about zero ∩ ≥/S◦

This, together with the implicit GC yields

X ⊆ zero ∩ ≥/S◦ ⇔ X ⊆ zero ∧ X · S◦ ⊆ ⊥

meaning that zero ∩ ≥/S◦ is the largest fragment of zero
domain-disjoint of S . That is, using McCarthy’s conditional
notation:

zero ∩ ≥/S◦ = S → ⊥ , zero

Since S = S → S , ⊥, we obtain

zero ∩ ≥/S◦ ∪ S = S → S , zero

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

References

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans, and
J. van der Woude. A relational theory of datatypes, December
1992. Available from www.cs.nott.ac.uk/~rcb.

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall International, 1997. C.A.R.
Hoare, series editor.

M.A. Ferreira and J.N. Oliveira. Variations on an Alloy-centric
tool-chain in verifying a journaled file system model. Technical
Report DI-CCTC-10-07, DI/CCTC, University of Minho, Gualtar
Campus, Braga, January 2010. Available from the authors’
websites.

J.N. Oliveira. A Look at Program “Galculation”, January 2010.
Presentation at the IFIP WG 2.1 #65 Meeting.

P.F. Silva and J.N. Oliveira. ’Galculator’: functional prototype of a
Galois-connection based proof assistant. In PPDP ’08:
Proceedings of the 10th international ACM SIGPLAN conference
on Principles and practice of declarative programming, pages
44–55, New York, NY, USA, 2008. ACM. ISBN

http://progtools.comlab.ox.ac.uk/members/oege/publications/aop97
http://portal.acm.org/citation.cfm?id=1389456&jmp=cit&coll=portal&dl=GUIDE&CFID=39121848&CFTOKEN=50253653##
http://portal.acm.org/citation.cfm?id=1389456&jmp=cit&coll=portal&dl=GUIDE&CFID=39121848&CFTOKEN=50253653##

Introduction ”Shrinking” Inductive relations Theorems Example 1 Example 2 Closing Annex References

978-1-60558-117-0. doi:
http://doi.acm.org/10.1145/1389449.1389456. .

	Introduction
	"Shrinking"
	Inductive relations
	Theorems
	Example 1
	Example 2
	Closing
	Annex
	References

