# Data Transformation by Calculation 

J.N. Oliveira<br>Dept. Informática,<br>Universidade do Minho<br>Braga, Portugal

GTTSE'07
2-7 July 2007
Braga

## First lecture

Schedule: Monday July 2nd, 5pm-6pm

Learning outcomes:

- Identifying the problem
- Finding a strategy to face it


## Motivation

- Data play an important rôle in our lifes (eg. medical records, bank details, CVs, ... )
- Information system quality is highly dependent upon consistency and reliability of data
- Data are everywhere in computing - statically (eg. machine states, databases) and dynamically (eg. messages, APIs, forms, etc)
- Data are what is left from the past (cf. historical archives)

However...

## Motivation

- Data keep changing format
- No two people think data in the same way
- Data modeling is technology sensitive
- Impedance mismatch among data models
- Need for data migration software
- Data always put at risk - loss or damage


## Motivation

Quoting Lämmel and Meijer (GTTSE'05):

- "Whatever programming paradigm for data processing we choose, data has the tendency to live on the other side or to eventually end up there. (...)
- This myriad of inter- and intra-paradigm data models calls for a good understanding of techniques for mappings between data models, actual data, and operations on data. (...)
- Given the fact that IT industry is fighting with various impedance mismatches and data-model evolution problems for decades, it seems to be safe to start a research career that specifically addresses these problems'

Our strategy in this tutorial

## Motivation

Quoting Lämmel and Meijer (GTTSE'05):

- "Whatever programming paradigm for data processing we choose, data has the tendency to live on the other side or to eventually end up there. (...)
- This myriad of inter- and intra-paradigm data models calls for a good understanding of techniques for mappings between data models, actual data, and operations on data. (...)
- Given the fact that IT industry is fighting with various impedance mismatches and data-model evolution problems for decades, it seems to be safe to start a research career that specifically addresses these problems".

Our strategy in this tutorial:

## Motivation

Quoting Lämmel and Meijer (GTTSE'05):

- "Whatever programming paradigm for data processing we choose, data has the tendency to live on the other side or to eventually end up there. (...)
- This myriad of inter- and intra-paradigm data models calls for a good understanding of techniques for mappings between data models, actual data, and operations on data. (...)
- Given the fact that IT industry is fighting with various impedance mismatches and data-model evolution problems for decades, it seems to be safe to start a research career that specifically addresses these problems".

Our strategy in this tutorial:
Don't invent data mappings any more: calculate them!

## Interacting with machines

Problems can arise anywhere at any time: even using a pocket calculator

digits need to reach the machine binary so that it... calculates!


## Likely faults

- digit displayed not always the one whose key was pressed (confusion)
- nothing at all displayed (loss)
- required operation yields wrong output (miscalculation)


## What about "inside the machine"?

- HCl is just a special case of subcontracting (a service)
- Subcontracting spreads over mutiple layers, different technologies
- Uncountable number of data mappings at work in transactions and layer inter-communication.


## Likely faults

- digit displayed not always the one whose key was pressed (confusion)
- nothing at all displayed (loss)
- required operation yields wrong output (miscalculation)

What about "inside the machine"?

- HCl is just a special case of subcontracting (a service)
- Subcontracting spreads over mutiple layers, different technologies
- Uncountable number of data mappings at work in transactions and layer inter-communication.


## Weaving data through I-M-D architecture

Layered-architectures rely on sub-contracting:


|  | I — interface |
| :--- | :--- |
| Legend: | $\mathrm{D}-$ middleware |
|  | rep - represent |
|  | ret — retrieve |

## The same in different geometry

Separation principles (eg. Seheim model, client-server, etc) entail permanent data conversion across disparate technology layers:


## Running example - genealogy website (I)

At GUI level, clients wish to see and browse their family trees:


## Running example - genealogy website ( M )

Trees
become "more
concrete" as they go down the layers of software architecture;


They convert to pointer
structures (eg. in C $++/ \mathrm{C} \#$ ) stored in dynamic heaps once reaching middleware.

## Running example - genealogy website (D)

Finally channeled to dataware, heap structures are buried into database files as persistent data records:

| ID | Name | Birth |
| :---: | :---: | :---: |
| 1 | Joseph | 1955 |
| 2 | Luigi | 1920 |
| 3 | Margaret | 1923 |
| 4 | Mary | 1956 |
| 5 | Peter | 1991 |


| ID | Ancestor | ID |
| :---: | :--- | :---: |
| 5 | Father | 1 |
| 5 | Mother | 4 |
| 1 | Father | 2 |
| 1 | Mother | 3 |

## Too many paradigms

Data modeling notations, eg. Entity-Relationship (ER) diagrams


## Too many paradigms

UML class diagrams


## Too many paradigms

XML (version 1)

```
<!-- DTD for genealogical trees -->
<!ELEMENT tree (node+)>
<!ELEMENT node (name, birth, mother?, father?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>
<!ELEMENT mother EMPTY>
<!ELEMENT father EMPTY>
<!ATTLIST tree
    ident ID #REQUIRED>
<!ATTLIST mother
    refid IDREF #REQUIRED>
<!ATTLIST father
    refid IDREF #REQUIRED>
```


## Too many paradigms

XML (version 2)

```
<!-- DTD for genealogical trees -->
<!ELEMENT tree (name, birth, tree?, tree?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>
```


## Too many (programming) paradigms

## Plain SQL

```
CREATE TABLE INDIVIDUAL (
    ID NUMBER (10) NOT NULL,
    Name VARCHAR (80) NOT NULL,
    Birth NUMBER (8) NOT NULL,
    CONSTRAINT INDIVIDUAL_pk PRIMARY KEY(ID)
);
CREATE TABLE ANCESTORS (
    ID VARCHAR (8) NOT NULL,
    Ancestor VARCHAR (8) NOT NULL,
    PID NUMBER (10) NOT NULL,
    CONSTRAINT ANCESTORS_pk PRIMARY KEY (ID,Ancestor)
);
```


## Too many (programming) paradigms

$\mathbf{C} / \mathbf{C}+$ etc

```
typedef struct Gen {
    char *name /* name is a string */
    int birth /* birth year is a number */
    struct Gen *mother; /* genealogy of mother (if known) */
    struct Gen *father; /* genealogy of father (if known) */
    } ;
```

Haskell etc

```
data PTree = Node {
    name :: [ Char ],
    birth :: Int ,
    mother :: Maybe PTree,
    father :: Maybe PTree
    }
```


## Questions

- Are all these data models "equivalent"?
- If so, in what sense?
- If not, how can they be ranked in terms of "quality"?
- How can we tell apart the essence of a data model from its technology wrapping?
"The question"


## Is there a notation unifying all the above?

## Keep it simple

Let us write

$$
c R a
$$

to mean that
datum c (eg. byte) represents datum a (eg. digit)
and let the converse fact
mean
$a$ is the datum represented by $c$
(passive voice).

## Keep it simple

Let us write

$$
c R a
$$

to mean that
datum c (eg. byte) represents datum a (eg. digit)
and let the converse fact

$$
\text { a } R^{\circ} c
$$

mean
$a$ is the datum represented by $c$
(passive voice).

## No confusion, please

Definite article "the" instead of "a" in sentence $a$ is the datum represented by $c$
already a symptom of the no confusion principle: we want $c$ to represent only one datum of interest.

So $R$ should be injective:

## No confusion, please

Definite article "the" instead of "a" in sentence
$a$ is the datum represented by $c$
already a symptom of the no confusion principle: we want $c$ to represent only one datum of interest.

So $R$ should be injective:

$$
\begin{equation*}
\left\langle\forall c, a, a^{\prime}:: c R a \wedge c R a^{\prime} \Rightarrow a=a^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

## No data loss, please

No loss principle: no data are lost in the representation process,

$$
\begin{equation*}
\langle\forall a::\langle\exists c:: \subset R a\rangle\rangle \tag{3}
\end{equation*}
$$

ie. every datum $a$ is representable $-R$ is totally defined. In a diagram:

for $R$ injective and totally defined

## Freeing the retrieve relation

Useful (in general) to give some freedom to the retrieve relation, say $F$, provided that it connects with the chosen representation:

$$
\begin{equation*}
\langle\forall a, c:: \subset R a \Rightarrow a F c\rangle \tag{5}
\end{equation*}
$$

( $=$ "if $c$ represents $a$ then $a$ can be retrieved from $c$ ).
In a diagram:

(Meaning of $\leq$ to be explained soon.)

## Mapping scenarios

## Diagram


already captures some of the ingredients of Lämmel and Meijer's mapping scenarios:

- the type-level mapping of a source data model $(A)$ to a target data model (C);
- two maps - "map forward" ( $R$ ) and "map backward" (F) - between source / target data;
- the transcription level mapping of source operations into target operations - see next slide


## Mapping scenarios

Diagram

already captures some of the ingredients of Lämmel and Meijer's mapping scenarios:

- the type-level mapping of a source data model $(A)$ to a target data model (C);
- two maps - "map forward" $(R)$ and "map backward" (F) - between source / target data;
- the transcription level mapping of source operations into target operations - see next slide


## Transcription level

Source (eg. CRUD) operations mapped to target operations put two $\leq$-diagrams together:


The (safe) transcription of $O$ into $P$ can be formally stated by ensuring that the picture is a commutative diagram. (Details soon.)

## Chaining

In general, it will make sense to chain two or more mapping scenarios, eg. between interface $(I)$ and middleware $(M)$, and between middleware and dataware $(D)$ :


However, how can we be sure that mapping scenarios compose with each other?

## Data refinement

- All questions so far are addressed in the well studied discipline of data refinement
- However, data refinement not "sexy enough" - too complex, too many symbols:

Proof of downwards simulation theorem for partial correctness (2)

$$
\begin{aligned}
& \text { 3. Case } \beta \rightsquigarrow(\varphi \rightsquigarrow \psi) ; \beta \text { : } \\
& \underbrace{\rho\left[a^{\prime} / a\right] \wedge x^{\prime}=x}_{=\beta} \rightsquigarrow(\varphi \rightsquigarrow \psi) ;(\underbrace{\rho\left[a^{\prime} / a\right] \wedge x^{\prime}=x}_{=\beta})=\quad \text { (by (2)) } \\
& \underbrace{\text { QED }}_{\quad=\rho\left[a_{0}^{\prime} / a\right] \wedge x_{0}^{\prime}=x \rightsquigarrow \exists a . \rho \wedge \forall x_{0} \cdot \varphi\left[x_{0}^{\prime}, a_{0}^{\prime} / x, a\right] \rightarrow \psi x_{0}^{\prime}, a_{0}^{\prime} \cdot\left(\rho\left[a_{0}^{\prime} / a\right] \wedge x_{0}^{\prime}=x\right)\left[x^{\prime}, c^{\prime} / x, c\right] \rightarrow\left(\exists a . \rho \wedge \forall x_{0} \cdot \varphi\left[x_{0}^{\prime}, a_{0}^{\prime} / x, a\right] \rightarrow \psi\right)} \\
& \text { I.e., } S \subseteq \beta \rightsquigarrow(\varphi \rightsquigarrow \psi) ; \beta \text { iff } \\
& \quad \models\left\{\rho\left[a_{0}^{\prime} / a\right] \wedge x_{0}^{\prime}=x\right\} S\left\{\exists a . \rho \wedge \forall x_{0} \cdot \varphi\left[x_{0}^{\prime}, a_{0}^{\prime} / x, a\right] \rightarrow \psi\right\}
\end{aligned}
$$

Can't we do better?

## Interlude

## Problem-solving strategy

Recall the universal problem solving strategy which one is taught at school:

- understand your problem
- build a mathematical model of it
- reason in such a model
- upgrade your model, if necessary
- calculate a final solution and implement it.


## School maths example

The problem
My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

The model

$$
x+(x+3)+(x+6)=48
$$

The calculation


## School maths example

The problem
My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

The model

$$
x+(x+3)+(x+6)=48
$$

The calculation
$3 x+9=48$


## School maths example

The problem
My three children were born at a 3 year interval rate. Altogether, they are as old as me. I am 48. How old are they?

The model

$$
x+(x+3)+(x+6)=48
$$

The calculation

$$
\left.\begin{array}{c}
3 x+9=48 \\
\equiv \quad\{\text { "al-djabr" rule }\} \\
3 x=48-9
\end{array}\right\} \begin{gathered}
\{\text { "al-hatt" rule }\} \\
\equiv \\
x=16-3
\end{gathered}
$$

## School maths example

The solution

$$
\begin{aligned}
x & =13 \\
x+3 & =16 \\
x+6 & =19
\end{aligned}
$$

Questions....
"al-djabr" rule?

- "al-hatt" rule?

Have a look at Pedro Nunes (1502-1578) Libro de Algebra en Arithmetica y Geometria (dated 1567)

## School maths example

The solution

$$
\begin{aligned}
x & =13 \\
x+3 & =16 \\
x+6 & =19
\end{aligned}
$$

Questions....

- "al-djabr" rule?
- "al-hatt" rule ?

Have a look at Pedro Nunes (1502-1578) Libro de Algebra en Arithmetica y Geometria (dated 1567)

## School maths example

The solution

$$
\begin{aligned}
x & =13 \\
x+3 & =16 \\
x+6 & =19
\end{aligned}
$$

Questions....

- "al-djabr" rule?
- "al-hatt" rule ?

Have a look at Pedro Nunes (1502-1578) Libro de Algebra en Arithmetica y Geometria (dated 1567) ...

## Libro de Algebra en Arithmetica y Geometria (1567)


(...) the inventor of this art was a Moorish mathematician, whose name was Gebre, \& in some libraries there is a small arabic treaty which contains chapters that we use (fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala by Abû Al-Huwârizmî, a famous 9c Persian mathematician.

## Calculus of al-gabr, al-hatt and al-muqâbala

al-djabr

$$
x-z \leq y \equiv x \leq y+z
$$

al-hatt

$$
x * z \leq y \equiv x \leq y * z^{-1} \quad(z>0)
$$

al-muqâbala
Ex:

$$
4 x^{2}-2 x^{2}=2 x+6-3 \equiv 2 x^{2}=2 x+3
$$

## "Algebra (...) is thing causing admiration"

(...) Principalmente que vemos algumas vezes, no poder vn gran Mathematico resoluer vna question por medios Geometricos, y resolverla por Algebra, siendo la misma Algebra sacada de la Geometria, $\tilde{q}$ es cosa de admiraciõ.
ie.
(...) Mainly because we see often a great Mathematician unable to resolve a question by Geometrical means, and solve it by Algebra, being that same Algebra taken from Geometry, which is thing causing admiration.
[ in Nunes' Libro de Algebra, fols. 270-270v. ]

## Letting "the symbols do the work" in the 16c

Deduction first
$Y$ tambien porque quien obra por Algebra va entendiendo la razon de la obra que haze, hasta la yqualacion ser acabada. (...) De suerte que, quien obra por Algebra, va haziendo discursos demonstrativos.
ie.
And also because one performing by Algebra is understanding the reason of the work one does, until the equality is finished. (...) So much so that, who works by Algebra is doing a demonstrative discourse.
[ fol. 269r-269v ]

## Verdict

## (...) De manera, que quien sabe por Algebra, sabe scientificamente.

(...) in this way, who knows by Algebra knows scientifically)

## Trend for notation economy

Well-known throughout the history of maths - a kind of "natural language implosion" - particularly visible in the syncopated phase (16c), eg.
.40.p..2.ce. son yguales a .20.co
(P. Nunes, Coimbra, 1567) for nowadays $40+2 x^{2}=20 x$, or
$B 3$ in $A$ quad - D plano in $A+A$ cubo æquatur $Z$ solido
(F. Viète, Paris, 1591) for nowadays $3 B A^{2}-D A+A^{3}=Z$

## Later on (18c, 19c, ...)

More demanding problems to be modelled/solved, eg. electrical circuits:

From a simple law...
$V=R \times I$ by Georg Ohm (1789-1854) ...
... to non-linear RC-circuits
$v(t)=\operatorname{Ri}(t)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau$
$v(t)=V_{0}(u(t-a)-u(t-b))$
$(b>a)$



## Calculate $i(t)$

The following $i(t)$ can be observed on an oscilloscope:


Can you explain it?
Is 16c maths still enough for the required calculations?
No. Need for the differential/integral calculus.
But there is more:
For the underlying maths to scale up
Need for an integral transform, eg. the Laplace transform.

## Calculate $i(t)$

The following $i(t)$ can be observed on an oscilloscope:


Can you explain it?
Is 16c maths still enough for the required calculations?
No. Need for the differential/integral calculus.
But there is more:
For the underlying maths to scale up
Need for an integral transform, eg. the Laplace transform.

## Calculate $i(t)$

The following $i(t)$ can be observed on an oscilloscope:


Can you explain it?
Is 16 c maths still enough for the required calculations?
No. Need for the differential/integral calculus.
But there is more:
For the underlying maths to scale up
Need for an integral transform, eg. the Laplace transform.

## Laplace transform

$$
t \text {-space }
$$

s-space


## Laplace-transformed RC-circuit model

$\mathcal{L}(t$-space $R C$ model $)$ is

$$
R I(s)+\frac{I(s)}{s C}=\frac{V_{0}}{s}\left(e^{-a s}-e^{-b s}\right)
$$

whose algebraic solution for $I(s)$ is

$$
I(s)=\frac{\frac{V_{0}}{R}}{s+\frac{1}{R C}}\left(e^{-a s}-e^{-b s}\right)
$$

Now, the converse transformation:

$$
\mathcal{L}^{-1}\left(\frac{\frac{V_{0}}{R}}{s+\frac{1}{R C}}\right)=\frac{V_{0}}{R} e^{-\frac{t}{R C}}
$$

## Analytical solution

After some algebraic manipulation we will obtain an analytical answer...

$$
i(t)=\left\{\begin{array}{l}
0 \quad \text { if } t<a \\
\left(\frac{V_{0} e^{-\frac{a}{R C}}}{R}\right) e^{-\frac{t}{R C}} \quad \text { if } a<t<b \\
\left(\frac{V_{0} e^{-\frac{a}{R C}}}{R}-\frac{V_{0} e^{-\frac{b}{R C}}}{R}\right) e^{-\frac{t}{R C}} \quad \text { if } t>b
\end{array}\right.
$$

## Question

All we have seen applies to physics, mechanical eng., civil eng., electrical and electronic eng.

> What about us?

## Question

All we have seen applies to physics, mechanical eng., civil eng., electrical and electronic eng.

## What about us?

(software engineers)

## Need for a transform

Integration? Quantification?
$(\mathcal{L} f) s=\int_{0}^{\infty} e^{-s t} f(t) d t$

| $f(t)$ | $\mathcal{L}(f)$ |
| :---: | :---: |
| 1 | $\frac{1}{s}$ |
| $t$ | $\frac{1}{s^{2}}$ |
| $t^{n}$ | $\frac{n!}{s^{n+1}}$ |
| $e^{a t}$ | $\frac{1}{s-a}$ |
| $e t c$ |  |

A parallel:
$\left\langle\int x: 0 \leq x \leq 10: x^{2}-x\right\rangle$
$\left\langle\forall x: 0 \leq x \leq 10: x^{2} \geq x\right\rangle$

## An "s-space analog" for logical quantification

The pointfree (PF) transform

| $\phi$ | $P F \phi$ |
| :---: | :---: |
| $\langle\exists a:: b R a \wedge a S c\rangle$ | $b(R \cdot S) c$ |
| $\langle\forall a, b:: b R a \Rightarrow b S a\rangle$ | $R \subseteq S$ |
| $\langle\forall a:: a R a\rangle$ | $i d \subseteq R$ |
| $\langle\forall x:: \times R b \Rightarrow x S a\rangle$ | $b(R \backslash S) a$ |
| $\langle\forall c:: b R c \Rightarrow a S c\rangle$ | $a(S / R) b$ |
| $b R a \wedge c S a$ | $(b, c)\langle R, S\rangle a$ |
| $b R a \wedge d S c$ | $(b, d)(R \times S)(a, c)$ |
| $b R a \wedge b S a$ | $b(R \cap S) a$ |
| $b R a \vee b S a$ | $b(R \cup S) a$ |
| $(f b) R(g a)$ | $b(f \circ R \cdot g) a$ |
| TRUE | $b \top a$ |
| FALSE | $b \perp a$ |

What are $R, S$, id ?

## End of interlude

## A transform for logic and set-theory

An old idea

$$
P F(\text { sets, predicates })=\text { binary relations }
$$

## Calculus of binary relations

- 1860 - introduced by De Morgan, embryonic
- 1941 - Tarski's school, cf. A Formalization of Set Theory without Variables
- 1980's - coreflexive models of sets (Freyd and Scedrov, Eindhoven school)

Unifying approach
Everything is a (binary) relation

## A transform for logic and set-theory

An old idea

$$
P F(\text { sets, predicates })=\text { binary relations }
$$

Calculus of binary relations

- 1860 - introduced by De Morgan, embryonic
- 1941 - Tarski's school, cf. A Formalization of Set Theory without Variables
- 1980's - coreflexive models of sets (Freyd and Scedrov, Eindhoven school)

Unifying approach
Everything is a (binary) relation

## Binary Relations

Arrow notation
Arrow $A \xrightarrow{R} B$ denotes a binary relation to $B$ (target) from $A$ (source).

Identity of composition
$i d$ such that $R \cdot i d=i d \cdot R=R$
Converse
Converse of $R-R^{\circ}$ such that $a\left(R^{\circ}\right) b$ iff $b R$ a.
Ordering
" $R \subseteq S$ - the " $R$ is at most $S$ " - the obvious $R \subseteq S$ ordering.

## Binary relation taxonomy

The whole picture:

where

|  | Reflexive ( $\supseteq$ id) | Coreflexive ( $\subseteq$ id ) |
| :---: | :---: | :---: |
| ker R | entire $R$ | injective $R$ |
| img R | surjective $R$ | simple $R$ |

$$
\begin{aligned}
\operatorname{ker} R & =R^{\circ} \cdot R \\
\operatorname{img} R & =R \cdot R^{\circ}
\end{aligned}
$$

## Second lecture

Schedule: Tuesday July 3rd, 11h30am-12h30m

Learning outcomes:

- PF-transform essentials
- PF-transform at work: describing data models and data impedance mismatch


## Functions in one slide

- A function $f$ is a relation such that $b f a \equiv b=f$ a and

| Pointwise | Pointfree |  |  |
| :---: | :---: | :---: | :---: |
| "Left" Uniqueness |  |  |  |
| $b f a \wedge b^{\prime} f a \Rightarrow b=b^{\prime}$ | $\operatorname{img} f \subseteq \quad$ id |  |  |
| Leibniz principle |  |  |  |
| $a=a^{\prime} \Rightarrow f a=f a^{\prime}$ | id $\subseteq$ |  |  |

( $f$ is simple)
( $f$ is entire)

- Back to useful "al-djabr" rules:

$$
\begin{aligned}
& f \cdot R \subseteq S \equiv R \subseteq f^{\circ} \cdot S \\
& R \cdot f^{\circ} \subseteq S \equiv R \subseteq S
\end{aligned}
$$

- Equality:

$$
f \subseteq g \equiv f=g \equiv f \supseteq g
$$

## Simple relations

Simple relations are everywhere in computing:

- As computations: partial functions are simple relations
- As data: (finite) simple relations model functional dependencies, object identity, etc
- We will draw harpoon arrows $B \xrightarrow{R} A$ or $A \xrightarrow{R} B$ to indicate that $R$ is simple.

We shall be using (simple) relations to model both algorithms and data.

## Simple relations in one slide

"Al-djabr" rules for simple $M$ :
where


$$
\delta R=\operatorname{ker} R \cap i d
$$

the domain of $R$ is the coreflexive part of $\operatorname{ker} R$.
Dually, we define the range of $R$ as

$$
\rho R=\operatorname{img} R \cap i d
$$

## Predicates PF-transformed

- Binary predicates:

$$
R=\llbracket b \rrbracket \equiv(y R x \equiv b(y, x))
$$

- Unary predicates become fragments of id (coreflexives) :

$$
R=\llbracket p \rrbracket \equiv(y R x \equiv(p x) \wedge x=y)
$$

eg. (in the natural numbers)

$$
\llbracket 1 \leq x \leq 4 \rrbracket=
$$



## Boolean algebra of coreflexives

$$
\begin{align*}
& \llbracket p \wedge q \rrbracket=\llbracket p \rrbracket \cdot \llbracket q \rrbracket  \tag{10}\\
& \llbracket p \vee q \rrbracket=\llbracket p \rrbracket \cup \llbracket q \rrbracket  \tag{11}\\
& \llbracket \neg p \rrbracket=i d-\llbracket p \rrbracket  \tag{12}\\
& \llbracket f a / s \rrbracket \rrbracket=\perp  \tag{13}\\
& \llbracket t r u e \rrbracket=i d \tag{14}
\end{align*}
$$

Note the very useful fact that conjunction of coreflexives is composition

## Simple relation expressive power

- Comprehension notation borrowed from VDM to denote a (finite) simple relation $S$ at pointwise level:

$$
\{a \mapsto S a \mid a \in \operatorname{dom} S\}
$$

where dom $S$ is the set-theoretic version of $\delta S$.

- Useful PF patterns:
- projection - $f \cdot S \cdot g^{\circ}(g$ injective $):$ $\{g a \mapsto F(S a) \mid a \in \operatorname{dom} S\}$
- selection - $\Psi \cdot S \cdot \Phi(\Psi, \Phi$ coreflexives $):$



## Simple relation expressive power

- Comprehension notation borrowed from VDM to denote a (finite) simple relation $S$ at pointwise level:

$$
\{a \mapsto S a \mid a \in \operatorname{dom} S\}
$$

where dom $S$ is the set-theoretic version of $\delta S$.

- Useful PF patterns:
- projection - $f \cdot S \cdot g^{\circ}(g$ injective $):$

$$
\{g a \mapsto f(S a) \mid a \in \operatorname{dom} S\}
$$

- selection - $\Psi \cdot S \cdot \Phi(\Psi, \Phi$ coreflexives $):$

$$
\{a \mapsto S a \mid a \in \operatorname{dom} S \wedge \phi a \wedge \psi(S a)\}
$$

## All (data structures) in one (PF notation)

Products

Database records - eg. | 5 | Peter | 1991 - C/C++ |
| :--- | :--- | :--- | structs etc are products:

where


## All (data structures) in one (PF notation)

Products

Database records - eg. | 5 | Peter | $1991-\mathrm{C} / \mathrm{C}++$ |
| :--- | :--- | :--- |
|  |  |  | structs etc are products:

where


Clearly: $R \times S=\left\langle R \cdot \pi_{1}, S \cdot \pi_{2}\right\rangle$

## Sums

## Example (Haskell):

data X = Boo Bool | Err String

## PF-transforms to



## Sums

Example (Haskell):
data X = Boo Bool | Err String

PF-transforms to

where

$$
\begin{aligned}
& {[R, S]=\left(R \cdot i_{1}^{\circ}\right) \cup\left(S \cdot i_{2}^{\circ}\right) \quad \text { cf. }} \\
& \text { Dually: } R+S=\left[i_{1} \cdot R, i_{2} \cdot S\right]
\end{aligned}
$$

## Polynomial types and grammars

- With sums and products one can build polynomials, "pointers" included:

$$
\begin{equation*}
\text { Maybe } A \stackrel{\text { def }}{=} A+1 \tag{18}
\end{equation*}
$$

(where 1 is the singleton type inhabited by NiL):

- Grammars:

| BNF NOTATION |  | POLYNOMIAL NOTATION |
| :---: | :---: | :---: |
| $\alpha \mid \beta$ | $\mapsto$ | $\alpha+\beta$ |
| $\alpha \beta$ | $\mapsto$ | $\alpha \times \beta$ |
| $\epsilon$ | $\mapsto$ | 1 |
| $a$ | $\mapsto$ | 1 |

## Grammars and inductive data models

For instance,

$$
X \rightarrow \epsilon \mid a A X
$$

(where $X, A$ are non-terminals and $a$ is terminal) leads equation

$$
\begin{equation*}
X=1+A \times X \tag{20}
\end{equation*}
$$

cf.

```
typedef struct x {
    A data;
    struct x *next;
} Node;
typedef Node *X;
```

since $1+A \times X$ is an instance of the "pointer to struct" pattern.

## PF-transformed PTree

```
data PTree = Node { name :: [ Char ], birth ::
Int , mother :: Maybe PTree, father :: Maybe
PTree }
```

becomes

$$
\begin{equation*}
P \text { Tree } \cong \operatorname{Ind} \times(P \text { Tree }+1) \times(P \text { Tree }+1) \tag{21}
\end{equation*}
$$

where Ind $=$ Name $\times$ Birth packages the information relative to the name and birth year, ie.

$$
\begin{equation*}
P \text { Tree } \cong \mathrm{G}(\text { Ind }, \text { PTree }) \tag{22}
\end{equation*}
$$

where $G$ captures the particular pattern of recursion chosen to model family trees

$$
\mathrm{G}(X, Y) \stackrel{\text { def }}{=} X \times(Y+1) \times(Y+1)
$$

( $X$ refers to the parametric information and $Y$ to the inductive part.)

## Entity-Relationship diagrams

PF-transform of

| Book |  |  |
| :--- | :--- | :--- |
| $\frac{\text { ISBN }}{\text { Title }}$ |  | Borrower <br> Author $[0-5]$ <br> Publisher |
| id: $1 S B N$ |  |  |

is
$D b \stackrel{\text { def }}{=}$ Books $\times$ Borrowers $\times$ Reserved
Books $\stackrel{\text { def }}{=}$ ISBN $\rightharpoonup$ Title $\times(5 \rightharpoonup$ Author $) \times$ Publisher
Borrowers $\stackrel{\text { def }}{=}$ PID $\rightharpoonup$ Name $\times$ Address $\times$ Phone
Reserved $\stackrel{\text { def }}{=} I S B N \times$ PID $\rightharpoonup$ Date

## Business rules

## Example

"(..) Only existing books can be borrowed by known borrowers"
Pointwise

$$
\begin{aligned}
& \phi(M, N, R) \stackrel{\text { def }}{=} \\
& \quad\langle\forall i, p, d:: d R(i, p) \Rightarrow\langle\exists x:: x M i\rangle \wedge\langle\exists y:: \text { y } M p\rangle\rangle
\end{aligned}
$$

where $i, p, d$ range over ISBN, PID and Date, respectively,
PF-transform
We first order relations by how defined they are,

$$
R \preceq S \equiv \delta R \subseteq \delta S
$$

Then...

## Business rules

Rule

$$
\phi(M, N, R) \stackrel{\text { def }}{=} R \preceq M \cdot \pi_{1} \wedge R \preceq N \cdot \pi_{2}
$$

cf. diagram

whose geometrical similarity with the original is striking, recall:


Data impedance mismatch expressed in the PF-style


- $\operatorname{ker} R=i d$ (representation) and $\operatorname{img} F=i d$ (abstraction)
- connection between $(R, F)$

$$
\langle\forall a, b:: b R a \Rightarrow a F b\rangle
$$

shrinks to

$$
\begin{equation*}
R^{\circ} \subseteq F \tag{23}
\end{equation*}
$$

( $=R^{\circ}$ is the least retrieve relation associated with $R$ ) equivalent to

$$
\begin{equation*}
R \subseteq F^{\circ} \tag{24}
\end{equation*}
$$

( $=F^{\circ}$ largest representation one can connect to retrieve relation $F$ ).

## $\leq$ is a preorder

- $\leq$ is reflexive: Between a datatype and itself

there is no impedance at all
- $\leq$ is transitive:

that is, data impedances compose.


## One slide long calculations

$(F \cdot G, S \cdot R)$ are connected:

$$
\begin{aligned}
& S \cdot R \subseteq(F \cdot G)^{\circ} \\
\equiv & \left\{\text { converses: }(R \cdot S)^{\circ}=S^{\circ} \cdot R^{\circ}\right\} \\
& S \cdot R \subseteq G^{\circ} \cdot F^{\circ} \\
\Leftarrow & \{\text { monotonicity }\} \\
& S \subseteq G^{\circ} \wedge R \subseteq F^{\circ} \\
\equiv & \{\text { since } S, G \text { and } R, F \text { are assumed connected }\} \\
& \text { TRUE }
\end{aligned}
$$

## Right-invertibility

That $\leq$-rules entail right-invertibility

$$
\begin{equation*}
F \cdot R=i d \tag{25}
\end{equation*}
$$

is again a one slide long calculation:

$$
\left.\left.\begin{array}{rl} 
& F \cdot R=i d \\
\equiv & \{\text { equality of relations }\} \\
\equiv & F \cdot R \subseteq i d \wedge i d \subseteq F \cdot R \\
\equiv & \{\text { img } F=i d \text { and } \operatorname{ker} R=i d\} \\
\equiv & F \cdot R \subseteq F \cdot F^{\circ} \wedge R^{\circ} \cdot R \subseteq F \cdot R \\
& \{\text { converses }\}
\end{array}\right\} \begin{array}{rl}
F \cdot R \subseteq F \cdot F^{\circ} \wedge R^{\circ} \cdot R \subseteq R^{\circ} \cdot F^{\circ} \\
& \left\{(F \cdot) \text { and }\left(R^{\circ} \cdot\right) \text { are monotone (cf. GCs) }\right\}
\end{array}\right\}
$$

## Functions only

Right-invertibility happens to be equivalent to connectivity wherever both abstraction and representation are functions, say $f, r$ :


That $f \cdot r=i d$ equivales $r \subseteq f^{\circ}$ and entails $f$ surjective and $r$ injective is again a short calculation:

$$
\begin{array}{ll} 
& f \cdot r=i d \\
\equiv & \{\text { equality of functions }\} \\
& f \cdot r \subseteq \text { id } \\
\equiv & \{\text { "al-djabr" (shunting) }\} \\
& r \subseteq f^{\circ}
\end{array}
$$

## Functions only

$$
\begin{array}{cc} 
& r \subseteq f^{\circ} \\
\Rightarrow & \{\text { composition is monotonic }\} \\
& f \cdot r \subseteq f \cdot f^{\circ} \wedge r^{\circ} \cdot r \subseteq r^{\circ} \cdot f^{\circ} \\
\equiv & \{f \cdot r=i d ; \text { converses }\} \\
& i d \subseteq f \cdot f^{\circ} \wedge r^{\circ} \cdot r \subseteq i d \\
\equiv & \{\text { definitions }\} \\
& f \text { surjective } \wedge r \text { injective }
\end{array}
$$

Equivalence: $\Rightarrow$ (above) $+\Leftarrow$ (which of holds in general)

## Well-known surjections and injections

From cancellation-laws

$$
\begin{gathered}
\pi_{1} \cdot\langle f, g\rangle=f, \pi_{2} \cdot\langle f, g\rangle=g \\
{[g, f] \cdot i_{1}=g,[g, f] \cdot i_{2}=f}
\end{gathered}
$$

we get some basic impedance mismatches captured by $\leq$-rules:


## Pointers and references

Pointers


References ("references cheaper to move around than referents")

cf. containers, shapes etc - details to be given later on.

## Isomorphic data types

A quite special case of $(r, f)$ pair is one such that both

hold. This equivales

$$
\equiv \begin{align*}
& r \subseteq f^{\circ} \wedge f \subseteq r^{\circ} \\
& \quad\{\text { converses ; equality of relations }\} \\
&  \tag{29}\\
& \\
& r^{\circ}=f
\end{align*}
$$

So $r$ (a function) is the converse of another function $f$. This means that both are bijections (isomorphisms) since

$$
\begin{equation*}
f \text { is a bijection } \equiv f^{\circ} \text { is a function } \tag{30}
\end{equation*}
$$

## Isomorphic data types

In a diagram:


Isomorphism $A \cong C$ corresponds to minimal impedance mismatch between types $A$ and $C$ - although the format of data changes, data conversion in both ways is wholly recoverable.

Example: function swap $\stackrel{\text { def }}{=}\left\langle\pi_{2}, \pi_{1}\right\rangle$ witnesses

(eg. change order of entries in structs; swap order of columns in a spreadsheet, etc.)

## When the converse of a function is a function

$$
\begin{aligned}
& \begin{array}{c}
\text { swap }^{\circ} \\
=
\end{array} \quad\left\{\langle R, S\rangle=\pi_{1}^{\circ} \cdot R \cap \pi_{2}^{\circ} \cdot S\right\} \\
= & \left(\pi_{1}^{\circ} \cdot \pi_{2} \cap \pi_{2}^{\circ} \cdot \pi_{1}\right)^{\circ} \\
= & \{\text { converses }\} \\
= & \quad \pi_{2}^{\circ} \cdot \pi_{1} \cap \pi_{1}^{\circ} \cdot \pi_{2} \\
& \quad\{\text { back to splits }\}
\end{aligned}
$$

So swap is its own inverse and therefore a bijection.

## Exercise 12, page 169

The calculation just above was too simple. To recognize the power of rule "when the converse of a function is a function" prove the associative property of sum,

$$
\begin{equation*}
A+(B+C) \underset{\frac{r}{\cong=\left[i d+i_{1}, i_{2} \cdot i_{2}\right]}}{\cong}(A+B)+C \tag{33}
\end{equation*}
$$

by calculating the function $r$ which is the converse of $f$.

$$
\left[i d+i_{1}, i_{2} \cdot i_{2}\right]^{\circ}
$$

## Exercise 12, page 169

The calculation just above was too simple. To recognize the power of rule "when the converse of a function is a function" prove the associative property of sum,

$$
\begin{equation*}
A+(B+C) \underset{\frac{r}{\cong=\left[i d+i_{1}, i_{2} \cdot i_{2}\right]}}{\cong}(A+B)+C \tag{33}
\end{equation*}
$$

by calculating the function $r$ which is the converse of $f$.

$$
=\begin{gathered}
{\left[i d+i_{1}, i_{2} \cdot i_{2}\right]^{\circ}} \\
\{\text { expand }[R, S]\} \\
\left(\left(i d+i_{1}\right) \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{2} \cdot i_{2}^{\circ}\right)^{\circ}
\end{gathered}
$$

## Exercise 12, page 169

The calculation just above was too simple. To recognize the power of rule "when the converse of a function is a function" prove the associative property of sum,

$$
\begin{equation*}
A+(B+C) \underset{\substack{ \\\cong}}{\cong}(A+B)+C \tag{33}
\end{equation*}
$$

by calculating the function $r$ which is the converse of $f$.

$$
\begin{gathered}
= \\
=\begin{array}{c}
{\left[i d+i_{1}, i_{2} \cdot i_{2}\right]^{\circ}} \\
\{\text { expand }[R, S]\}
\end{array} \\
\begin{array}{c}
\left(\left(i d+i_{1}\right) \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{2} \cdot i_{2}^{\circ}\right)^{\circ} \\
\{\text { converses }\}
\end{array} \\
\\
i_{1} \cdot\left(i d+i_{1}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ}
\end{gathered}
$$

## Exercise 12, page 169 <br> $i_{1} \cdot\left(i d+i_{1}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \quad$ (from last slide)



$$
\begin{gathered}
\text { Exercise 12, page } 169 \\
=\begin{array}{c}
i_{1} \cdot\left(i d+i_{1}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \quad \text { (from last slide) } \\
\{\text { expand } R+S\} \\
i_{1} \cdot\left[i_{1}, i_{2} \cdot i_{1}^{\circ}\right] \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
\{\text { expand }[R, S]\} \\
=
\end{array} \\
i_{1} \cdot\left(i_{1} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{1}^{\circ} \cdot i_{2}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
\left\{i_{1} \cdot i_{1} \cdot i_{1}^{\circ} \cup\left(i_{1} \cdot i_{2} \cdot i_{1} \cup i_{2} \cdot i_{2}^{\circ}\right) \cdot i_{2}^{\circ}\right. \\
\{\text { wrap up (function! })\}
\end{gathered}
$$

## Exercise 12, page 169

$$
\begin{aligned}
& i_{1} \cdot\left(i d+i_{1}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \quad \text { (from last slide) } \\
& =\quad\{\text { expand } R+S \text { \} } \\
& i_{1} \cdot\left[i_{1}, i_{2} \cdot i_{1}^{\circ}\right] \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
& =\quad\{\operatorname{expand}[R, S]\} \\
& i_{1} \cdot\left(i_{1} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{1}^{\circ} \cdot i_{2}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
& \text { distribution ; associativity }\} \\
& i_{1} \cdot i_{1} \cdot i_{1}^{\circ} \cup\left(i_{1} \cdot i_{2} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{2}^{\circ}\right) \cdot i_{2}^{\circ} \\
& \text { wrap up (function!) \} } \\
& {\left[i_{1} \cdot i_{1},\left[i_{1} \cdot i_{2}, i_{2}\right]\right]} \\
& \text { spruce it \} } \\
& {\left[i_{1} \cdot i_{1}, i_{2}+i d\right]}
\end{aligned}
$$

## Exercise 12, page 169

$$
\left.\begin{array}{rl}
= & \begin{array}{c}
i_{1} \cdot\left(i d+i_{1}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \quad\{\text { expand } R+S\}
\end{array} \\
= & \quad \text { (from last slide) } \\
= & \begin{array}{c}
i_{1} \cdot\left[i_{1}, i_{2} \cdot i_{1}^{\circ}\right] \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ}
\end{array} \\
\{\text { expand }[R, S]\}
\end{array}\right\} \begin{gathered}
i_{1} \cdot\left(i_{1} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{1}^{\circ} \cdot i_{2}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
= \\
\\
\\
\\
i_{1} \cdot i_{1} \cdot i_{1}^{\circ} \cup\left(i_{1} \cdot i_{2} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{2}^{\circ}\right) \cdot i_{2}^{\circ}
\end{gathered}
$$

$\square$


## Exercise 12, page 169

$$
\begin{aligned}
& i_{1} \cdot\left(i d+i_{1}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \quad \text { (from last slide) } \\
& =\quad\{\text { expand } R+S \text { \}} \\
& i_{1} \cdot\left[i_{1}, i_{2} \cdot i_{1}^{\circ}\right] \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
& =\quad\{\operatorname{expand}[R, S]\} \\
& i_{1} \cdot\left(i_{1} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{1}^{\circ} \cdot i_{2}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
& =\quad\{\text { distribution ; associativity }\} \\
& i_{1} \cdot i_{1} \cdot i_{1}^{\circ} \cup\left(i_{1} \cdot i_{2} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{2}^{\circ}\right) \cdot i_{2}^{\circ} \\
& =\quad\{\text { wrap up (function!) \}} \\
& {\left[i_{1} \cdot i_{1},\left[i_{1} \cdot i_{2}, i_{2}\right]\right]}
\end{aligned}
$$

## Exercise 12, page 169

$$
\begin{aligned}
& i_{1} \cdot\left(i d+i_{1}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \quad \text { (from last slide) } \\
& =\quad\{\text { expand } R+S\} \\
& i_{1} \cdot\left[i_{1}, i_{2} \cdot i_{1}^{\circ}\right] \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
& =\quad\{\operatorname{expand}[R, S]\} \\
& i_{1} \cdot\left(i_{1} \cdot i_{1}^{\circ} \cup i_{2} \cdot i_{1}^{\circ} \cdot i_{2}^{\circ}\right) \cup i_{2} \cdot i_{2}^{\circ} \cdot i_{2}^{\circ} \\
& =\quad\{\text { distribution ; associativity }\} \\
& i_{1} \cdot i_{1} \cdot i_{1}^{\circ} \cup\left(i_{1} \cdot i_{2} \cdot i_{1}^{o} \cup i_{2} \cdot i_{2}^{\circ}\right) \cdot i_{2}^{\circ} \\
& =\quad\{\text { wrap up (function!) \} } \\
& {\left[i_{1} \cdot i_{1},\left[i_{1} \cdot i_{2}, i_{2}\right]\right]} \\
& =\{\text { spruce it }\} \\
& {\left[i_{1} \cdot i_{1}, i_{2}+i d\right]}
\end{aligned}
$$

## Exercise 13, page 170

The following are known isomorphisms involving sums and products:

$$
\begin{align*}
A \times(B \times C) & \cong(A \times B) \times C  \tag{34}\\
A & \cong A \times 1  \tag{35}\\
A & \cong 1 \times A  \tag{36}\\
A+B & \cong B+A  \tag{37}\\
C \times(A+B) & \cong C \times A+C \times B \tag{38}
\end{align*}
$$

Guess the relevant isomorphism pairs.

## More elaborate isomorphisms

Let us introduce variables in isomorphism pair $(r, f)$ :

$$
\begin{array}{cc} 
& \begin{aligned}
\circ & f \\
\equiv & \{\text { introduce variables }\}
\end{aligned} \\
& \left\langle\forall a, c:: c\left(r^{\circ}\right) a \equiv c f a\right\rangle \\
\equiv & \left\{b\left(f^{\circ} \cdot R \cdot g\right) a \equiv\left(\begin{array}{ll}
f & b) R(g a)
\end{array}\right\}\right. \\
& \langle\forall a, c:: r c=a \equiv c=f a\rangle
\end{array}
$$

You've seen this pattern already at school, recall eg.

$$
\begin{equation*}
\langle\forall a, c:: b+c=a \equiv c=a-b\rangle \tag{39}
\end{equation*}
$$

Let us see a few data transformations which share this pattern.

## Transposes

Every relation can be safely converted into a the corresponding set-valued function:

$$
\begin{equation*}
\langle\forall R, k:: k=\Lambda R \equiv R=\epsilon \cdot k\rangle \tag{40}
\end{equation*}
$$

With more variables (omitting outer $\forall$ ):

$$
k=\wedge R \equiv\langle\forall b, a \quad: \quad b R a \equiv b \in(k a)\rangle
$$

Diagram:


## Transposes

Simple relations "are Maybe functions":

$$
k=\text { tot } S \equiv S=i_{1}^{\circ} \cdot k
$$

With more variables (omitting outer $\forall$ ):

$$
k=t o t S \equiv\left\langle\forall b, a:: b S a \equiv\left(i_{1} b\right)=k a\right\rangle
$$

Diagram:

(Handles impedance mismatch between pointer data models and relational models.)

## Relational currying

Isomorphism

and associated universal property,

$$
\begin{equation*}
k=\bar{R} \equiv\langle\forall a, b, c:: \quad a(k b) c \equiv a R(b, c)\rangle \tag{42}
\end{equation*}
$$

express a kind of selection/projection mechanism: given some $b_{0}$, $\bar{R} b_{0}$ selects the "sub-relation" of $R$ of all pairs $(a, c)$ related to $b_{0}$.

## Functional currying

Isomorphism (in case $R:=f$ )


Associated universal property

$$
\begin{equation*}
k=\bar{f} \equiv\langle\forall b, c::(k b) c=f(b, c)\rangle \tag{44}
\end{equation*}
$$

simpler because $f$ is a function. (The usual notation for $\bar{f}$ is curry $f$, and uncurry $=$ curry $^{\circ}$.)

## Third lecture

Schedule: Thursday July 5th, 11h30am-12h30m

## Learning outcomes:

- PF-transform at work:
- new $\leq$-rules from old
- calculating implementations from abstract models
- dealing with recursive data model impedance mismatch
- PF-transform in the lab: the 2LT package
- Topics for research


## Calculating database schemes from abstract models

- Generic type of a relational database

$$
\begin{equation*}
R D B T \stackrel{\text { def }}{=} \prod_{i=1}^{n}\left(\prod_{j=1}^{n_{i}} K_{j} \rightharpoonup \prod_{k=1}^{m_{i}} D_{k}\right) \tag{45}
\end{equation*}
$$

only admits products and simple relations

- $d b \in R D B T$ is a collection of $n$ relational tables (index $i=1, n$ ) each of which maps tuples of keys (index $j$ ) to tuples of data of interest (index $k$ ).
What about datatype sums, multivalued types, inductive types etc?


## Calculating database schemes from abstract models

- Generic type of a relational database

$$
\begin{equation*}
R D B T \stackrel{\text { def }}{=} \prod_{i=1}^{n}\left(\prod_{j=1}^{n_{i}} K_{j} \rightharpoonup \prod_{k=1}^{m_{i}} D_{k}\right) \tag{45}
\end{equation*}
$$

only admits products and simple relations

- $d b \in R D B T$ is a collection of $n$ relational tables (index $i=1, n$ ) each of which maps tuples of keys (index $j$ ) to tuples of data of interest (index $k$ ).
- What about datatype sums, multivalued types, inductive types etc?

Some impedance mismatch to be expected!

## Getting rid of sums

Diagram:

$$
\begin{equation*}
(B+C) \rightarrow A \frac{[-,-]^{\circ}}{\cong}(B) \times(C \rightarrow A) \tag{46}
\end{equation*}
$$

Universal property:

$$
\begin{equation*}
T=[R, S] \equiv T \cdot i_{1}=R \wedge T \cdot i_{2}=S \tag{47}
\end{equation*}
$$

Pragmatics: when applied from left to right, this rule helps in removing sums from data models: relations with input sums decompose into pairs of relations

## Getting rid of sums

What about sums at the output? Another sum-elimination rule is applicable to such situations,

$$
\begin{equation*}
A \rightarrow(B+C) \frac{\Delta_{+}}{\cong} \underset{\substack{+\bowtie}}{\cong}(A) \times(A \rightarrow C) \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
& M \stackrel{+}{\star} N \stackrel{\text { def }}{=} i_{1} \cdot M \cup i_{2} \cdot N  \tag{49}\\
& \triangle_{+} M \stackrel{\text { def }}{=}\left\langle i_{1}^{\circ} \cdot M, i_{2}^{\circ} \cdot M\right\rangle \tag{50}
\end{align*}
$$

## Getting rid of multivalued attributes

Recall that

$$
\text { Books } \stackrel{\text { def }}{=} \text { ISBN } \rightharpoonup \text { Title } \times(5 \rightharpoonup \text { Author }) \times \text { Publisher }
$$

has a multivalued type (up to 5 authors). How do we remove $(\rightharpoonup)$-nesting?

In the next slide we calculate a rule which gets rid of pattern

$$
A \rightharpoonup(D \times(B \rightharpoonup C))
$$

## New $\leq$-rules from old

$$
\begin{array}{ll} 
& A \rightharpoonup(D \times(B \rightharpoonup C)) \\
\cong & \{\text { Maybe transpose }\} \\
& (D \times(B \rightharpoonup C)+1)^{A} \\
\leq \quad & \{\text { exercise } 10\} \\
& ((D+1) \times(B \rightharpoonup C))^{A} \\
\cong \quad & \left\{\text { splitting: }(B \times C)^{A} \cong B^{A} \times C^{A}\right\} \\
& (D+1)^{A} \times(B \rightharpoonup C)^{A} \\
\cong \quad & \{\text { Maybe transpose and relational (un)currying \} } \\
& (A-D) \times(A \times B \rightharpoonup C)
\end{array}
$$

## Getting rid of multivalued attributes

In summary:

$$
A \rightharpoonup\left(D \times(B \rightharpoonup C) \frac{\Delta_{n}}{\bowtie_{n}} D(A \rightharpoonup \quad D) \times(A \times B \rightharpoonup C)(51)\right.
$$

Illustration:

$$
\begin{array}{ll} 
& \text { Books }=\text { ISBN } \rightharpoonup(\text { Title } \times(5 \rightharpoonup \text { Author }) \times \text { Publisher }) \\
\cong_{1} \quad\left\{r_{1}=i d \rightharpoonup\left\langle\left\langle\pi_{1}, \pi_{3}\right\rangle, \pi_{2}\right\rangle, f_{1}=\text { id } \rightharpoonup\left\langle\pi_{1} \cdot \pi_{1}, \pi_{2}, \pi_{2} \cdot \pi_{1}\right\rangle\right\} \\
& \text { ISBN } \rightharpoonup(\text { Title } \times \text { Publisher }) \times(5 \rightharpoonup \text { Author }) \\
\left.\leq_{2} \quad\left\{r_{2}=\triangle_{n}, f_{2}=\bowtie_{n}, \text { cf. (?? }\right)\right\} \\
& (\text { ISBN } \rightharpoonup \text { Title } \times \text { Publisher }) \times(\text { ISBN } \times 5 \rightharpoonup \text { Author }) \\
= & \text { Books }_{2}
\end{array}
$$

## Checking model transformations

Entity-Relationship PF-semantics makes it possible to check model transformation rules available from the literature, eg. Rule 12.2 of J.-L. Hainaut (GTTSE'05) catalogue:

(This converts a $0: N$ attribute into an entity.)
Starting point

$$
\mathbf{A}=A_{1} \rightharpoonup A_{2} \times \mathcal{P} A_{3}
$$

## Checking model transformations

$$
\left.\begin{array}{lc} 
& A_{1} \rightharpoonup A_{2} \times \mathcal{P} A_{3} \\
\leq_{1} & \left\{\text { create references to } A_{3}\right\} \\
& \left(K_{3} \rightharpoonup A_{3}\right) \times\left(A_{1} \rightharpoonup A_{2} \times \mathcal{P} K_{3}\right) \\
\cong_{2} \quad\{\mathcal{P A} \cong A \rightharpoonup 1\} \\
& \left(K_{3} \rightharpoonup A_{3}\right) \times\left(A_{1} \rightharpoonup A_{2} \times\left(K_{3} \rightharpoonup 1\right)\right) \\
\leq_{3} & \{\text { unrest }(\neg)\}
\end{array}\right\}
$$

## Calculating model transformations

Our conclusion is that - strictly speaking - the law is uni-directional, not an equivalence:

$$
A_{1} \rightharpoonup A_{2} \times \mathcal{P} A_{3} \leq \underbrace{\left(A_{1} \rightharpoonup A_{2}\right)}_{A^{\prime}} \times \underbrace{\left(\mathcal{P}\left(A_{1} \times K_{3}\right)\right)}_{r A} \times \underbrace{\left(K_{3} \rightharpoonup A_{3}\right)}_{E A 3}
$$


thanks to the accuracy of PF-reasoning.

## On the impedance of recursive data models

Recall that our starting model for family trees is recursive:

```
data PTree = Node {
    name :: String ,
    birth :: Int ,
    mother :: Maybe PTree,
    father :: Maybe PTree
    }
```

that is (for Ind abbreviating name and birth)

$$
P \text { Tree } \cong \underbrace{\operatorname{Ind} \times(P \text { Tree }+1) \times(P \text { Tree }+1)}_{\text {G PTree }}
$$

In general

$$
\mu \mathrm{G} \cong \mathrm{G} \mu \mathrm{G}
$$

## Getting rid of $\mu$ 's


where $K$ ia as a data type of "heap addresses" and $K \rightharpoonup \mathrm{G} K$ a datatype of G-structured heaps.

## Representations are "folds"

A typical representation $R$ is the function $r$ which builds the heap for a tree by joining (separated) heaps for the subtrees, for instance

$$
\begin{aligned}
& \text { r (Node } \mathrm{n} \text { b m f) = let } \mathrm{x}=\mathrm{fmap} \mathrm{rm} \\
& \mathrm{y}=\mathrm{fmap} \mathrm{r} \mathrm{f} \\
& \text { in merge ( } n, b \text { ) } x \text { y }
\end{aligned}
$$

where merge performs separated union of heaps

```
merge a Nothing Nothing =
    Heap ([ 1 |-> (a, Nothing, Nothing) ]) 1
merge a (Just x) (Just y) =
    Heap ([ 1 |-> (a, Just k1, Just k2) ] ++ h1 ++ h2) 1
    where (Heap h1 k1) = bmap id even_ x
    (Heap h2 k2) = bmap id odd_ y
```


## Data "heapification"

Source

$$
\ldots . . .\}\}\}
$$

"heapifies" into:

$$
\begin{aligned}
& \text { r t = Heap [(1, (("Peter", 1991), Just 2, Just 3)), } \\
& \text { (2, (("Mary", 1956) , Nothing, Just 6)), } \\
& \text { (6, (("Jules", 1917), Nothing, Nothing)) , } \\
& \text { (3, (("Joseph", 1955), Just 5, Just 7)) , } \\
& \text { (5, (("Margaret", 1923), Nothing, Nothing)), } \\
& \text { (7, (("Luigi", 1920), Nothing, Nothing))] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { t= Node \{name = "Peter", birth = 1991, } \\
& \text { mother }=\text { Just (Node \{name }=\text { "Mary", birth }=1956 \text {, } \\
& \text { mother }=\text { Nothing, } \\
& \text { father = Just (Node \{name }=\text { "J } \\
& \text { birth = } 1
\end{aligned}
$$

## Abstractions are "unfolds"

Abstraction is a (partial!) unfold:

$$
\begin{aligned}
f(\text { Heap } h \mathrm{k})= & \text { let Just } \\
& (\mathrm{a}, \mathrm{x}, \mathrm{y})=\text { lookup } \mathrm{k} \mathrm{~h} \\
\text { in Node } & (\text { fst a) (snd a) } \\
& (\text { fmap (f . Heap h) x) } \\
& (f m a p(f . \text { Heap h) y) }
\end{aligned}
$$

(can be "totalized" via the Maybe transpose yielding a monadic unfold)

## Abstractions are "unfolds"

Abstraction is a (partial!) unfold:

$$
\begin{aligned}
& \text { f (Heap h k) = let Just (a, x,y) = lookup k h } \\
& \text { in Node (fst a) (snd a) } \\
& \text { (fmap (f . Heap h) x) } \\
& \text { (fmap (f . Heap h) y) }
\end{aligned}
$$

(can be "totalized" via the Maybe transpose yielding a monadic unfold)

Thanks to the $\leq$-rule

$$
f(r t)=t \text { always holds. }
$$

## Boiling recursion down to SQL

PTree

$$
\left.\begin{array}{lc}
\cong_{1} \quad & \left\{r_{1}=\text { out }, f_{1}=\text { in, for } G K \stackrel{\text { def }}{=} \operatorname{Ind} \times(K+1) \times(K+1)\right\} \\
& \mu \mathrm{G} \\
\leq_{2} & \left\{R_{2}=U n f^{\circ}, F_{2}=\text { Unf }\right\}
\end{array}\right\}
$$

$$
\leq_{6} \quad\left\{r_{6}=\triangle_{n}, f_{6}=\bowtie_{n}\right\}
$$

## Boiling recursion down to SQL

$$
\begin{array}{cc} 
& ((K \rightharpoonup \text { Ind }) \times(K \times 2 \rightharpoonup K)) \times K \\
\cong_{7} & \left\{r_{7}=\text { flatl }, f_{7}=\text { flat }^{\circ}\right\} \\
& (K \rightharpoonup \text { Ind }) \times(K \times 2 \rightharpoonup K) \times K \\
=8 & \{\text { since Ind }=\text { Name } \times \text { Birth \}} \\
& (K \rightharpoonup \text { Name } \times \text { Birth }) \times(K \times 2 \rightharpoonup K) \times K
\end{array}
$$

In summary:

- Step 2 moves from the functional (inductive) to the pointer-based representation.
- Step 5 starts the move from pointer-based to relational-based representation: pointers "become" primary/foreign keys.
- Steps 7 and 8 deliver the final RDBT structure. (Third factor $K$ gives access to the root of the original tree.)


## Last but not least

$\leq$-calculus is structural: given parametric type G,


- Easy PF-proof (see notes)
- Also valid for $n$ parameter types, eg.

$$
A \leq C \wedge B \leq D \Rightarrow A+B \leq C+D
$$

# Tools: 2LT (@ UMinho Haskell Libraries) 

| $4 \rightarrow 0+$ | Q http://wiki.di.uminho.pt/twiki/bin/view/Research/PURe/2LT | [RSS]- Q-2it web wiki | (6) |
| :---: | :---: | :---: | :---: |
| (0) GITSE 2007 | home FAST MAP-1 map-i MAP-1 (wiki) S8MF 2007 MFFS | CMu-Portugal JML Wo |  | PURe

Program Understanding and Re-engineering: Calculi and Applications

## NAVIGATIC

- Home
- PURe Café
- Publications
- Software

RELATED

- LMF Group
- Conferences
- IKF Project

NEWS
Sep 18 Paper
Towards a
Coordination Model for Interactive Systems by MarcoAntonioBarbos: JoseCampos and LuisSoaresRarhosa

## Two Level Transformation (2LT)

A two-level data transformation consists of a type-level transformation of a data format coupled with value-level transformations of data instances corresponding to that format. Examples of two-level data transformations include XML schema evolution coupled with document migration, and data mappir that couple a data format mapping with conversions between mappe formats.

- Theory and implementation in Haskell
- Documentation
- Download
- Credits


## 2LT demos: $\{\mathrm{XML}, \mathrm{VDM}\} \leftrightarrow \mathrm{SQL}$

Demo 1:

- Bridging XML and SQL:
- PTree example replayed by 2LT

Demo 2:

- Generating SQL from VDM data models:
- Project: development of a repository of courses on formal methods in Europe
- Client: Formal Methods Europe (FME) association
- Method: formal model in VDM++ lead to a prototype webservice (using CSK VDMTools); database model automatically calculated by 2LT, including data migration.


## Conclusions

Summary

- Data model impedance mismatch can be calculated
- PF-transform makes calculations agile and elegant
- $e=m+c$ approach to software engineering

Topics in the notes not covered in the lectures

- Operation transcription (more technical but great fun)
- Concrete invariant calculation

Still a lot of work to do: see next slides

## Research topic: Lenses relate to $\leq$-rules

Not only connectivity of

cf.

$$
\begin{aligned}
& \text { putback } \cdot \pi_{1}^{\circ} \subseteq g e t^{\circ} \\
& \equiv \quad\{\text { "al-djabr" twice (functions) \} } \\
& \text { get } \cdot \text { putback } \subseteq \pi_{1} \\
& \equiv \quad\{\text { equality of functions }\} \\
& \text { get } \cdot \text { putback }=\pi_{1} \\
& \equiv \quad\{\text { add variables: acceptability \}} \\
& \operatorname{get}(\text { putback }(v, s))=v
\end{aligned}
$$

## Lenses relate to $\leq$-rules

... but also connectivity of:

cf.

$$
\left.\begin{array}{ll} 
& \langle\text { get, id }\rangle \subseteq \text { put }^{\circ} \\
\equiv & \{\text { "al-djabr" }\}
\end{array}\right] \begin{gathered}
\text { putback } \cdot\langle\text { get, id }\rangle \subseteq \text { id } \\
\equiv \\
\\
\\
\\
\text { putback }(\text { get } s, s)=s
\end{gathered}
$$

## View-update context



Note that stability is nothing but lens $\mathcal{L}$ preserving the identity update:

$$
\mathcal{L i d}=i d
$$

Seeking compositionality:

$$
\mathcal{L}\left(u_{1} \theta u_{2}\right)=\left(\mathcal{L} u_{1}\right) \phi\left(\mathcal{L} u_{2}\right) \Leftarrow \ldots \ldots
$$

## Other research topics and applications

Heapification Law given can be generalized to mutually recursive datatypes
Separation logic Law given has a clear connection to shared-mutable data representation and thus with separation logic.
Concrete invariants $\leq$-rules should be able to take data type invariants into account
Mapping scenarios for the UML A calculational theory of UML mapping scenarios could be developed from eg. Kevin Lano's catalogue
2LT Tool can be of help in industrial applications (about $70 \%$ of data-warehousing projects fail because of faulty data migrations!)

