
FMSE: Formal Methods in Software Engineering

1 Formal Methods in Software Engineering

Summary

This document describes a 30 ECTS curricular unit offered by the Logic and For-
mal Methods Group of Minho University according to the Bologna recommenda-
tions (2nd cycle).

This unit stems from more than 20 years of experience at Minho in teaching, re-
searching and applying rigorous methods in the construction of software. Its main
aim is to provide a consistent and solid answer to the requirements and challenges
of the information age in the near future.

By resorting to the mathematical foundations of modelling, reasoning, program-
ming and testing, this offer bears a special mark in the way future professionals
are trained to meet high-quality standards in the design of software solutions to
real-life problems.

This unit is complemented by another offer of the same group entitled Program-
ming and Verification, which addresses complex algorithms and machine-assisted
verification, and applications.

Staff

Luı́s S. Barbosa, José B. Barros, Manuel Alcino Cunha, José N. Oliveira, Joost
Visser.

Contents

1 Formal Methods in Software Engineering 1
1.1 Context and Aims . 3
1.2 Overall Unit Structure . 3

1.2.1 Attendance modalities . 3
1.2.2 Keywords . 4
1.2.3 Required background . 4
1.2.4 Learning outcomes . 4
1.2.5 Teaching methodology . 5
1.2.6 Assessment . 5

1.3 Syllabus . 5
1.3.1 Formal Methods (FM) . 5
1.3.2 Calculus of Information Systems (CIS) 8
1.3.3 Processes and Software Architectures (PSA) 9
1.3.4 Software Analysis and Testing (SAT) 10

1

1.3.5 Cohesive Project (CP) . 11

2

1.1 Context and Aims

The Formal Methods in Software Engineering unit (FMSE unit for short) con-
sists of four 5 ETCS modules on specialized (theory) topics which are linked
together by a 10 ECTS lab module which acts as knowledge integration bus
(Fig. 1). This structure is intended to support the unit’s overall aim of ensuring
that solid theoretical knowledge finds its way to practice and real-life applica-
tion.

This strong blend between theory and practice is the one side of this unit’s
mission statement. The other side is captured by the following “stamp”, which
software professionals should endeavour to be able to stick to their products
and services in the future:

C
O

R

E C
TR

I
N S

I

D
E

This entails the need for knowledge representation notations and languages
amenable to mathematical reasoning under a careful balance between descrip-
tive power and calculational (reasoning) power, thus meeting the e = m + c

equation: engineering is nothing but modelling allied to calculation.
As a complement of this equation, the unit is particularly concerned with

testing of both models and implementations. The former is better known as
model animation and requires background in runnable declarative program-
ming notations. Model animation is useful in as-early-as-possible quality con-
trol of the intended design, in particular in what concerns adjusting the level
of abstraction, filtering childish errors and sorting subtle misinterpretation of
requirements. Implementation testing is akin to program analysis and can also
be performed on a sound and effective basis, well far way from primitive trial-
on-error debug.

As a final target of the FMSE unit we find software architecture, a theme
which bringing about such important aspects of software design as modular-
ization, objectification, reuse, simulation, and so on. This leads to a programming-
in-the-large, component-oriented approach to software design which is of enor-
mous relevance nowadays.

1.2 Overall Unit Structure

1.2.1 Attendance modalities

The FMSE unit is offered on a semestral / annual basis depending upon the
target students. The annual regime is recommended as default for students
wishing to complete two 30ECTS units in one year. The semestral alternative,
which is more intensive and focused in time, is more adequate for contiunous
education or wherever required by its integration in Erasmus-Mundos projects
involving other academic institutions.

3

The 4+1 module structure of the unit suggests a weekly load of 8T + 8TP +
8P hours, where T stands for theory class, TP for an interactive class and P for
labwork.

1.2.2 Keywords

Keywords: Informatics (30 ECTS)

Keywords (ACM Computing Classification System): The 30ECTS of the FMSE
unit distribute as follows across the ACM Computing Classification System of
the ACM Computing Curricula (1998), in lexicographic order:

• Software/SOFTWARE ENGINEERING/Metrics — 5

• Software/SOFTWARE ENGINEERING/Requirements/Specifications —
5

• Software/SOFTWARE ENGINEERING/Software Architectures — 5

• Software/SOFTWARE ENGINEERING/Software/Program Verification
— 5

• Software/SOFTWARE ENGINEERING/Testing and Debugging — 5

• Theory of Computation/LOGICS AND MEANINGS OF PROGRAMS/Specifying
and Verifying and Reasoning about Programs — 5

1.2.3 Required background

• Experience in programming, including familiarity with declarative pro-
gramming (logical, functional):

• Background in predicate logic, lambda calculus and discrete mathematics
at first cycle level.

1.2.4 Learning outcomes

• Create, analyse, refine, classify, animate, test, transform and calculate
with abstract models of requirements in software engineering.

• Transform specifications of complex information systems into efficient
implementations on diverse technologies and platforms.

• Model, analyse, classify and transform component interaction patterns,
modular strategies (components, objects, services) and software architec-
tural schemes.

• Select and use tools for program analysis

4

• Perform software quality control and plan / execute projects in software
testing.

• Document and justify software design decisions based on accurate soft-
ware modelling and reasoning.

• Manage software engineering projects in an integrated way from concep-
tion to implementation, testing and deployment.

1.2.5 Teaching methodology

• Introduction and explanation of concepts interleaved with case study
analysis.

• Classroom group-work on exercises and small case-studies, adding tool
support to pen-and-paper work wherever possible.

• Lab assignments and offline group projects on medium scale case-studies
under direct supervision of the lecturing staff.

1.2.6 Assessment

Student assessment is targetted at measuring not only individual learning gains
but also group-level skills, including integration, determination and persever-
ance in meeting requirements and surviving adversity.

There is only one final examination paper whose mark is weighted-averaged
with continuous assessment of lab work and its deliverables (quality of written
reports, professionalism in tool development, oral presentation skills etc.)

1.3 Syllabus

The FMSE unit consists of 4 thematic modules worth 5 ECTS each,

FM Formal Methods

CIS Calculus of Information Systems

PSA Processes and Software Architectures

SAT Software Analysis and Testing

linked together by a laboratorial “bus” of 10 ECTS (the so-called Cohesive Project)
which ensures experimentation and practical application of the units main
learning outcomes. This overall structure is depicted in Fig. 1.

1.3.1 Formal Methods (FM)

Description. The main purpose of formal modelling is to identify properties
of real-world situations which, once expressed by mathematical formulæ, be-
come abstract models which can be queried and reasoned about. This often

5

?

�

SAT

PSA

-�

-

�

�

CP

-

-

?

1st semester

2nd semester

FM

CIS

Figure 1: Internal Structure of the FMSE 30ECTS unit.

raises a kind of notation conflict between descriptiveness (ie., adequacy to de-
scribe domain-specific objects and properties, inc. diagrams or other graphical
objects) and compactness (as required by algebraic reasoning and solution cal-
culation).

Classical pointwise notation in logics involves operators as well as variable
symbols, logical connectives, quantifiers, etc. in a way which is hard to scale-
up to complex models. This is not, however, the first time this kind of nota-
tional conflict arises in mathematics. Elsewhere in physics and engineering,
people have learned to overcome it by changing the “mathematical space”,
for instance by moving (temporarily) from the time-space to the s-space in the
Laplace transformation.

The pointfree (PF) transform adopted in this module is at the heels of this old
reasoning technique. Standard set-theory-formulated concepts are regarded
as “hard” problems to be transformed into “simple”, subsidiary equations dis-
pensing with points and involving only binary relation concepts. As in the
Laplace transformation, these are solved by purely algebraic manipulations and
the outcome is mapped back to the original (descriptive) mathematical space
wherever required.

Note the advantages of this two-tiered approach: intuitive, domain-specific
descriptive formulæ are used wherever the model is to be “felt” by people.
Such formulæ are transformed into a more elegant, simple and compact — but
also more cryptic — algebraic notation whose single purpose is easy manipu-
lation.

According to this line of thought, this module structures itself in two levels:

6

description and calculation. At the former, students learn how to capture infor-
mal requirements into abstract models written in VDM-SL notation (SO/IEC
standard 13817-1). At the latter, a PF-semantics of VDM-SL is set up which is
used in reasoning and calculating with abstract models, eg. in proving invari-
ant properties, in converting abstract models to and from ER-diagrams, etc.

Given its basic nature, this module is central to the whole unit. It binds to
the Cohesive Project (CP) via lab sessions on VDM-SL model animation and
testing (cf. rapid-prototyping).

Syllabi

• Introduction to high-quality control standards in the software field. Safety-
critical systems.

• Formal methods and the formal method life-cycle. Specification versus
implementation (and refinement).

• The role of abstraction in formal modelling. Sub-specification and non-
determinism.

• Languages for formal specification and systems modelling. From the
VDM method to the SO/IEC 13817-1 (VDM-SL) standard. Abstract data
models: sets, sequences and mappings. Notation and properties.

• Reasoning about models. Introduction to the “Pointfree-transform”. Re-
lations versus functions. Relational calculus. Semantics of the VDM-SL
notation expressed in the relational calculus. Galois connections. Point-
free reasoning. Taxonomy of binary relations. Wellfoundedness and ter-
mination. Structural induction.

• Formal modelling in the IS context. VDM-SL semantics of ER-diagrams.

• Lab sessions: experience with CSK’s VDMTOOLS for Quality Software
on Schedule. Use of Haskell to animate abstract models.

Learning Outcomes

• Learn what an abstract model of a problem or situation is

• Create, analyse, refine, classify, animate, test, transform and calculate
with formal models

• Apply the PF-transform and the relational calculus to the reasoning about
abstract models

7

1.3.2 Calculus of Information Systems (CIS)

Description. This module applies the learning outcomes of its predecessor
(FM) to a specific and particularly relevant software engineering problem: that
of calculating correct implementations from abstract models. As a particular
application, this refinement-by-calculation approach is instantiated to the area
of database design. In order words, database schema design is regarded as
a special case of “do it by calculation” data refinement. This provides a cal-
culational alternative to state-of-the-art casuistic practice stemming from set-
theoretic “normalization theory”.

Another learning outcome of the CSI module has to do with objectification,
the process of evolution of a purely declarative (eg. functional) model into an
object, or abstract state machine (ASM) exhibiting a public API which can be
accessed in client-server architectural mode. At the level of model animation,
this corresponds to switching from VDM-SL / Haskell to VDM++ / OOHaskell
and extensions.

ASM refinement is studied in two steps, as suggested by their levels of ser-
vice, dataware e middleware. Concerning the first, emphasis is put on a calculus
of data-structures which stems from the relational calculus studied in the FM
module. This is supported by locally developed tools such as VooDoMM and
2LT, which interface XLM and VDM with SQL via Haskell. Middleware refine-
ment is calculated in terms of the algorithmic refinement order which reduces
nondeterminism and increases definition. This includes derecursivation and
calculation of while/for loops from recursive specs.

At lab assignment level, students assemble themselves in groups and carry
out the development of applications (typically in the form of a webservice)
which stems from a VDM++ model by addition of a client, the server being
transformed into an SQL server once prototype animation is over. Linking
these experiments with the Process Calculi and Software Architecture (PCSA) and
Software Analysis and Testing (SAT) modules is part of the overall aim of CSI.

Syllabus

• Introduction to program development by calculation. Foundations of
data refinement. Abstraction and representation functions/relations. In-
vertibility. Surjectivity and/or injectivity. Isomorphic data. Data migra-
tion using formal methods.

• Data refinement by calculation. Repository of laws for data refinement.
Recursion removal theorem. Encoding of recursive polynomial data mod-
els as pointer-structures in C/C++ style. On grammar-based representa-
tions (XML). Object-oriented representation.

• Algorithimc data refinement. Simulation and reduction of nondetermin-
ism. Deterministic (functional) implementations. Change of real/virtual
data-structures. Fusion laws. Hylomorphisms. Derivation of while/for-
loops as hylomorphisms.

8

• Project: from functional specification animation to service prototyping.
Objectification: from algebras to objects. Reactive behaviour. API. Client-
server arquitecture. Embedding formal models into foreign language
contexts. Experience with VDM++ and the VDMTOOLS←API.

Learning Outcomes

• Understand what stepwise refinement of software is.

• Distinguish specifications from implementations and abstractions from
representations.

• Transform specs into programs.

• Animate design prototypess in the client-server architecture.

• Calculate relational database schemas from abstract models.

1.3.3 Processes and Software Architectures (PSA)

Description. This module is designed as an introduction to software systems’
architecture from two complementary perspectives: the structure of their inter-
actions and their emergent behaviour. From a methodological point of view it
combines a foundational level (essentially based on process calculi) with a lab
project integrating both methodological and technological issues (e.g., web-
services, coordination middleware, specific platforms over e.g. JAVA or C#).

The first part of the module is concerned with behaviour and interaction
(formal) modelling. Particular emphasis is placed on calculi of mobile archi-
tectures and dynamic reconfiguration.

On top of such a formal foundation, the second part of the module char-
acterises the discipline of software architecture, emphasising description lan-
guages, conceptual frameworks, standards and documentation issues. The
module underlines the differences between static (compile-time) software in-
terconnection, oriented towards the application macro structure and resource
control, and dynamic, run-time software orchestration on top of heterogeneous
and global computational platforms. Students are made aware of a subtle, but
fundamental, change in the conception of software, more and more regarded
as a service rather than a product.

In such a context, the module characterises a number of concepts (e.g. con-
tract, interface, connector, glue code, architectural pattern, configuration, etc) as
well as typical architectural styles. In particular, the following paradigms are
discussed in detail:

• object-oriented architectures,

• component-oriented architectures and

• service-oriented architectures.

9

Syllabus

1. Components, services and processes

• Introduction: software structure vs behaviour; construction vs ob-
servation; inductive vs coinductive reasoning.

• Software components and services as interactive processes.

• Interaction and process calculi.

• Software mobility and dynamic reconfiguration. Introduction to π-
calculus.

• Case studies in the software laboratory.

2. Project and Analysis of Software Architectures

• From components to architectures. Notion of Software Architecture.

• Architectural description: ADLs (Architecture Description Languages);
architectural patterns and styles; methodologies.

• Object-oriented architectures: object composition; models, languages
and tools.

• Component-oriented architectures: component coordination; mod-
els and platforms.

• Service-oriented architectures: service orchestration; models and lan-
guages.

• Architectural documentation, analysis and re-engineering.

• Case studies in the software laboratory.

Learning Outcomes

• Clear understanding of core notions on software architectural design: in-
teraction, process, component (object, service, resource, ...). Ability to
distinguish among different forms of software composition and coordi-
nation.

• Ability to identify in real software products different architectural styles
and interaction patterns and use them in software projects.

• Ability to create, analyse, test and transform architectural models and
styles.

1.3.4 Software Analysis and Testing (SAT)

Description. In this course, students are invited to switch away from the
usual perspective on software of programmer, designer, or architect, which is
geared at construction. Instead, they must take the perspective of tester, quality
manager, and re-engineer, which is geared at evaluation.

10

They will employ this perspective at all levels of granularity, from individ-
ual routines up to software portfolios, and with varying levels of rigour, includ-
ing both heuristic and formal methods. In the accompanying lab excercises,
the students will not create software, but rather employ a range of methods
and tools to perform evaluation of existing software.

This module does not introduce program analysis and testing as an ad-hoc
collection of techniques. Rather, it provides a coherent theoretical framework in
which program analysis and testing are bound together, and treated explicitly
as complementary to software construction techniques. In this framework, test
cases, for example, are the extensional counterparts of the intensional properties
derivable from specifications. Consequently, specification-driven analysis and
generation of tests emerges parallel to reverse engineering and calculational
refinement of specifications into programs. Such theoretical embedding of pro-
gram analysis and testing will equip students with a strong and systematic grip
on techniques that are commonly used and understood only on ad-hoc basis.

Syllabus

1. Unit testing, Functional testing, Test coverage analysis.

2. Model-driven testing, Test generation, Model checking, Fault injection.

3. Software metrics, Codings standards, Style checking.

4. Program understanding, Reverse engineering.

5. Verification, Security analysis, Risk assessment.

6. Complexity analysis, performance analysis.

Learning Outcomes

• Derive test sets from abstract software models

• Perform complexity and performance analysis.

• Derive metrics and assess quality of code

• Plan and implement software testing projects

1.3.5 Cohesive Project (CP)

Description. This module is exclusively made of practical, lab assignments.
It runs parallel to the other four (thematic) modules and integrates with them
by accepting requirements such as assignments, tools to use / enhance / de-
velop, etc. It is also regarded as the right place to address projects and themes
proposed by industrial partners, much in the same way some (optional) courses
already run in the department.

11

By default, a project is put forward at the beginning of the academic year
which is carfully planned so as to fullfill the role of enhancing cohesion of the
student’s individual learning gains. This is addressed and implemented in a
stepwise manner, with increased sophistication along with students increase of
background acquired in the thematic modules.

This project does not exclude parallel development of tool support, be it
enhancing existing tools or implementing them anew. As has happened in the
past, this adds to the LMF group’s patrimony which is endowed to future edi-
tions of the unit. Current examples are the UMinho Haskell libraries, the Camila
Revival innitiative, etc.

Interoperability with other technologies is another main ingredient of this
module’s training, meaning that there is no such thing as a wrong or old tech-
nology: all platforms will be under consideration provided one can find a way
of integrating with them. We believe this to be important for students to accept
reading legacy code and be prepared to reuse it.

Last but not least, students are instilled the practice to measure their pro-
ductivity in terms of effort/outcome ratios, time cards and other devices which
prepare them for the need to measure and control costs in engineering projects.

Learning Outcomes

• Plan, execute and assess software design projects

• Learn how to use a tool effectively

• Get acquainted with different technology integration.

• Learn what to do cooperative work and management of costs.

12

