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Motivation

In the previous lectures you have used predicate logic and finite

automata to capture the subtleties of real-life problems.

Question: Is there a unified formalism for formal modelling?

Historically, predicate logic was not the
first to be proposed:

• Augustus de Morgan (1806-71) —
recall de Morgan laws (121,122) —
proposed a Logic of Relations as
early as 1867.

• Predicate logic appeared later.

Perhaps de Morgan was right in the first place: in real life,
“everything is a relation”...
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Everything is a relation...

... as diagram

shows. (Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Arrow notation for relations

The picture is a collection of relations — vulg. a semantic

network — elsewhere known as a (binary) relational system.

However, in spite of
the use of arrows in
the picture (aside) not
many people would
write

mother of : People → People

as the type of relation

mother of .
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Pairs

Consider assertions

0 6 π

Catherine isMotherOf Anne

3 = (1+) 2

They are statements of fact concerning various kinds of object —
real numbers, people, natural numbers, etc

They involve two such objects, that is, pairs

(0, π)

(Catherine, Anne)

(3, 2)

respectively.
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Sets of pairs

So, we might have written instead:

(0, π) ∈ 6

(Catherine, Anne) ∈ isMotherOf

(3, 2) ∈ (1+)

What are (6), isMotherOf , (1+)?

• they can be regarded as sets of pairs

• better, they should be regarded as binary relations.

Therefore,

• orders — eg. (6) — are special cases of relations

• functions — eg. succ △ (1+) — are special cases of
relations.
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Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation. The usual infix notation used in natural
language — eg. Catherine isMotherOf Anne — and in

maths — eg. 0 6 π — extends to arbitrary B A
Roo :

we write

b R a

to denote that (b, a) ∈ R.
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Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation. The usual infix notation used in natural
language — eg. Catherine isMotherOf Anne — and in

maths — eg. 0 6 π — extends to arbitrary B A
Roo :

we write

b R a

to denote that (b, a) ∈ R.



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Binary relations are matrices

Binary relations can be regarded as Boolean matrices, eg.

Relation R: Matrix M:

In this case A = B = {1..11}. Relations A A
Roo over a single

type are also referred to as (directed) graphs.



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Alloy: where “everything is a relation”

Declaring binary

relation A
R // B

is Alloy (aside).

Alloy is a tool
designed at MIT
(http://alloy.
mit.edu/alloy)

We shall be using
Alloy in this course.

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy
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Functions are relations

Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a (1)

Therefore, we generalize

B A
foo

b = f a
to B A

Roo

b R a
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Exercise

Taken from Propositiones ad acuendos iuuenes (“Problems
to Sharpen the Young”), by abbot Alcuin of York († 804):

XVIII. Propositio de homine et capra et lvpo.

Homo quidam debebat ultra fluuium transferre lupum,
capram, et fasciculum cauli. Et non potuit aliam nauem
inuenire, nisi quae duos tantum ex ipsis ferre ualebat.
Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis
illaesis transire potuit?
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Exercise

XVIII. Fox, goose and bag of beans puzzle. A
farmer goes to market and purchases a fox, a goose, and
a bag of beans. On his way home, the farmer comes to a
river bank and hires a boat. But in crossing the river by
boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans.
(If left alone, the fox would eat the goose, and the goose
would eat the beans.) Can the farmer carry himself and
his purchases to the far bank of the river, leaving each
purchase intact?

Identify the main types and relations involved in the puzzle and
draw them in a diagram.
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Propositio de homine et capra et lvpo

Data types:

Being = {Farmer ,Fox ,Goose,Beans} (2)

Bank = {Left,Right} (3)

Relations:

Being
Eats // Being

where

��
Bank

cross // Bank

(4)
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Propositio de homine et capra et lvpo

Specification source written in Alloy:
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Propositio de homine et capra et lvpo

Diagram of specification (model) given by Alloy:
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Propositio de homine et capra et lvpo

Diagram of instance of the model given by Alloy:

Silly instance, why? — specification too loose...
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Composition

Recall function

composition (aside).

We extend f · g to
relational composition
R · S in the obvious way:

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(5)

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (6)

Example: Uncle = Brother · Parent, that expands to

u Uncle c ≡ 〈∃ p :: u Brother p ∧ p Parent c〉

Note how this rule removes ∃ when applied from right to left.

Notation R · S is said to be point-free (no variables, or points).
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Check generalization

Back to functions, (6) becomes1

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c (1) }

〈∃ a :: b f a ∧ a = g c〉

≡ { ∃-trading (120) ; b f a means b = f a (1) }

〈∃ a : a = g c : b = f a〉

≡ { ∃-one point rule (124) }

b = f (g c)

So, we easily recover what we had before (5).

1Check the appendix on predicate calculus.
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Relation inclusion

Relation inclusion generalizes function equality:

Equality on functions

f = g ≡ 〈∀ a : a ∈ A : f a =B g a〉 (7)

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a : b R a : b S a〉 (8)

(read R ⊆ S as “R is at most S”).

Inclusion is typed:

For R ⊆ S to hold both R and S need to be of the same type,

say B A
R,Soo .
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Relation inclusion

R ⊆ S is a partial order, i.e. it is reflexive,

R ⊆ R (9)

transitive

R ⊆ S ∧ S ⊆ Q ⇒ R ⊆ Q (10)

and antisymmetric:

R ⊆ S ∧ S ⊆ R ≡ R = S (11)

Therefore:

R = S ≡ 〈∀ b, a :: b R a ≡ b S a〉 (12)
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Relational equality

Both (12) and (11) establish relation equality, resp. in PW/PF
fashion.

Rule (11) is also called “ping-pong” or cyclic inclusion, often
taking the format

R

⊆ { .... }

S

⊆ { .... }

R

:: { “ping-pong” }

R = S
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Relation equality

Most often we prefer an indirect way of proving relation equality:

Indirect equality rules:

R = S ≡ 〈∀ X :: (X ⊆ R ≡ X ⊆ S)〉 (13)

≡ 〈∀ X :: (R ⊆ X ≡ S ⊆ X )〉 (14)

The typical layout is e.g.







X ⊆ R

≡ { ... }

X ⊆ . . .

≡ { ... }

X ⊆ S

:: { indirect equality (13) }

R = S
�
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Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
⊤oo , which is such that, for all b, a,

b⊤a ≡ True

Every type A Aoo has the

• identity relation A A
idoo which is nothing but function

id a = a (15)

Clearly, for every R,

⊥ ⊆ R ⊆ ⊤ (16)



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Diagrams

Assertions of the form X ⊆ Y where X and Y are relation
compositions can be represented graphically by square-shaped
diagrams, see the following exercise.

Exercise 1: Let a S n mean: “student a is assigned number n”. Using
(6) and (8), check that assertion

S · > ⊆ ⊤ · S depicted by diagram

N

S

��

N

S

��

>oo

⊆

A A
⊤

oo

means that numbers are assigned to students sequentially. �
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Exercises

Exercise 2: Use (6) and (8) and predicate calculus to show that

R · id = R = id · R (17)

R · ⊥ = ⊥ = ⊥ · R (18)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (19)
�

Exercise 3: Use (7), (8) and predicate calculus to show that

f ⊆ g ≡ f = g

holds (moral: for functions, inclusion and equality coincide). �

(NB: see the appendix for a compact set of rules of the predicate
calculus.)
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Converses

Every relation B A
Roo has a converse B

R◦

// A which is
such that, for all a, b,

a(R◦)b ≡ b R a (20)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (21)

and with itself:

(R◦)◦ = R (22)

Converse captures the passive voice: Catherine eats the apple —
R = (eats) — is the same as the apple is eaten by Catherine —
R◦ = (is eaten by).



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful!) property,

(f b)R(g a) ≡ b(f ◦ · R · g)a (23)

cf. diagram:
C D

Roo

B

f

OO

A

g

OO

f ◦·R·g
oo

Therefore (tell why):

b(f ◦ · g)a ≡ f b = g a (24)

Let us see an example of using these rules.
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PF-transform at work

Transforming a well-known PW-formula into PF notation:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x : (f y) = (f x) : y = x〉

≡ { (24) for f = g }

〈∀ y , x : y(f ◦ · f )x : y = x〉

≡ { (23) for R = f = g = id }

〈∀ y , x : y(f ◦ · f )x : y(id)x〉

≡ { go pointfree (8) i.e. drop y , x }

f ◦ · f ⊆ id
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The other way round

Now check what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (8) }

〈∀ y , x : y(id)x : y(f · f ◦)x〉

≡ { identity relation ; composition (6) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-one point (123) ; converse (20) }

〈∀ x :: 〈∃ z :: x f z ∧ x f z〉〉

≡ { trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective
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Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉 (check as homework);

• Say R is coreflexive (or diagonal) iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

img Roo

ker R
def
= R◦ · R img R

def
= R · R◦
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Alloy: checking for coreflexive relations
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Kernels of functions

Meaning of ker f :

a′(ker f )a

≡ { substitution }

a′(f ◦ · f )a

≡ { rule (24) }

f a′ = f a

In words: a′(ker f )a means a′

and a “have the same
f -image”.

Exercise 4: Let K be a
nonempty data domain, k ∈ K
and k be the “everywhere k”
function:

k : A // K
k a = k

(25)

Compute which relations are
defined by the following
expressions:

ker k , b · c◦ , img k (26)

�
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Binary relation taxonomy

Topmost criteria:

binary relation

VVVVVVVVVVVVVVVVVV

KKKKKKKKKK

ssssssssss

iiiiiiiiiiiiiiiiii

injective entire simple surjective

Definitions:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(27)

Facts:

ker (R◦) = img R (28)

img (R◦) = ker R (29)
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Binary relation taxonomy

The whole picture:

binary relation

ZZZZZZZZZZZZZZZ
RRR

mmm
ddddddddddddddddd

injective
QQQ

entire
mmm QQQQ

simple
PPPllll

surjective
ooo

representation
QQQ

function
RRR

mmm
abstraction
nnn

injection
QQQ

surjection
lll

bijection

(30)

Exercise 5: Resort to (28,29) and (27) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�
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Exercise

Exercise 6: Prove the following fact

A relation f is a bijection iff its converse f ◦ is a function (31)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker (f ◦) ∧ img (f ◦) ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection

�
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Propositio de homine et capra et lvpo

Exercise 7: Check which of the following properties,

simple, entire,
injective,
surjective,
reflexive,
coreflexive

Fox Goose Beans Farmer

Fox 0 1 0 0
Goose 0 0 1 0
Beans 0 0 0 0

Farmer 0 0 0 0

hold for relation Eats (4) above (“food chain” Fox > Goose > Beans).

�

Exercise 8: Let relation Bank
cross // Bank (4) be defined by:

Left cross Right

Right cross Left

It therefore is a bijection. Why? �



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Propositio de homine et capra et lvpo

Exercise 9: Relation where : Being → Bank should obey the following
constraints:

• everyone is somewhere in a bank

• no one can be in both banks at the same time.

Encode such constraints in relational terms. Conclude that where should

be a function. �

Exercise 10: There are only two constant functions in the type

Being // Bank of where. Identify them and explain their role in the

puzzle. �

Exercise 11: Two functions f and g are bijections iff f ◦ = g , recall

(31). Convert f ◦ = g to point-wise notation and check its meaning. �
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Propositio de homine et capra et lvpo

Adding detail to the
previous Alloy

model (aside)

(More about Alloy
syntax and semantics
later.)
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Functions in one slide

Recapitulating: a function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by

lowercase characters (eg. f , g , φ) or identifiers starting with lowercase

characters, and function application will be denoted by juxtaposition, eg.

f a instead of f (a).
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Functions, relationally

(The following properties of any function f are extremely useful.)

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (32)

R · f ◦ ⊆ S ≡ R ⊆ S · f (33)

Equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (34)

Rule (34) follows from (32,33) by “cyclic inclusion” (next slide).
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Proof of functional equality rule (34)

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f ◦ · g

≡ { shunting on g }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f

Then:

f = g

≡ { cyclic inclusion (11) }

f ⊆ g ∧ g ⊆ f

≡ { aside }

f ⊆ g

≡ { aside }

g ⊆ f

�
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Exercises

Exercise 12: Infer id ⊆ ker f (f is total) and img f ⊆ id (f is simple)

from any of the shunting rules (32) or (33). �

Exercise 13: Given two functions B
g // C A

foo define their
division by

f

g
= g◦ · f (35)

Check the properties:

f

id
= f (36)

f · h

g · k
= k◦ ·

f

g
· h (37)

f

f
= ker f (38)

(
f

g

)◦

=
g

f
(39)

�
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Taxonomy of endo-relations

Besides

reflexive: iff id ⊆ R (40)

coreflexive: iff R ⊆ id (41)

an endo-relation A A
Roo can be

transitive: iff R · R ⊆ R (42)

anti-symmetric: iff R ∩ R◦ ⊆ id (43)

symmetric: iff R ⊆ R◦(≡ R = R◦) (44)

connected: iff R ∪ R◦ = ⊤ (45)

where, in general,

b (R ∩ S) a ≡ b R a ∧ b S a (46)

b (R ∪ S) a ≡ b R a ∨ b S a (47)

for R, S of the same type.
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Taxonomy of endo-relations

Combining these criteria, endo-relations A A
Roo can further be

classified as
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Taxonomy of endo-relations

Exercise 14: Consider the relation

b R a ≡ team b is playingagainst team a

Is this relation: reflexive? transitive? anti-symmetric? symmetric?

connected? �

Exercise 15: Expand criteria (42) to (45) to pointwise notation. �

Exercise 16: A relation R is said to be co-transitive iff the following
holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (48)

Write the formula above in PF notation. Find a relation (eg. over

numbers) which is co-transitive and another which is not. �
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Taxonomy of endo-relations

In summary:

• Preorders are reflexive and transitive orders.
Example: age y 6 age x .

• Partial orders are anti-symmetric preorders
Example: y ⊆ x where x and y are sets.

• Linear orders are connected partial orders
Example: y 6 x in N

• Equivalences are symmetric preorders
Example: age x = age y . 2

• Pers are partial equivalences
Example: y IsBrotherOf x .

2Kernels of functions are always equivalence relations, see exercise 19.
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Exercises

Exercise 17: Check which of the following properties,

transitive, symmetric, anti-symmetric, connected

hold for the relation Eats of exercise 7. �

Exercise 18: Suppose that finite lists are represented by simple

relations of type A N
Loo , that is, as mappings from indices (N) to

list elements (A). Assuming that A is equipped with a total order <A,
show that assertion

L ·< · L◦ ⊆ <A (49)

specifies that L is a strictly ordered list. �
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Meet and join

Recall meet (intersection) and join (union), introduced by (46)
and (47), respectively.

They lift pointwise conjunction and disjunction, respectively, to the
pointfree level.

Their meaning is captured by the following universal properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (50)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (51)

NB: recall the generic notions of greatest lower bound and least

upper bound, respectively.
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Properties

Meet and join have the
expected properties, e.g.
associativity

(R ∩ S) ∩ T = R ∩ (S ∩ T )

proved aside by indirect
equality.

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (50) twice }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T )

≡ { ∩-universal (50) twice }

X ⊆ R ∩ (S ∩ T )

:: { indirection (13) }

(R ∩ S) ∩ T = R ∩ (S ∩ T )

�
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In summary

Type B Aoo forms a lattice:

⊤ “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S

DDDDDDDDD

zzzzzzzzz
meet, glb (“greatest lower bound”)

⊥ “bottom”



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Propositio de homine et capra et lvpo

Back to our running example, we specify:

Being at the same bank:

SameBank = ker where

Risk of somebody eating somebody else:

CanEat = SameBank ∩ Eats

“Starving” ensured by Farmer ’s presence at the same
bank:

CanEat ⊆ SameBank · Farmer (52)
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Propositio de homine et capra et lvpo

By (32), “starving” property (52) converts to:

where · CanEat ⊆ where · Farmer

In this version, (52) can be depicted as a diagram:

Being

where

��

Being
CanEatoo

Farmer

��
⊆

Bank Being
where

oo

(53)

which “reads” in a nice way:

where (somebody) CanEat (somebody else) (that’s)

where (the) Farmer (is).
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Propositio de homine et capra et lvpo

Properties which —
such as (53) — are
desirable and must
always hold are
called invariants.

See aside the
‘starving’ invariant
(53) written in
Alloy.
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Propositio de homine et capra et lvpo

Carefully observe
instance of ‘starving’
invariant aside:

• SameBank is an
equivalence —
exactly the
kernel of where

• Eats is simple
but not
transitive

• cross is a
bijection

• CanEat is empty

• etc
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Propositio de homine et capra et lvpo

Another
instance of
‘starving’
invariant where:

• CanEat is
not empty

(Fox can
eat Goose!)

• but Farmer
is on the
same bank
:-)
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Why is SameBank an equivalence?

Recall that SameBank = ker where. Then SameBank is an equivalence

relation by the exercise below.

Exercise 19: Knowing that property

f · f ◦ · f = f (54)

holds for every function f , prove that ker f = f
f

(38) is an equivalence

relation. �

Equivalence relations expressed in this way are captured in
natural language by the textual pattern

a(ker f )b the same as “a and b have the same f ”

which is very common in requirements.
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The football-agenda design pattern

Exercise 20: Two relations B A
Roo S // C relate football teams

(in A) with their scheduled national matches (in B) and international

matches (in C ).

Attributes B
f // D C

goo indicate the dates (in D) of such
matches.

Use the relational combinators you’ve studied so far to complete the
following definition of a property that should ensure that no international
match collides with the national matches of a particular team:

Φ (R,S , f , g) = . . . . . . . . . . . . ⊆ . . . . . . . . . . . .

NB: Recall that properties of this kind, which should always hold

whatever changes take place in football team agendas, are known as
invariant properties.

�
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Distributivity

As we will prove later, composition distributes over union

R · (S ∪ T ) = (R · S) ∪ (R · T ) (55)

(S ∪ T ) · R = (S · R) ∪ (T · R) (56)

while distributivity over intersection is side-conditioned:

(S ∩ Q) · R = (S · R) ∩ (Q · R) ⇐







Q · img R ⊆ Q
∨

S · img R ⊆ S
(57)

R · (Q ∩ S) = (R · Q) ∩ (R · S) ⇐







(ker R) · Q ⊆ Q
∨

(ker R) · S ⊆ S
(58)
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Exercises

Exercise 21: As generalization of exercise 1, draw the most general
type diagram that accommodates relational assertion:

M · R◦ ⊆ ⊤ · M (59)

�

Exercise 22: Type the following relational assertions

M · N◦ ⊆ ⊥ (60)

M · N◦ ⊆ id (61)

M◦ · ⊤ · N ⊆ > (62)

and check their pointwise meaning. Confirm your intuitions by repeating

this exercise in Alloy. �
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Exercises

Exercise 23: An SQL-like relational operator is projection,

πg ,f R
def
= g · R · f ◦

B

g

��

A
Roo

f

��
C D

πg,f R
oo

(63)

whose set-theoretic meaning is

πg ,f R = {(g b, f a) : b R a} (64)

Derive (64) from (63). �
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Exercises

Exercise 24: A relation R is said to satisfy functional dependency

(FD) g → f , written g R // // f wherever projection πf ,gR (63) is
simple.

1. Prove the equivalence:

g R // // f ≡ ker (g · R◦) ⊆ ker f (65)

2. Show that (65) trivially holds wherever g is injective and R is
simple, for all (suitably typed) f .

3. Prove the composition rule of FDs:

h gS·Roooo ⇐ h f
Soooo ∧ f gRoooo (66)

h gS·Roooo ⇐ h f
Soooo ∧ f gRoooo (67)

�
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Monotonicity

All relational combinators studied so far are ⊆-monotonic, namely:

R ⊆ S ⇒ R◦ ⊆ S◦ (68)

R ⊆ S ∧ U ⊆ V ⇒ R · U ⊆ S · V (69)

R ⊆ S ∧ U ⊆ V ⇒ R ∩ U ⊆ S ∩ V (70)

R ⊆ S ∧ U ⊆ V ⇒ R ∪ U ⊆ S ∪ V (71)

etc hold.

Exercise 25: Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (72)

Derive from (72) the corresponding rule for injective relations. �
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Proofs by ⊆-transitivity

Wanting to prove R ⊆ S , the following rules are of help by relying on a
“mid-point” M (analogy with interval arithmetics):

• Rule A: lowering the upper side

R ⊆ S

⇐ { M ⊆ S is known ; transitivity of ⊆ (10) }

R ⊆ M

and then proceed with R ⊆ M.

• Rule B: raising the lower side

R ⊆ S

⇐ { R ⊆ M is known; transitivity of ⊆ }

M ⊆ S

and then proceed with M ⊆ S .
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Example

Proof of shunting rule (32):

R ⊆ f ◦ · S

⇐ { id ⊆ f ◦ · f ; raising the lower-side }

f ◦ · f · R ⊆ f ◦ · S

⇐ { monotonicity of (f ◦·) }

f · R ⊆ S

⇐ { f · f ◦ ⊆ id ; lowering the upper-side }

f · R ⊆ f · f ◦ · S

⇐ { monotonicity of (f ·) }

R ⊆ f ◦ · S

Thus the equivalence in (32) is established by circular implication.
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Exercises (monotonicity and transitivity)

Exercise 26: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

• R ∩ S is injective (simple) provided one of R or S is so

• R ∪ S is entire (surjective) provided one of R or S is so.

�

Exercise 27: Prove that relational composition preserves all relational

classes in the taxonomy of (30). �
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By the way: relational programming

A simple Prolog program:

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

grand_parent(X, Y) :- parent_child(X, Z), parent_child(Z, Y).
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Relational programming

Relational meaning:

Types:

P P

sibling
grand parent
oo
father child
mother child
parent child

oo 1
trude,sally ,...

oo

Facts:

mother child = trude · sally◦

father child =
tom · sally◦ ∪

tom · erica◦ ∪
mike · tom◦

Clauses:

mother child ∪ father child ⊆ parent child (73)

parent child◦ · parent child ⊆ sibling (74)

parent child · parent child ⊆ grand parent (75)

Note how type P (for “people”) is made explicit.
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Relational programming

Running query

?- sibling(erica,sally)

cf. diagram

1
erica

����
��

��
��

sally

��
P P

sibling
oo

corresponds to checking whether arrow 1 1
erica◦·sibling ·sally

oo (a
“scalar”) is empty or not.

NB: erica and sally are atoms captured by constant functions
erica and sally , respectively.



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Relational programming
Checking:

erica◦ · sibling · sally = ⊤

≡ { R ⊆ ⊤,∀ R ; 1 1
⊤oo = id }

id ⊆ erica◦ · sibling · sally

⇐ { shunting (32) ; ker parent child ⊆ sibling }

erica ⊆ ker parent child · sally

⇐ { tom · erica◦ ⊆ parent child etc }

erica ⊆ (tom · erica◦)◦ · (tom · sally◦) · sally

≡ { kernel of constant functions in type 1 }

erica ⊆ erica · id · id

≡ { trivial }

true

�
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Predicates become relations

Recall from (35) the notation

f

g
= g◦ · f

and define, given a predicate p,

p? = id ∩
true

p
(76)

where true denotes the constant function yielding true for every
argument.

Clearly, p? is the coreflexive relation which represents predicate p
as a binary relation, see the following exercise.

Exercise 28: Show that y p? x ≡ y = x ∧ p x �
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Predicates become relations

Thanks to distributive property (57) and the so-called free theorem
of any constant function k,

k · R ⊆ k (77)

we get

p? · ⊤ =
true

p
(78)

and then:

q? · R = R ∩ q? · ⊤ (79)

R · p? = R ∩ ⊤ · p? (80)

(The second is obtained from (79) by taking converses.)
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Exercises

Exercise 29: Prove the distributive property:

g◦ · (R ∩ S) · f = g◦ · R · f ∩ g◦ · S · f (81)

Then show that

g◦ · p? · f =
f

g
∩

true

p · g
(82)

holds (both sides of the equality mean g b = f a ∧ p (g b)). �

Exercise 30: Infer

q? · p? = q? ∩ p? (83)

from properties (80) and (79). �
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Contracts

Now assume that, given function f , p and q are predicates such that

f · p? ⊆ q? · f (84)

holds. That is, 〈∀ a : p a : q (f a)〉 by exercise 28. In words:

For all inputs a such that condition p a holds, the output f a
satisfies condition q.

In software design, this is known as a (functional) contract, which we
shall write

p f // q (85)

— a notation that generalizes the type of f . Important: thanks to (79),

(84) can also be written: f · p? ⊆ q? · ⊤.
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Weakest pre-conditions

Note that more than one
(pre) condition p may
ensure (post) condition q
on the outputs of f .

Indeed, contract

false
f // q always

holds, but pre-condition
false is useless (“too

strong”).

The weaker p, the better.
Now, is there a weakest

such p?

See the calculation aside.







f · p? ⊆ q? · f

≡ { see above (79) }

f · p? ⊆ q? · ⊤

≡ { shunting (32); (78) }

p? ⊆ f ◦ · true
q

≡ { (37) }

p? ⊆ true
q·h

≡ { p? ⊆ id ; (50) }

p? ⊆ id ∩ true
q·f

≡ { (76) }

p? ⊆ (q · f )?

We conclude that q · f is such a
weakest pre-condition.
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Weakest pre-conditions

Notation wp(f , q) = q · f is often used for weakest pre-conditions.

Exercise 31: Calculate the weakest pre-condition wp(f , q) for the
following function / post-condition pairs:

• f x = x2 + 1 , q y = y 6 10 (in R)

• f = N
succ // N , q = even

• f x = x2 + 1 , q y = y 6 0 (in R)

�

Exercise 32: Show that q p
g ·foo holds provided r pfoo and

q r
goo hold. �
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Invariants versus contracts

In case contract

q f // q

holds (85), we say that q is an invariant of f — meaning that the
“truth value” of q remains unchanged by execution of f .

More generally, invariant q is preserved by function f provided

contract p f // q holds and p ⇒ q, that is, p? ⊆ q?.

Some pre-conditions are weaker than others:

We shall say that w is the weakest pre-condition for f to
preserve invariant q wherever wp(f , q) = w ∧ q, where
(p ∧ q)? = p? · q?.
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Invariants versus contracts

Recalling the Alcuin puzzle, let us define the starving invariant as
a predicate on the state of the puzzle, passing the where function
as a parameter w :

starving w = w · CanEat ⊆ w · Farmer

Then the contract

starving
trip b // starving

would mean that the function trip b — that should carry b to the
other bank of the river — always preserves the invariant:
wp(trip b, starving) = starving .

Things are not that easy, however: there is a need for a
pre-condition ensuring that b is on the farmer’s bank and is the
right being to carry! Let us see a simple example first.
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Library loan example

ISBN Name

Title Book
titleoo

Auth

��

isbn

OO

R // User
addr

//

card

��

name

OO

Address

Author Id

u R b means “book b currently on loan to library user u”.

Desired properties:

• same book not on loan to more than one user;

• no book with no authors;

• no two users with the same card Id.

NB: lowercase arrow labels denote functions, as usual.
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Library loan example

Encoding of desired properties:

• no book on loan to more than one user:

Book
R // User is simple

• no book without an author:

Book
Auth // Author is entire

• no two users with the same card Id:

User
card // Id is injective

NB: as all other arrows are functions, they are simple+entire.
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Library loan example

Encoding of desired properties as relational invariants:

• no book on loan to more than one user:

img R ⊆ id (86)

• no book without an author:

id ⊆ ker Auth (87)

• no two users with the same card Id:

ker card ⊆ id (88)
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Library loan example

Now think of two operations on User Book
Roo , one that

returns books to the library and another that records new
borrowings:

return S R = R − S (89)

borrow S R = S ∪ R (90)

NB: the first uses the operator R − S of relational difference which is
defined by the following universal property:

R − S ⊆ X ≡ R ⊆ S ∪ X (91)

Exercise 33: Show that R − S ⊆ R and that R −⊥ = R hold.

�
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Library loan example

Clearly, the return and borrow operations only change the
books-on-loan relation R, which is conditioned by invariant

inv R = img R ⊆ id (92)

The question is, then: are the following “types”

inv inv
return Soo (93)

inv inv
borrow Soo (94)

ok?

We check (93,94) below.
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Library loan example

Checking (93):

inv (return S R)

≡ { inline definitions }

img (R − S) ⊆ id

⇐ { since img is monotonic }

img R ⊆ id

≡ { definition }

inv R

�

So, for all R, inv R ⇒ inv (return S R) holds — invariant inv is
preserved.
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Library loan example

At this point note that (93) was checked only as a warming-up
exercise — we don’t need to worry about it! Why?

As R − S is smaller than R (exercise 33) and “smaller
than injective is injective” (exercise 26), it is immediate
that inv (92) is preserved.

To see this better, unfold and draw definition (92):

inv R =

Book

R

��

User
R◦

oo

id

��
⊆

User User
id

oo

As R is on the lower-path of the diagram, it can always get smaller.
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Library loan example

This “rule of thumb” does not work for borrow S because, in
general, R ⊆ borrow S R.

So R gets bigger, not smaller, and we have to check the contract:

inv (borrow S R)

≡ { inline definitions }

img (S ∪ R) ⊆ id

≡ { exercise 25 }

img R ⊆ id ∧ img S ⊆ id ∧ S · R◦ ⊆ id

≡ { definition of inv }

inv R ∧ img S ⊆ id ∧ S · R◦ ⊆ id
︸ ︷︷ ︸

wp(borrow S ,inv)
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Library loan example (Alloy)

Note, however, that in general our workflow does not go
immediately to the calculation of the weakest precondition of a
contract.

We model-check first the contract first, in order to save the
process from childish errors:

What is the point in trying to prove something that a
model checker can easily tell is a nonsense?

This follows a systematic process, illustrated next.
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Library loan example (Alloy)

First we write the Alloy model of what we have thus far:

sig Book {
title : one Title,
isbn : one ISBN,
Auth : some Author ,
R : lone User

}

sig User {
name : one Name,
add : some Address,
card : one Id

}

sig Title, ISBN,Author ,
Name,Address, Id { }

fact {
card .˜ card in iden

-- card is injective
}

fun borrow
[S ,R : Book → lone User ] :

Book → lone User {
R + S

}
fun return

[S ,R : Book → lone User ] :
Book → lone User {

R − S
}
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Library loan example (Alloy)

As we have seen, return is no problem, so we focus on borrow .

Realizing that most attributes of Book and User don’t matter wrt.
checking borrow , we comment them all, obtaining a much smaller model:

sig Book {R : lone User }

sig User { }

fun borrow
[S ,R : Book → lone User ] :

Book → lone User {
R + S

}

Next, we single out the
invariant, making it explicit as a
predicate (aside).

sig Book {R : User }

sig User { }

pred inv {
R in Book → lone User

}

fun borrow
[S ,R : Book → User ] :

Book → User {
R + S

}



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Library loan example (Alloy)

In the step that follows, we make the model dynamic, in the sense
that we need at least two instances of relation R — one before
borrow is applied and the other after.

We introduce Time as a way
of recording such two
moments, pulling R out of
Book

sig Time {r : Book → User }

sig Book { }

sig User { }

and re-writing inv accordingly
(aside).

pred inv [t : Time ] {
t · r in Book → lone User

}

Note how
r : Time → (Book → User) is
a function — it yields, for
each t ∈ Time, the relation

Book
r t // User .
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Library loan example (Alloy)

This makes it possible to express contract inv
borrow S // inv in

terms of t ∈ Time,

〈∀ t, t ′ : inv t ∧ r t ′ = borrow S (r t) : inv t ′〉

i.e. in Alloy:

assert contract {
all t, t ′ : Time,S : Book → User |

inv [t ] and t ′ · r = borrow [t · r ,S ] ⇒ inv [t ′ ]
}

Once we check this, for instance running

check contract for 3 but exactly 2 Time

we shall obtain counter-examples. (These were expected...)
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Library loan example (Alloy)

The counter-examples will quickly tell us what the problems are,
guiding us to add the following pre-condition to the contract:

pred pre [t : Time,S : Book → User ] {
S in Book → lone User
∼S · (t · r) in iden

}

The fact that this does not yield counter-examples anymore does
not tell us that

• pre is enough in general

• pre is weakest.

This we have to prove by calculation — as we have seen before.
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Library loan example (Alloy)

Note that pre-conditioned borrow S · pre? is not longer a function,
because it is not entire anymore.

We can encode such a relation in Alloy in an easy-to-read way, as a
predicate structured in two parts — pre-condition and
post-condition:

pred borrow [t, t ′ : Time,S : Book → User ] {
-- pre-condition
S in Book → lone User
∼S · (t · r) in iden
-- post-condition
t ′ · r = t · r + S

}
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Alloy + Relation Algebra round-trip

Alloy
Model "Checking"

PF-calculus
Proof

OK

Success

PF-notation
Refinement

Model refinedFound flaw

Refinement validated Check proof steps

Source: [2].
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Summary

• The Alloy + Relation Algebra round-trip enables us to take
advantage of the best of the two verification strategies.

• Diagrams of invariants help in detecting which contracts

don’t need to be checked.

• Functional specifications are good as starting point but soon
evolve towards becoming relations, comparable to the
methods of an OO programming language.

• Time was added to the model just to obtain more than one
”state”. In general, Time will be linearly ordered so that the
traces of the model can be reasoned about.3

3In Alloy, just declare: open util/ordering[Time].
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Relational pairing

Pairing is among the most important operations in relation algebra:

A A × B
π1oo π2 // B

C

R

ffMMMMMMMMMMMMM
〈R,S〉

OO

S

88qqqqqqqqqqqqq

We assume projections π1(a, b) = a and π2(a, b) = b. Then:

ψ PF ψ

a R c ∧ b S c (a, b)〈R,S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

(95)

From pairing we derived the (Kronecker) product:

R × S = 〈R · π1,S · π2〉 (96)
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Relational pairing example (in matrix layout)

Example — given

where◦ =

Left Right

Fox 1 0
Goose 0 1
Beans 0 1

and cross =

Left Right

Left 0 1
Right 1 0

pairing them up evaluates to:

〈where
◦
, cross〉 =

Left Right

(Fox , Left) 0 0
(Fox , Right) 1 0

(Goose, Left) 0 1
(Goose, Right) 0 0
(Beans, Left) 0 1

(Beans, Right) 0 0
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Exercises

Exercise 34: Show that

(b, c)〈R,S〉a ≡ b R a ∧ c S a

PF-transforms to

〈R,S〉 = π◦

1 · R ∩ π◦

2 · S (97)

Then infer universal property

π1 · X ⊆ R ∧ π2 · X ⊆ S ≡ X ⊆ 〈R,S〉 (98)

from (97) via indirect equality (13). �

Exercise 35: What can you say about (98) in case X , R and S are

functions? �
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Library loan example revisited

More detailed data model of our library with invariants captured
by diagram

ISBN

M

�

ISBN × UID

R

�

π1oo π2 // UID

N

�

⊇ ⊆

Title ×
Publisher ⊤

// Date
Name×
Address×
Phone

⊤

oo

(99)

where

• M — records books on loan, identified by ISBN;

• N — records library users (identified by user id’s in UID);

(both simple) and

• R — records loan dates.
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Library loan example revisited

The two squares in the diagram impose bounds on R:

• Non-existing books cannot be on loan (left square);

• Only known users can take books home (right square).

(NB: in the database terminology these are known as integrity

constraints.)

Exercise 36: Add variables to both squares in (99) so that the same
conditions are expressed pointwise. Then show that the conjunction of
the two squares means the same as assertion

R◦ ⊆ 〈M◦ · ⊤,N◦ · ⊤〉 (100)

and draw this in a diagram. �
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Library loan example revisited

Exercise 37: Consider implementing M, R and N as files in a relational
database. For this, think of operations on the database such as, for
example, that which records new loans (K ):

borrow(K , (M,R,N)) △ (M,R ∪ K ,N) (101)

It can be checked that the pre-condition

pre-borrow(K , (M,R,N)) △ R · K◦ ⊆ id

is necessary for maintaining (99) (why?) but it is not enough. Calculate

— for a rectangle in (99) of your choice — the corresponding clause to

be added to pre-borrow . �
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Library loan example revisited

Exercise 38: The operations that buy new books

buy(X , (M,R,N)) △ (M ∪ X ,R,N) (102)

and register new users

register(Y , (M,R,N)) △ (M,R,N ∪ Y ) (103)

don’t need any pre-conditions. Why? (Hint: compute their WP.) �

NB: see annex on proofs by ⊆-monotonicity for a strategy
generalizing the exercise above.
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Exercises

Exercise 39: Unconditional distribution laws

(P ∩ Q) · S = (P · S) ∩ (Q · S)

R · (P ∩ Q) = (R · P) ∩ (R · Q)

will hold provide one of R or S is simple and the other injective. Tell

which (justifying). �

Exercise 40: Derive from

〈R,S〉
◦
· 〈X ,Y 〉 = (R◦ · X ) ∩ (S◦ · Y ) (104)

the following properties:

ker 〈R,S〉 = ker R ∩ ker S (105)

〈R, id〉 is always injective, for whatever R�
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Exercises

Exercise 41: Show that the following conditional fusion law holds:

〈R,S〉 · T = 〈R · T ,S · T 〉 ⇐ R · (img T ) ⊆ R ∨ S · (img T ) ⊆ S

Suggestion: recall (57). From this infer that no side-condition is required

for T simple. �

Exercise 42:

Consider the adjacency relation A
defined by clauses:
(a) A is symmetric;
(b) id × (1+) ∪ (1+) × id ⊆ A

(y + 1, x)

(y, x − 1) (y, x) (y, x + 1)

(y − 1, x)

Show that A is neither transitive nor reflexive.

NB: consider (1+) : Z → Z a bijection, i.e. pred = (1+)◦ is a function.

�
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Exercises

Exercise 43: Recalling (31), prove that

swap △ 〈π2, π1〉 (106)

is a bijection. (Assume property (R ∩ S)◦ = R◦ ∩ S◦.) �

Exercise 44: Let 6 be a preorder and f be a function taking values on
the carrier set of 6.

1. Define the pointwise version of relation ⊑ △ f ◦ · 6 · f

2. Show that ⊑ is a preorder.

3. Show that ⊑ is not (in general) a total order even in the case 6 is
so.

�
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Abstraction

Model checking / proofs of particular properties may be hard to
perform due to the complexity of real-life problems.

“On demand” abstraction can help.

By “on demand” we mean making a model more abstract with
respect to the property we want to check.

In general, techniques of this kind are known as abstract

interpretation and play a major role in program analysis, for
instance.

We need the two extensions to functional contracts (84) which
follow.
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Relational types vs abstract simulation

A function h is said to have relation type R → S,

written R
h // S if

h · R ⊆ S · h

B

h

��

B
Roo

h

��
A A

Soo

(107)

holds.

Regarding h : B → A as an abstraction function, we also say that

A A
Soo is an abstract simulation of B B

Roo .

Exercise 45: What does (107) mean in case R and S are partial orders?

�
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Invariant functions

A special case of relational type defines invariant functions:

A function of relation type R
h // id is said to be

R-invariant, in the sense that

〈∀ b, a : b R a : h b = h a〉 (108)

holds.

When h is R-invariant, observations by h are not affected by
R-transitions.

Exercise 46: Show that an R-invariant function h is always such that
R ⊆ h

h
holds.

Moreover, show that relational types compose, that is Q S
koo and

S R
hoo entail Q R

k·hoo . �
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Relational contracts

Finally, let the following definition

p R // q ≡ R · p? ⊆ q? · R (109)

generalize functional contracts (84) to arbitrary relations, meaning:

〈∀ b, a : b R a : p a ⇒ q b〉 (110)

Exercise 47: Sow that an alternative way of stating (109) is

p R // q ≡ R · p? ⊆ q? · ⊤ (111)

�
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Abstract interpretation

Suppose that you want to show that q : B → B is an invariant of

B
R // B , i.e. that q R // q holds and you know that

q = p · h, for some h : B → A.

Then you can factor your proof in two steps:

• show that there is an abstract simulation S such that

R
h // S

• Prove p S // p , that is, that p is an (abstract) invariant of
(abstract) S .

See the calculation in the next slide.
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Abstract interpretation

R · (p · h)? ⊆ (p · h)? · ⊤

≡ { (78) etc }

R · (p · h)? ⊆ h◦ · p? · ⊤

≡ { shunting }

h · R · (p · h)? ⊆ p? · ⊤

⇐ { R
h // S }

S · h · (p · h)? ⊆ p? · ⊤

⇐ { (p · h)? ⊆ h◦ · p? · h (82) }

S · h · h◦ · p? · h ⊆ p? · ⊤

⇐ { ⊤ = ⊤ · h (cancel h); img h ⊆ id }

S · p? ⊆ p? · ⊤

�
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State-based models

Functional models generalize to so called state-based models in
which there is

• a set Σ of states

• a subset I ⊆ Σ of initial states

• a step relation Σ
R // Σ which expresses transition of states

We define:

• R0 = id — no action or transition takes place

• R i+1 = R · R i — a ”path” of i + 1 transitions.

• R∗ =
⋃

i>0 R i — the set of all possible paths

We represent the set I by the coreflexive Σ
(∈ I )? // Σ , simplified to

Σ
I // Σ to avoid symbol cluttering.
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Safety properties

Safety properties are of the form R∗ · I ⊆ S , that is,

〈∀ n : n > 0 : Rn · I ⊆ S〉 (112)

for some safety relation S : Σ → Σ, meaning:

All paths in the model originating from its initial states
are bounded by S .

In particular, S = Φ · ⊤ — in this case,

〈∀ n : n > 0 : Rn · I ⊆ Φ · ⊤〉 (113)

means that formula Φ (encoded as a coreflexive) holds for every
state reachable by R from an initial state.
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Liveness properties

Liveness properties are of the form

〈∃ n : n > 0 : Q ⊆ Rn · I 〉 (114)

for some target relation Q : Σ → Σ, meaning:

A target relation Q is eventually realizable, after n steps
starting from an initial state.

In particular, Q = Φ · ⊤ — in this case,

〈∃ n : n > 0 : Φ · ⊤ ⊆ Rn · I 〉 (115)

means that, for a sufficiently large n, formula Φ will eventually
hold.
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Ensuring safety / liveness properties

The first difficulty in ensuring properties such as (113) e (115) is
the quantification on the number of path steps.

In the case of (115) one can try and find a particular path using a
model checker.

In both cases, the complexity /size of the state space may offer
some impedance to proving / model checking.

Below we show how to circumvent such difficulties by use of
abstract interpretation.
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Example — Heavy armchair problem

In this problem taken from [1] the step
relation is

R = P × Q

where P captures the adjacency of two
squares and Q captures 90◦ rotations.

A rotation multiplies by ± i a complex
number in {1, i ,−1,−i } indicating the
orientation of the armchair.

Altogether:

((y ′, x ′), d ′) R ((y , x), d) ≡
{

y ′ = y ± 1 ∧ x ′ = x ∨ y ′ = y ∧ x ′ = x ± 1

d ′ = (± i) d
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Heavy armchair problem

We want to check the liveness property:

For some n, ((y , x + 1), d) Rn ((y , x), d) holds. (116)

The same, in pointfree notation:

〈∃ n :: (id × (1+)) × id ⊆ Sn〉

In words: there is a path with n steps whose meaning is function

(id × (1+)) × id .

Note how the state of this problem is arbitrarily big (the squared
area is unbounded).

We resort to abstract interpretation to obtain a bounded,
functional model.
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Heavy armchair — abstract interpretation

We color the floor as a chess board and
abstract the armchair by function
h = col × dir which tells the colour of
the square where the armchair is and its
orientation.

Since there are two colours (black,
white) and two orientations (horizontal,
vertical), we can model both by
Booleans.

The action of moving to any adjacent square abstracts to color negation
and any 90◦ rotation abstracts to direction negation:

P
col // (¬)

Q
dir // (¬)
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Heavy armchair — abstract interpretation

Thus

R
col×dir // (¬ × ¬)

that is, the step relation R is simulated by the function s = col × dir , i.e.

s (c , d) = (¬ c ,¬ d)

over a state space with 4 possibilities only.

At this level, we note that observation function

f (c , d) = c ⊕ d (117)

is s-invariant (108), that is

f · s = f (118)

since ¬ c ⊕ ¬ d = c ⊕ d holds. By induction on n, f · sn = f .
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Heavy armchair abstraction

Expressed under
this abstraction,
(116) is rephrased
into: there is a
number of steps n
such that
sn (c , d) = (¬ c , d)
holds.

Aside we check
this, assuming
variable n
existentially
quantified:

sn (c , d) = (¬ c , d)

⇒ { Leibniz }

f (sn (c , d)) = f (¬ c , d)

≡ { f is s-invariant }

f (c , d) = f (¬ c , d)

≡ { (117) }

c ⊕ d = ¬ c ⊕ d

≡ { 1 ⊕ d = ¬ d and 0 ⊕ d = d }

d = ¬ d

≡ { trivia }

false

Thus, for all paths of arbitrary length n, sn (c , d) 6= (¬ c , d).
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Alcuin puzzle example

16 possible states of type Being → Bank, 24 = 16.

Symmetry of the problem invites us to unify Fox with Beans [1]:

f : Being → {α, β, γ}

f =











Goose // α

Fox // β

Beans

77ooooooo

Farmer // γ











So we define a state-abstraction function based on f

h : (Being → Bank) → ({α, β, γ} → {0, 1, 2})
h w x = 〈

∑
b : x = f b ∧ w b = Left : 1〉
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Alcuin puzzle example

For instance,

h Left = 121

h Right = 000

abbreviating the mapping {α 7→ x , β 7→ y , γ 7→ z } by the vector
xyz.

Moreover, to obtain the other bank, we use the a complement
operator:

x = 121 − x

Note that there are 2 × 3 × 2 = 12 possible state vectors.
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Alcuin puzzle abstraction

8 valid state vectors ordered by (6):

121

uuuuuuuuu

IIIIIIIII

021

��
��

��

77
77

77
7 111

77
77

77
7

nnnnnnnnnnnnnn

PPPPPPPPPPPPPP 120

nnnnnnnnnnnnnn

77
77

77
7

011

77
77

77
7

PPPPPPPPPPPPPP 020

77
77

77
7 101

nnnnnnnnnnnnnn

77
77

77
7 110

nnnnnnnnnnnnnn

��
��

��

001

IIIIIIIII 010 100

uuuuuuuuu

000

The four invalid states are marked in red.
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Only 4 state vectors required

Due to complementation, we only need to reach state 010, and
then reverse the path through the complements:

121

uuuuuuuuu

021

77
77

77
7 111

77
77

77
7

020

77
77

77
7 101

77
77

77
7

010 100

uuuuuuuuu

000

→

121

uuuuuuuuu

021

77
77

77
7

020

77
77

77
7

010
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Alcuin puzzle: abstract determinism

Abstract automaton:

121

−101

		��
��
��
��
��
��
��

021[[

±001
77

7

��7
77

−011

++

020

010

Termination is ensured by
disabling toggling between
states 021 and 020:

121
−101

020
+001

021
−011

010

We then take the complemented path 111 → 100 → 101 → 000.
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Alcuin puzzle: abstract solution

Altogether:

121

−101

		��
�
�
�
�
�
�
�
�
�
�
�

021ZZ

±001
55

5

��5
55

−011

++

111

−011

��

020 101

−101

		��
�
�
�
�
�
�
�
�
�
�
�

ZZ

±001
55

5

��5
55

010

+101

OO

100

000

121
−101

020
+001

021
−011

010
+101

111
−011

100
+001

101
−101

000
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Background — Eindhoven quantifier calculus

Trading:

〈∀ k : R ∧ S : T 〉 = 〈∀ k : R : S ⇒ T 〉 (119)

〈∃ k : R ∧ S : T 〉 = 〈∃ k : R : S ∧ T 〉 (120)

de Morgan:

¬〈∀ k : R : T 〉 = 〈∃ k : R : ¬T 〉 (121)

¬〈∃ k : R : T 〉 = 〈∀ k : R : ¬T 〉 (122)

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (123)

〈∃ k : k = e : T 〉 = T [k := e] (124)



Motivation Binary Relations Composition Inclusion Converse Contracts Pairs and sums Background

Background — Eindhoven quantifier calculus
Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (125)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (126)

Rearranging-∀:

〈∀ k : R ∨ S : T 〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : S : T 〉 (127)

〈∀ k : R : T ∧ S〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : R : S〉 (128)

Rearranging-∃:

〈∃ k : R : T ∨ S〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : R : S〉 (129)

〈∃ k : R ∨ S : T 〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : S : T 〉 (130)

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉(131)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉(132)
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