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Class 1 — About FM
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Global picture

Concerning software ‘engineering’:

Software


Process —

Product —

Formal methods provide an answer to the question mark
above.



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Global picture

Concerning software ‘engineering’:

Credits: Zhenjiang Hu, NII, Tokyop JP
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Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19
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Have you ever used a FM?

”Al-djabr” rule ? ”al-hatt” rule ?

These rules that you have used so many times were discovered by
Persian mathematicians, notably by Al-Huwarizmi (9c AD).

NB: “algebra” stems from ”al-djabr” and ”algarismo” from
Al-Huwarizmi.
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Software problems

Now, suppose the problem
was

Please write a
program to list the
students of my class
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag = ....

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)
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FM — scientific software design

What

calculate

||

specification (model)

Why

OO

justification

How

analyse

::

OO

implementation (program)
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FM — simplified life-cycle

client ′s problem // Requirements

specify

��

Specification

model check

%%

calculate
��

Model (Alloy)

revise

dd

Implementation

encode
��

designed solution Codeoo
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Notation matters!

Credits: Cliff B. Jones 1980 [5]
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Well-known FM notations / tools / resources

Just a sample, as there are many — follow the links (in alphabetic
order):

Notations:

• Alloy

• B-Method

• JML

• mCRL2

• SPARK-Ada

• TLA+

• VDM

• Z

Tools:

• Alloy 6

• Coq

• Frama-C

• NuSMV

• Overture

Resources:

• Formal Methods Europe

• Formal Methods wiki
(Oxford)

http://alloy.mit.edu/alloy/book.html
http://www.methode-b.com/
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.mcrl2.org/web/user_manual/index.html
http://www.adacore.com/sparkpro
http://lamport.azurewebsites.net/tla/hyperbook.html
https://web-beta.archive.org/web/20080828013815/http://www.vdmportal.org
http://spivey.oriel.ox.ac.uk/mike/zrm/
http://alloy.mit.edu/alloy/download.html
https://coq.inria.fr/
http://frama-c.com/
http://nusmv.fbk.eu/
http://overturetool.org
http://www.fmeurope.org/
http://formalmethods.wikia.com/wiki/VL
http://formalmethods.wikia.com/wiki/VL
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60+ years ago (1958-)

1958

t
IAL

(GAMM/ACM)

1960t
Algol 60

(Naur’s bnf)
(“Amsterdam plot”)

Recursive programming
(Dijkstra)

1962

t

WG2.1 (Poel)

Ginsburg & Rice’s
paper

1964t

Algol X+Y
(Tutzing meeting)

1965

t
Record handling

(Hoare)

Euler
(Wirth)

1966t
Algol 66

(“Kootwijk battle”)

1968

t

Algol 68
(München meeting)

NATO SE Conf.
(Garmisch)

1969t
Poel

steps down
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Hoare Logic — “turning point” (1968)

Floyd-Hoare logic for program correctness dates back to 1968:

(ADB/IFIP/1164;1456)
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Inv/pre/post

Starting where (pure) functions stop:
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Inv/pre/post

Error handling...
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Inv/pre/post
Pre-conditions?

Not everything is a list, a tree or a stream...
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Inv/pre/post

pre...? choice...?

• Non-determinism

• Parallelism

• Abstraction
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Functions not enough!

Solution?

Relations (which extend functions)
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Is “everything” a relation?
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How to “dematerialize“ them?

Software is pre-science — formal but not fully calculational

Software is too diverse — many approaches, lack of unity

Software is too wide — from assembly to quantum
programming

Can you think of a unified theory able to express and reason
about software in general?

Put in another way:

Is there a “lingua franca” for the software sciences?
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Check the pictures...
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Check the pictures

(Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)
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Check the pictures
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Check the pictures

Which graphical device have you found common
to all pictures?
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Arrows everywhere

Arrows! A (graphical) device common to describing (many)
different fields of human activity.

For this ingredient to be able to support a generic theory of
systems, mind the remarks:

• We need a generic notation able to cope with very distinct
problem domains, e.g. process theory versus database theory,
for instance.

• Notation is not enough — we need to reason and calculate
about software.

• Semantics-rich diagram representations are welcome.

• System descriptions may have a quantitative side too.
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Going Relational
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Relation algebra

In previous courses you may have used predicate logic, finite
automata, grammars and so on to capture the meaning of
real-life problems.

Question:

Is there a unified formalism for formal modelling?
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Relation algebra

Historically, predicate logic was
not the first one proposed:

• Augustus de Morgan
(1806-71) — recall de
Morgan laws — proposed a
Logic of Relations as early
as 1867.

• Predicate logic appeared
later.

Perhaps de Morgan was right in the first place: in real life,
“everything is a relation”...
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Everything is a relation...

... as diagram

shows. (Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)
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Arrow notation for relations

The picture is a collection of relations — vulg. a semantic
network — elsewhere known as a (binary) relational system.

However, in spite of the use of
arrows in the picture (aside)
not many people would write

mother of : People → People

as the type of relation
mother of .
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Pairs

Consider assertions

0 6 π

Catherine isMotherOf Anne

3 = (1+) 2

They are statements of fact concerning various kinds of object —
real numbers, people, natural numbers, etc

They involve two such objects, that is, pairs

(0, π)

(Catherine, Anne)

(3, 2)

respectively.
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Sets of pairs

So, one might have written instead:

(0, π) ∈ (6)

(Catherine, Anne) ∈ isMotherOf

(3, 2) ∈ (1+)

What are (6), isMotherOf , (1+)?

• They can be regarded as sets of pairs

• Better: they should be regarded as binary relations.

Therefore,

• orders — eg. (6) — are special cases of relations

• functions — eg. succ = (1+) — are special cases of relations.
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Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types.

Writing

B A
Roo

means the same as

A
R // B .
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Notation

Infix notation

The usual infix notation used in natural language — eg.
Catherine isMotherOf Anne — and in maths — eg.

0 6 π — extends to arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R holds.
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Binary relations are matrices

Binary relations can be regarded as Boolean matrices, eg.

Relation R: Matrix M:

In this case A = B = {1..11}. Relations A A
Roo over a single

type A are also referred to as (directed) graphs.
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Alloy: where “everything is a relation”

Declaring binary

relation A
R // B

is Alloy (aside).

Alloy is a tool
designed at MIT
(http://alloy.
mit.edu/alloy)

We shall be using
Alloy [4] in this
course.

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy
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Functions are relations

Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a (1)

Therefore, we generalize

B A
foo

b = f a
to B A

Roo

b R a
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Exercise

Taken from Propositiones ad acuendos iuuenes (“Problems
to Sharpen the Young”), by abbot Alcuin of York († 804):

XVIII. Propositio de homine et capra et lvpo.
Homo quidam debebat ultra fluuium transferre lupum,
capram, et fasciculum cauli. Et non potuit aliam nauem
inuenire, nisi quae duos tantum ex ipsis ferre ualebat.
Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis
illaesis transire potuit?
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Exercise

XVIII. Fox, goose and bag of beans puzzle. A
farmer goes to market and purchases a fox, a goose, and
a bag of beans. On his way home, the farmer comes to a
river bank and hires a boat. But in crossing the river by
boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans.
(If left alone, the fox would eat the goose, and the goose
would eat the beans.) Can the farmer carry himself and
his purchases to the far bank of the river, leaving each
purchase intact?

Identify the main types and relations involved in the puzzle and
draw them in a diagram.
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Home work

• How would you address this problem?

• Try an write an Alloy for it (sig’s only)

NB: You can seek help from ChatGPT — but please be critical...
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Propositio de homine et capra et lvpo

Data types:

Being = {Farmer ,Fox ,Goose,Beans} (2)

Bank = {Left,Right} (3)

Relations:

Being
Eats // Being

where
��

Bank
cross // Bank

(4)
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Propositio de homine et capra et lvpo

Specification source written in Alloy:
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Propositio de homine et capra et lvpo

Diagram of specification (model) given by Alloy:
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Propositio de homine et capra et lvpo

Diagram of instance of the model given by Alloy:

Silly instance, why? — specification too loose...
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Composition

Recall function
composition (aside).

We extend f · g to
relational composition
R · S in the obvious way:

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(5)

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉
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Composition

That is:

B A
Roo C

Soo

R·S

gg

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (6)

Example: Uncle = Brother · Parent, that expands to
u Uncle c ≡ 〈∃ p :: u Brother p ∧ p Parent c〉

Note how this rule removes ∃ when applied from right to left.

Notation R · S is said to be point-free (no variables, or points).
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Check generalization

Back to functions, (6) becomes1

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c (1) }

〈∃ a :: a = g c ∧ b f a〉

≡ { ∃-trading (221) ; b f a means b = f a (1) }

〈∃ a : a = g c : b = f a〉

≡ { ∃-one point rule (225) }

b = f (g c)

So, we easily recover what we had before (5).

1Check the appendix on predicate calculus.
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Class 2 — The “Zoo” of
Binary Relations
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Relation inclusion

Relation inclusion generalizes function equality:

Equality on functions

f = g ≡ 〈∀ a :: f a = g a〉 (7)

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a : b R a : b S a〉 (8)

(read R ⊆ S as “R is at most S”).

Inclusion is typed:

For R ⊆ S to hold both R and S need to be of the same type,

say B A
R,Soo .
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Relation inclusion

R ⊆ S is a partial order, that is, it is

reflexive,

R ⊆ R (9)

transitive

R ⊆ S ∧ S ⊆ Q⇒ R ⊆ Q (10)

and antisymmetric:

R ⊆ S ∧ S ⊆ R ≡ R = S (11)

Therefore:

R = S ≡ 〈∀ b, a :: b R a ≡ b S a〉 (12)
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Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
>oo , which is such that, for all b, a,

b>a ≡ True

Every type A Aoo has the

• identity relation A A
idoo which is nothing but function

id a = a (13)

Clearly, for every R,

⊥ ⊆ R ⊆ > (14)
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Relational equality

Both (12) and (11) establish relation equality, resp. in PW/PF
fashion.

Rule (11) is also called “ping-pong” or cyclic inclusion, often
taking the format

R

⊆ { .... }

S

⊆ { .... }

R

:: { “ping-pong” (11) }

R = S
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Diagrams

Assertions of the form X ⊆ Y where X and Y are relation
compositions can be represented graphically by square-shaped
diagrams, see the following exercise.

Exercise 1: Let a S n mean: “student a is assigned number n”. Using
(6) and (8), check that assertion

S · succ ⊆ > · S depicted by diagram

N

S

��

N

S

��

succoo

⊆

A A
>

oo

(onde succ n = n + 1) means that numbers are assigned to students

sequentially. �
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Diagrams (“magic squares”)

Pointfree:

A

S

��

B

Q

��

Roo

⊆

C D
P

oo

S · R ⊆ P · Q

Pointwise:

∃ a d

S · R ⇒ P · Q

∀ c b c b
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Exercises

Exercise 2: Consider sports competitions involving teams which have
atlets (players) and coaches. Follow the rule of the previous slide and
spell out the logical meaning of the following magic square:

Team

the coach of

��

Competition

Involved

��

Involvedoo

⊆

Atlet Team
Player of

oo

Then express this meaning in natural language, avoiding reading

completely through the logic obtained in the previous step. �
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Exercises

Exercise 3: Use (6) and (8) and predicate calculus to show that

R · id = R = id · R (15)

R · ⊥ = ⊥ = ⊥ · R (16)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (17)
�

Exercise 4: Use (7), (8) and predicate calculus to show that

f ⊆ g ≡ f = g

holds (moral: for functions, inclusion and equality coincide). �

(NB: see the appendix for a compact set of rules of the predicate
calculus.)
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Converses

Every relation B A
Roo has a converse B

R◦ // A which is
such that, for all a, b,

a(R◦)b ≡ b R a (18)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (19)

and with itself:

(R◦)◦ = R (20)

Converse captures the passive voice: Catherine eats the apple —
R = (eats) — is the same as the apple is eaten by Catherine —
R◦ = (is eaten by).
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Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful!) property,

(f b)R(g a) ≡ b(f ◦ · R · g)a (21)

cf. diagram:
C D

Roo

B

f

OO

A

g

OO

f ◦·R·g
oo

Therefore (tell why):

b(f ◦ · g)a ≡ f b = g a (22)

Let us see an example of using these rules.
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PF-transform at work

Transforming a well-known PW-formula into PF notation:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x : (f y) = (f x) : y = x〉

≡ { (22) for f = g }

〈∀ y , x : y(f ◦ · f )x : y = x〉

≡ { (21) for R = f = g = id }

〈∀ y , x : y(f ◦ · f )x : y(id)x〉

≡ { go pointfree (8) i.e. drop y , x }

f ◦ · f ⊆ id
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The other way round

Now check what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (8) }

〈∀ y , x : y(id)x : y(f · f ◦)x〉

≡ { identity relation ; composition (6) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-one point (224) ; converse (18) }

〈∀ x :: 〈∃ z :: x f z ∧ x f z〉〉

≡ { trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective
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Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉 (check as homework);

• Say R is coreflexive (or diagonal) iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

img Roo

ker R
def
= R◦ · R img R

def
= R · R◦
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Alloy: checking for coreflexive relations
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Kernels of functions

Meaning of ker f :

a′(ker f )a

≡ { substitution }

a′(f ◦ · f )a

≡ { rule (22) }

f a′ = f a

In words: a′(ker f )a means a′

and a “have the same
f -image”.

Exercise 5: Let K be a
nonempty data domain, k ∈ K
and k be the “everywhere k”
function:

k : A→ K
k a = k

(23)

Compute which relations are
defined by the following
expressions:

ker k , b · c◦, img k (24)

�
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Binary relation taxonomy

Topmost criteria:

binary relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(25)

Facts:

ker (R◦) = img R (26)

img (R◦) = ker R (27)
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Binary relation taxonomy

The whole picture:

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

(28)

Exercise 6: Resort to (26,27) and (25) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�
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The same in Alloy

(Courtesy of Alcino Cunha.)
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Exercises

Exercise 7: Label the items (uniquely) in these drawings2

and compute, in each case, the kernel and the image of each relation.

Why are all these relations functions? �

2Credits: http://www.matematikaria.com/unit/injective-surjective-bijective.html.

http://www.matematikaria.com/unit/injective-surjective-bijective.html
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Exercises

Exercise 8: Prove the following fact

A function f is a bijection iff its converse f ◦ is a function (29)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker (f ◦) ∧ img (f ◦) ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection
�
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Taxonomy using matrices

Recall that binary relations can be regarded as Boolean matrices,
eg.

Relation R: Matrix M:
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Taxonomy using matrices

• entire — at least one 1 in every column (30)

• surjective — at least one 1 in every row (31)

• simple — at most one 1 in every column (32)

• injective — at most one 1 in every row (33)

• bijective — exactly one 1 in evey column and every row. (34)



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Propositio de homine et capra et lvpo

Exercise 9: Let relation Bank
cross // Bank (4) be defined by:

Left cross Right

Right cross Left

It therefore is a bijection. Why? �

Exercise 10: Check which of the following properties,

simple, entire,
injective,
surjective,
reflexive,
coreflexive

Eats Fox Goose Beans Farmer

Fox 0 1 0 0
Goose 0 0 1 0
Beans 0 0 0 0
Farmer 0 0 0 0

hold for relation Eats (4) above (“food chain” Fox > Goose > Beans).

�
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Propositio de homine et capra et lvpo

Exercise 11: Relation where : Being → Bank should obey the following
constraints:

• everyone is somewhere in a bank

• no one can be in both banks at the same time.

Express such constraints in relational terms. Conclude that where should

be a function. �

Exercise 12: There are only two constant functions (23) in the type

Being // Bank of where. Identify them and explain their role in the

puzzle. �

Exercise 13: Two functions f and g are bijections iff f ◦ = g , recall

(29). Convert f ◦ = g to point-wise notation and check its meaning. �
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Propositio de homine et capra et lvpo

Adding detail to the
previous Alloy
model (aside)

(More about Alloy
syntax and semantics
later.)
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Class 3 — Functions
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Functions in one slide

As seen before, a function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by
lowercase characters (eg. f , g , φ) or identifiers starting with lowercase
characters, and function application will be denoted by juxtaposition, eg.
f a instead of f (a).
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Functions, relationally

(The following properties of any function f are extremely useful.)

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (35)

R · f ◦ ⊆ S ≡ R ⊆ S · f (36)

Equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (37)

Rule (37) follows from (35,36) by “cyclic inclusion” (next slide).
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Proof of functional equality rule (37)

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f ◦ · g
≡ { shunting on g }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f

Then:

f = g

≡ { cyclic inclusion (11) }

f ⊆ g ∧ g ⊆ f

≡ { aside }

f ⊆ g

≡ { aside }

g ⊆ f

�
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Dividing functions

f

g
= g◦ · f cf .

B

g ��

A

f��

f
goo

C

(38)

Exercise 14: Check the properties:

f

id
= f (39)

f · h
g · k

= k◦ · f

g
· h (40)

f

f
= ker f (41)(

f

g

)◦
=

g

f
(42)

�

Exercise 15: Infer id ⊆ ker f (f is total) and img f ⊆ id (f is simple)

from the shunting rules (35) or (36). �
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Dividing functions

By (21) we have:

b
f

g
a ≡ g b = f a (43)

How useful is this? Think of the following sentence:

Mary lives where John was born.

By (43), this can be expressed by a division:

Mary
birthplace

residence
John ≡ residence Mary = birthplace John

In general,

b f
g a means “the g of b is the f of a”.
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Endo-relations

A relation A
R // A whose input and output types coincide is

called an

endo-relation.

This special case of relation is gifted with an extra taxonomy and
many applications.

We have already seen some: ker R and img R are endo-relations.

Graphs, orders, the identity, equivalences and so on are all
endo-relations as well.
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Taxonomy of endo-relations

Besides

reflexive: iff id ⊆ R (44)

coreflexive: iff R ⊆ id (45)

an endo-relation A A
Roo can be

transitive: iff R · R ⊆ R (46)

symmetric: iff R ⊆ R◦(≡ R = R◦) (47)

anti-symmetric: iff R ∩ R◦ ⊆ id (48)

irreflexive: iff R ∩ id = ⊥
connected: iff R ∪ R◦ = > (49)

where, in general, for R, S of the same type:

b (R ∩ S) a ≡ b R a ∧ b S a (50)

b (R ∪ S) a ≡ b R a ∨ b S a (51)
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Taxonomy of endo-relations

Combining these criteria, endo-relations A A
Roo can further be

classified as
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Taxonomy of endo-relations

In summary:

• Preorders are reflexive and transitive orders.
Example: age y 6 age x .

• Partial orders are anti-symmetric preorders
Example: y ⊆ x where x and y are sets.

• Linear orders are connected partial orders
Example: y 6 x in N

• Equivalences are symmetric preorders
Example: age y = age x . 3

• Pers are partial equivalences
Example: y IsBrotherOf x .

3Kernels of functions are always equivalence relations, see exercise 23.
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Exercises

Exercise 16: Consider the relation

b R a ≡ team b is playing against team a at this moment

Is this relation: reflexive? irreflexive? transitive? anti-symmetric?

symmetric? connected? �

Exercise 17: Check which of the following properties,

transitive, symmetric, anti-symmetric, connected

hold for the relation Eats of exercise 10. �
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Exercises

Useful:

A difunctional relation that is reflexive and symmetric
necessarily is an equivalence relation.

Exercise 18: Let IR IR
Roo be the binary relation that defines the

unit circunference,

y R x
def
= y 2 + x2 = 1 (52)

that is,

R =
(1−) · sq

sq
(53)

where sq : R→ R and (1−) : R→ R are
the functions y = x2 e y = 1− x ,
respectively.

Without using (52), show that R is symmetric. �
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Exercises

Exercise 19: A relation R is said to be co-transitive or dense iff the
following holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (54)

Write the formula above in PF notation. Find a relation (eg. over

numbers) which is co-transitive and another which is not. �

Exercise 20: Expand criteria (46) to (49) to pointwise notation. �
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Exercises

Exercise 21: The teams (T ) of a football league play games (G ) at
home or away, and every game takes place in some date:

T G
homeoo away //

date
��

T

D

Moreover, (a) No team can play two games on the same date; (b) All
teams play against each other but not against themselves; (c) For each
home game there is another game away involving the same two teams.
Show that

id ⊆ away

home
· away

home
(55)

captures one of the requirements above (which?) and that (55) amounts

to forcing home · away◦ to be symmetric. �
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Formalizing ER diagrams

So-called “Entity-Relationship” (ER) diagrams are commonly
used to capture relational information, e.g.4

ER-diagrams can be formalized in A
R // B notation, see e.g.

the following relational algebra (RA) diagram.

4Credits: https://dba.stackexchange.com/questions.

https://dba.stackexchange.com/questions
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Exercise

Teacher Program

IsPartOf

��
Student

isMentorOf

OO

Course

teaches

ee

Enrols
oo

(56)

Exercise 22: Looking at diagram (56),

• Specify, in the relational pointfree style, the property: mentors of
students necessarily are among their teachers.

• Why is
teaches

isMentorOf ⊆ Enrols

inadequate as answer to the previous question?

�
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Class 4 – Meet and Join
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Meet and join

Recall meet (intersection) and join (union), introduced by (50)
and (51), respectively.

They lift pointwise conjunction and disjunction, respectively, to the
pointfree level.

Their meaning is nicely captured by the following universal
properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (57)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (58)

NB: recall the generic notions of greatest lower bound and least
upper bound, respectively.
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In summary

Type B Aoo forms a lattice:

> “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S meet, glb (“greatest lower bound”)

⊥ “bottom”
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How universal properties help

Taking (57) as example:

X ⊆ R ∩ S ≡
{

X ⊆ R
X ⊆ S

Left cancellation (X := R ∩ S):{
R ∩ S ⊆ R
R ∩ S ⊆ S

(59)

Right cancellation (X := R or X := S):

R = R ∩ S ≡ R ⊆ S (60)
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Indirect equality

Universal properties such as e.g. (57,58) blend nicely with the
so-called indirect equality way of proving relation equality:

Indirect equality rules:

R = S ≡ 〈∀ X :: (X ⊆ R ≡ X ⊆ S)〉 (61)

≡ 〈∀ X :: (R ⊆ X ≡ S ⊆ X )〉 (62)

Compare with eg. equality of sets in discrete maths:

A = B ≡ 〈∀ a :: a ∈ A ≡ b ∈ B〉
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Indirect relation equality

The typical layout is e.g.



X ⊆ R

≡ { ... }
X ⊆ . . .

≡ { ... }
X ⊆ S

:: { indirect equality (61) }
R = S

�
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How universal properties help

R ∩ > = R.

Why?

Again recall (57)

X ⊆ R ∩ S ≡
{

X ⊆ R
X ⊆ S

and use indirect
equality (aside):

X ⊆ R ∩ >
≡ { universal property (57) }{

X ⊆ R
X ⊆ >

≡ { > is above anything }

X ⊆ R

:: { indirect equality (61) }

R ∩ > = R
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How universal properties help

Other expected properties
of meet and join can also
be inferred by indirect
equality.

Take associativity

(R ∩ S) ∩ Q = R ∩ (S ∩ Q)

as example and follow the
reasonig aside.

X ⊆ (R ∩ S) ∩ Q

≡ { ∩-universal (57) twice }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ Q

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ Q)

≡ { ∩-universal (57) twice }

X ⊆ R ∩ (S ∩ Q)

:: { indirection (61) }

(R ∩ S) ∩ Q = R ∩ (S ∩ Q)

�



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Distributivity

As we will show later, composition distributes over union

R · (S ∪ Q) = (R · S) ∪ (R · Q) (63)

(S ∪ Q) · R = (S · R) ∪ (Q · R) (64)

while distributivity over intersection is side-conditioned:

(S ∩ Q) · R = (S · R) ∩ (Q · R) ⇐

 Q · img R ⊆ Q
∨

S · img R ⊆ S
(65)

R · (Q ∩ S) = (R · Q) ∩ (R · S) ⇐

 (ker R) · Q ⊆ Q
∨

(ker R) · S ⊆ S
(66)
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Propositio de homine et capra et lvpo

Back to our running example, we specify:

Being at the same bank:

SameBank = ker where =
where

where
Risk of somebody eating somebody else:

CanEat = SameBank ∩ Eats

Then

“Starvation” is ensured by Farmer present at the same
bank:

CanEat ⊆ SameBank · Farmer (67)
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Propositio de homine et capra et lvpo

By (35), “starvation” property (67) converts to:

where · CanEat ⊆ where · Farmer

In this version, (67) can be depicted as a ‘magic square’:

Being

where
��

Being
CanEatoo

Farmer

��
⊆

Bank Being
where

oo

(68)

This “reads” in a nice way:

where (somebody) CanEat (somebody else) (that’s)

where (the) Farmer (is).
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Propositio de homine et capra et lvpo

Properties which —
such as (68) — are
desirable and must
always hold are
called invariants.

See aside the
‘starvation’
invariant (68)
written in Alloy.
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Propositio de homine et capra et lvpo

Carefully observe
instance of such an
invariant (aside):

• SameBank is an
equivalence —
exactly the
kernel of where

• Eats is simple
but not
transitive

• cross is a
bijection

• CanEat is empty

• etc
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Propositio de homine et capra et lvpo

Another instance of
the same invariant,
in which:

• CanEat is not
empty

(Fox can eat
Goose!)

• but Farmer is
on the same
bank
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Why is SameBank an equivalence?

Recall that SameBank = ker where. Then SameBank is an equivalence
relation by the exercise below.

Exercise 23: Knowing that property

f · f ◦ · f = f (69)

holds for every function f (to be shown later), prove that ker f = f
f (41)

is an equivalence relation. �

Equivalence relations expressed in this way are captured in natural
language by the textual pattern

a(ker f )b means “a and b have the same f ”

which is very common in requirements.
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Monotone reasoning
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Monotonicity

All relational combinators studied so far are ⊆-monotonic,
namely:

R ⊆ S ⇒ R◦ ⊆ S◦ (70)

R ⊆ S ∧ U ⊆ V ⇒ R · U ⊆ S · V (71)

R ⊆ S ∧ U ⊆ V ⇒ R ∩ U ⊆ S ∩ V (72)

R ⊆ S ∧ U ⊆ V ⇒ R ∪ U ⊆ S ∪ V (73)

etc hold.

Transitivity, recall:

R ⊆ S ∧ S ⊆ Q⇒ R ⊆ Q
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Proofs by ⊆-transitivity

Wishing to prove R ⊆ S , the following rules are of help by
relying on a “mid-point” M (analogy with interval
arithmetics):

• Rule A: lowering the upper side

R ⊆ S

⇐ { M ⊆ S is known ; transitivity of ⊆ (10) }

R ⊆ M

and then proceed with R ⊆ M .
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Proofs by ⊆-transitivity

• Rule B: raising the lower side

R ⊆ S

⇐ { R ⊆ M is known; transitivity of ⊆ }

M ⊆ S

and then proceed with M ⊆ S .
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Example

Composition of simple A
S // B and B

R // C is simple:

img (R · S) ⊆ id

≡ { img R = R · R◦; converses (19) }

R · S · S◦ · R◦ ⊆ id

⇐ { S is simple, S · S◦ ⊆ id ; rule B }

R · R◦ ⊆ id

⇐ { R is simple, R · R◦ ⊆ id ; rule B }

id ⊆ id

≡ { R ⊆ R always holds }
true
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Example

Proof of shunting rule (35):

R ⊆ f ◦ · S
⇐ { id ⊆ f ◦ · f ; raising the lower-side }

f ◦ · f · R ⊆ f ◦ · S
⇐ { monotonicity of (f ◦·) }

f · R ⊆ S

⇐ { f · f ◦ ⊆ id ; lowering the upper-side }

f · R ⊆ f · f ◦ · S
⇐ { monotonicity of (f ·) }

R ⊆ f ◦ · S

Thus the equivalence in (35) is established by circular implication.
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Exercises (monotonicity and transitivity)

Exercise 24: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

• R ∩ S is injective (simple) provided one of R or S is so

• R ∪ S is entire (surjective) provided one of R or S is so.

�

Exercise 25: Prove that relational composition preserves all relational

classes in the taxonomy of (28). �
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Meaning of f · r = id

On the one hand,

f · r = id

≡ { equality of functions }

f · r ⊆ id

≡ { shunting }

r ⊆ f ◦

Since f is simple:

• f ◦ is injective

• and so is r , because “smaller than injective is injective”.
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Meaning of f · r = id

On the other hand,

f · r = id

≡ { equality of functions }

id ⊆ f · r
≡ { shunting }

r◦ ⊆ f

Since r is entire:

• r◦ is surjective

• and so is f because “larger that surjective is surjective”.
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Meaning of f · r = id

We conclude that

f is surjective and r is injective wherever f · r = id
holds.

Since both are functions, we furthermore conclude that

f is an abstraction and r is a representation

Exercise 26: Why are π1 and π2 surjective? And why are i1 and i2
injective? Why are isomorphisms bijections? �
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Exploring “magic squares”
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‘Magic square’

Recall

A

S

��

C

Q

��

Roo

⊆

B D
P

oo

S · R ⊆ P · Q

... i.e. the pointwise:

∃ a d

S · R ⇒ P · Q

∀ b c b c
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Converse magic squares

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

≡

A

R◦

��

B
P◦oo

S◦

��
⊆

C D
Q◦

oo

(74)
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Magic square compositionality

Magic squares compose, not only horizontally

A

P

��

C

Q

��

Roo C ′
R′oo

Q′

��
⊆ ⊆

B D
S

oo D ′
S ′

oo

⇒

A

P

��

C ′
R·R′oo

Q′

��
⊆

B ′ D ′
S·S ′
oo

(75)
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Magic square compositionality

... but also vertically:

A

P

��

C

Q

��

Roo

⊆

B

P′

��

D
S

oo

Q′

��
⊆

B ′ D ′
S ′

oo

⇒

A

P′·P
��

C

Q′·Q
��

Roo

⊆

B ′ D ′
S ′

oo

(76)

Exercise 27: Prove (75) and (76). �

Exercise 28: Use (76) to prove that the compostion of monotonic

functions is a monotonic function. �
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Shunting rules as magic squares

Recall shunting rule (35)

f · R ⊆ Q ≡ R ⊆ f ◦ · Q

and compare with:

A

f

��

C

Q

��

Roo

⊆

B B
id

oo

≡

A

id

��

C
Roo

Q

��
⊆

A B
f ◦

oo

Exercise 29: Draw the magic squares of the other shunting rule (36).

�
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Exercises

Exercise 30: What do the following magic squares tell us about relation
R?

A

id

��

A

R

��

idoo B
R◦oo

id

��
⊆ ⊆

A B
R◦

oo B
id

oo

�

Exercise 31:

The square aside captures an
important property of constant
functions. Apply (graphically)
the shunting rules and conclude
that ker k = >.

B

k

��

A

k

��

Roo

⊆

K K
id

oo

(77)

�
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“D. Acácia grocery”

Client Sale
clientoo

date

##

SoldProduct
saleoo

product
��

Cupon

cupon

hh

Used

OO

expiry
))

Product

Date

(6)

PP

Find “magic square” for property:

Coupons cannot be used beyond their expiry date.
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“D. Acácia grocery”

Client Sale
clientoo

date

##

SoldProduct
saleoo

product
��

Cupon

cupon

hh

Used

OO

expiry
))

Product

Date

(6)

PP

Find “magic square” for property:

Coupons can only be used by clients who own them.



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

‘Magic square’ patterns

Now consider the special case

A

f

��

A

f

��

(v)oo

⊆

B B
(6)

oo

f · (v) ⊆ (6) · f

where (v) and (6) are preorders.
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‘Magic square’ patterns

Do we need...

∃ a b′

f · (v) ⇒ (6) · f

∀ b a′ b a′

as before?
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‘Magic square’ patterns

No — for functions things are much easier:

f · (v) ⊆ (6) · f

≡ { (35) }

(v) ⊆ f ◦ · (6) · f

≡ { (21) }

〈∀ a, a′ : a v a′ : f a 6 f a′〉

In summary,

f · (v) ⊆ (6) · f (78)

states that f is a monotonic function.
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‘Magic square’ patterns

Now consider yet another special case:

A

f

��

A

g

��

idoo

⊆

B B
(6)

oo

f ⊆ (6) · g (79)

Likewise, f ⊆ (6) · g will unfold to

〈∀ a :: f a 6 g a〉

meaning that

f is pointwise-smaller than g wrt. (6).
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‘Magic square’ patterns

Now consider yet another special case:

A

f

��

A

g

��

idoo

⊆

B B
(6)

oo

f ⊆ (6) · g (79)

Likewise, f ⊆ (6) · g will unfold to

〈∀ a :: f a 6 g a〉

meaning that

f is pointwise-smaller than g wrt. (6).
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f
.
6 g

Usual abbreviation: f
.
6 g ≡ f ⊆ (6) · g .
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Relational patterns: the pre-order f ◦ · (6) · f
Given a preorder (6), a function f function taking values on the
carrier set of (6), define

(6f ) = f ◦ · (6) · f

It is easy to show that:

b 6f a ≡ (f b) 6 (f a)

That is, we compare objects a and b with respect to their
attribute f .

Exercise 32:

1. Show that (6f ) is a preorder.

2. Show that (6f ) is not (in general) a total order even in the case
(6) is so.

�
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Exercises

Exercise 33: As generalization of exercise 1, draw the most general
“magic square” that accommodates relational assertion:

M · R◦ ⊆ > ·M (80)

�

Exercise 34: Type the following relational assertions

M · N◦ ⊆ ⊥ (81)

M · N◦ ⊆ id (82)

M◦ · > · N ⊆ > (83)

and check their pointwise meaning. Confirm your intuitions by repeating

this exercise in Alloy. �
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Exercises

Exercise 35: Let bag : A∗ → N0
A be the function that, given a finite

sequence (list) indicates the number of occurrences of its elements, for
instance,

bag [a, b, a, c ] a = 2

bag [a, b, a, c ] b = 1

bag [a, b, a, c ] c = 1

Let ordered : A∗ → B be the obvious predicate assuming a total order
predefined in A. Finally, let true = True. Having defined

S =
bag

bag
∩ true

ordered
(84)

identify the type of S and, going pointwise and simplifying, tell which

operation is specified by S . �
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Exercises

Exercise 36: Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (85)

�

Exercise 37: Derive from (85) the corresponding rule for injective

relations. �

Exercise 38: Explain in your own words the following equalities:

1 1
>oo = 1 1

!oo = id (86)

�
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Class 5 — Pairs and sums
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Relational pairing

Recall:

A A× B
π1oo π2 // B

C
f

bb

〈f ,g〉

OO

g

<< 〈f , g〉 c = (f c, g c) (87)

Clearly:

(a, b) = 〈f , g〉 c

≡ { 〈f , g〉 c = (f c, g c) (87) ; equality of pairs }{
a = f c
b = g c

≡ { y = f x ≡ y f x }{
a f c
b g c
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Relational pairing

That is:

(a, b) 〈f , g〉 c ≡ a f c ∧ b g c

This suggests the generalization

(a, b) 〈R, S〉 c ≡ a R c ∧ b S c (88)

from which one immediately derives the (’Kronecker’) product:

R × S = 〈R · π1, S · π2〉 (89)

(89) unfolds to the pointwise:

(b, d)(R × S)(a, c) ≡ b R a ∧ d S c (90)
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Relational pairing example (in matrix layout)

Example — given relations

where◦ =

Left Right

Fox 1 0
Goose 0 1
Beans 0 1

and cross =
Left Right

Left 0 1
Right 1 0

pairing them up evaluates to:

〈where◦, cross〉 =

Left Right

(Fox , Left) 0 0
(Fox ,Right) 1 0

(Goose, Left) 0 1
(Goose,Right) 0 0

(Beans, Left) 0 1
(Beans,Right) 0 0
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Exercises

Exercise 39: Show that

(b, c)〈R,S〉a ≡ b R a ∧ c S a

PF-transforms to:

〈R,S〉 = π◦1 · R ∩ π◦2 · S (91)

Then infer universal property

X ⊆ 〈R,S〉 ≡ π1 · X ⊆ R ∧ π2 · X ⊆ S (92)

from (91) via indirect equality (61). �

Exercise 40: What can you say about (92) in case X , R and S are

functions? �
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Exercises

Exercise 41: Unconditional distribution laws

(P ∩ Q) · S = (P · S) ∩ (Q · S)

R · (P ∩ Q) = (R · P) ∩ (R · Q)

will hold provide one of R or S is simple and the other injective. Tell

which (justifying). �

Exercise 42: Derive from

〈R,S〉◦ · 〈X ,Y 〉 = (R◦ · X ) ∩ (S◦ · Y ) (93)

the following properties:

ker 〈R,S〉 = ker R ∩ ker S (94)�
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Injectivity preorder

ker R = R◦ · R measures the level of injectivity of R according to
the preorder (6) defined by

R 6 S ≡ ker S ⊆ ker R (95)

telling that R is less injective or more defined (entire) than S —
for instance:

6
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Injectivity preorder

Restricted to functions, (6) is universally bounded by

! 6 f 6 id

Also easy to show:

id 6 f ≡ f is injective (96)

Exercise 43: Let f and g be the two functions depicted on the right.

Check the assertions:

1. f 6 g

2. g 6 f

3. Both hold

4. None holds.

C W
foo g // IN0

"Armstrong"
� //

(
tt

9

’A’ "Albert"
� //�oo 6

’M’ "Minho"
� //�oo 5

’B’ "Braga"
(

44

�oo

�
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The specification pattern h 6 〈f , g〉

As illustration of the use of this ordering in formal specification,
suppose one writes

room 6 〈lect, slot〉

in the context of the data model

Teacher Class
lectoo room //

slot
��

Room

TD

where TD abbreviates time and date.
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The specification pattern h 6 〈f , g〉
What are we telling about this model by writing

room 6 〈lect, slot〉?

Unfolding it:

room 6 〈lect, slot〉

≡ { (95) }

ker 〈lect, slot〉 ⊆ ker room

≡ { (94) ; (41) }

lect

lect
∩ slot

slot
⊆ room

room

≡ { going pointwise, for all c1, c2 ∈ Class }{
lect c1 = lect c2

slot c1 = slot c2
⇒ room c1 = room c2
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The specification pattern h 6 〈f , g〉

That is, room 6 〈lect, slot〉 imposes that

a given lecturer cannot be in two different rooms at the
same time.

(Think of c1 and c2 as classes shared by different courses, possibly
of different degrees.)

In the standard terminology of database theory this is called a
functional dependency, meaning that:

• room is dependent on lect and slot, i.e.

• lect and slot determine room.
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Generalization: the “agenda design pattern”

Nobody can be in different places at the same time

where 6 〈who,when〉

in the context of the generic data model:

Who Meeting
whooo where //

when
��

Where

When

Exercise 44: Do who 6 〈where,when〉 and when 6 〈who,where〉
express reasonable facts? �
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The specification pattern h 6 〈f , g〉

Let h := id in this pattern:

Two functions f and g are said to be complementary
wherever id 6 〈f , g〉.

For instance:

π1 and π2 are complementary since 〈π1, π2〉 = id by
×-reflection.

Informal interpretation:

Non-injective f and g compensate each other’s lack of
injectivity so that their pairing is injective.
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Relational injectivity

Universal property:

〈R, S〉 6 X ≡ R 6 X ∧ S 6 X (97)

Cancellation of (97) means that pairing always increases injectivity:

R 6 〈R,S〉 and S 6 〈R,S〉. (98)

(98) unfolds to ker 〈R,S〉 ⊆ (ker R) ∩ (ker S), confirming (94).

Injectivity shunting law:

R · g 6 S ≡ R 6 S · g◦ (99)



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Exercises

Exercise 45: 〈R, id〉 is always injective — why? �

Exercise 46: Let f and g be given such that

f · g · f = f (100)

holds. Show that:

f · g = id ⇐ f surjective (101)

g · f = id ⇐ f injective (102)

Hint: recall (37) among other required laws. �
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Relation pairing continued

The fusion-law of relation pairing requires a side condition:

〈R, S〉 · Q = 〈R · Q, S · Q〉 ⇐


R · img Q ⊆ R

∨
S · img Q ⊆ S

(103)

However, the absorption law

(R × S) · 〈P,Q〉 = 〈R · P,S · Q〉 (104)

holds unconditionally.
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Exercises

Exercise 47: Recalling (29), prove that

swap = 〈π2, π1〉 (105)

is a bijection. (Assume property (R ∩ S)◦ = R◦ ∩ S◦.) �

Exercise 48: Derive from the laws of pairing studied thus far the
following facts about relational product:

id × id = id (106)

(R × S) · (P × Q) = (R · P)× (S · Q) (107)

�

Exercise 49: Show that (103) holds. Suggestion: recall (65). From this

infer that no side-condition is required for T simple. �
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Class 6 — Sums
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Relational sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))

Bool + String

[Boo ,Err ]
��

String
i2oo

Err
uuX

(108)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
%%

A + B

[R ,S]
��

B
i2oo

S
yy

CDually: R + S = [i1 · R , i2 · S ]
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Relational sums

From [R , S ] = (R · i◦1 ) ∪ (S · i◦2 ) above one easily infers, by
indirect equality,

[R ,S ] ⊆ X ≡ R ⊆ X · i1 ∧ S ⊆ X · i2

(check this).

It turns out that inclusion can be strengthened to equality, and
therefore relational coproducts have exactly the same properties
as functional ones, stemming from the universal property:

[R ,S ] = X ≡ R = X · i1 ∧ S = X · i2 (109)

Thus [i1 , i2] = id — solve (109) for R and S when X = id , etc etc.



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Divide and conquer

The property for sums (coproducts) corresponding to (93) for
products is:

[R ,S ] · [Q ,U]◦ = (R · Q◦) ∪ (S · U◦) (110)

NB: This divide-and-conquer rule is essential to parallelizing
relation composition by block decomposition.

Exercise 50: Show that:

img [R ,S ] = img R ∪ img S (111)

img i1 ∪ img i2 = id (112)

�
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Exercises

Exercise 51: The type declaration

data Maybe a = Nothing | Just a

in Haskell corresponds, as is known, to the declaration of the
isomorphism:

in : 1 + A→ Maybe A
in = [Nothing , Just]

Show that the relation

R = i1 · Nothing◦ ∪ i2 · Just◦

is a function. �
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Exercises

Exercise 52: Consider the following definition of a relation

A A∗
Roo ,

R · in = [⊥ , π1 ∪ R · π2]

where

in = [nil , cons] (113)

nil = [ ] (114)

cons (h, t) = h : t (115)

(a) Rely on the co-product laws to derive (formally) the pointwise
definition of R.

(b) Based on this, spell out the meaning of a R x in you own words. �
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+ meets ×
The exchange law

[〈R,S〉 , 〈Q,V 〉] = 〈[R ,Q], [S ,V ]〉 (116)

holds for all relations as in diagram

A
i1 //

R

�� S
))

A + B B
Q

uu

V

��

i2oo

C C × D
π1

oo
π2

// D

and the fusion law

〈R,S〉 · f = 〈R · f ,S · f 〉 (117)

also holds, where f is a function. (Why?)

Exercise 53: Relying on both (109) and (117) prove (116). �
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On key-value (KV) data models
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On key-value data models

Simple relations abstract what is currently known as the
key-value-pair (KV) data model in modern databases

E.g. Hbase, Amazon DynamoDB etc

In each such relation K
S // V , K is said to be the key and V

the value.

No-SQL, columnar database trend.

Example above:

PartitionKey × SortKey︸ ︷︷ ︸
K

→ Type × . . .︸ ︷︷ ︸
V
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On key-value data models

“Schema is
defined per
item”...

In this example:

V = Title × (1 + Author × (1 + Date × . . .))

This shows the expressiveness of products and coproducts in
data modelling.
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Magic square sums

Exercise 54: Prove (118) below.

A

P

��

C
Roo

Q

��

⊆

B D
S

oo

+

A′

P′

��

C ′
R′oo

Q′

��

⊆

B ′ D ′
S

oo

=

A + A′

P+P′

��

C + C ′

Q+Q′

��

R+R′oo

⊆

B + B ′ D + D ′
S+S′
oo

(118)

�
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Class 7 — Relational
division (and so on)
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Relation division — motivation

Recall the algorithm of whole (integer) division:

x ÷ y =
if x < y then 0
else 1 + (x − y)÷ y

How does one specify such an algorithm?
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Back to the primary school desk

The whole division algorithm

7 2
1 3

2× 3 + 1 = 7 , “i.e.“ 3 = 7÷ 2

However

7 2
3 2

2× 2 + 3 = 7 ∧ 2 6= 7÷ 2

7 2
5 1

2× 1 + 5 = 7 ∧ 1 6= 7÷ 2

That is:

x y
... x ÷ y

z × y 6 x ⇒ z 6 x ÷ y
x ÷ y largest z
such that
z × y 6 x .
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Back to the primary school desk

On the other hand,

z 6 x ÷ y ⇒ z × y 6 x

For instance:

2 6 7÷ 2⇒ 2× 2 = 4 6 7

Altogether:

x y
... x ÷ y

z × y 6 x ≡ z 6 x ÷ y
x ÷ y largest z
such that
z × y 6 x .

Note the equivalence.
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Back to the primary school desk

On the other hand,

z 6 x ÷ y ⇒ z × y 6 x

For instance:

2 6 7÷ 2⇒ 2× 2 = 4 6 7

Altogether:

x y
... x ÷ y

z × y 6 x ≡ z 6 x ÷ y
x ÷ y largest z
such that
z × y 6 x .

Note the equivalence.
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Relational division

In the same way

z × y 6 x ≡ z 6 x ÷ y

means that

x ÷ y is the largest number that multiplied by y
approximates x,

also

Z · Y ⊆ X ≡ Z ⊆ X/Y (119)

means that X/Y is the largest relation which pre-composed with
Y approximates X .

What is the pointwise meaning of X/Y ?
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We reason:

First, the types:

Z · Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��
C B

Y

OO

X
oo

Next, the calculation:

c (X/Y ) a

≡ { introduce points C 1
coo and A 1

aoo }

x(c◦ · (X/Y ) · a)x

≡ { one-point (224) }

x ′ = x ⇒ x ′(c◦ · (X/Y ) · a)x

We proceed by going pointfree:
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We reason

id ⊆ c◦ · (X/Y ) · a

≡ { shunting rules }

c · a◦ ⊆ X/Y

≡ { universal property (119) }

c · a◦ · Y ⊆ X

≡ { now shunt c back to the right }

a◦ · Y ⊆ c◦ · X
≡ { go back to points via (21) }

〈∀ b : a Y b : c X b〉
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Outcome

In summary:

c (X/Y ) a ≡ 〈∀ b : a Y b : c X b〉 a?
X/Y

��
c b

_
Y

OO

�
X
oo

(120)

Example:

a Y b = passenger a chooses flight b

c X b = company c operates flight b

c (X/Y ) a = company c is the only one trusted by passenger
a, that is, a only flies c .
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Pattern X / Y

Informally, c (X / Y ) a captures the linguistic pattern:

a only Y those b’s
such that c X b.

a?
X/Y

��
c b

_
Y

OO

�
X
oo

For instance,

Students enrolled
in courses only
dealing with
particular subjects

student2
Dealt in/Enrolled

yy
subject course

_
Enrolled

OO

�
Dealt in
oo
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Pointwise meaning in full

The full pointwise encoding of

Z · Y ⊆ X ≡ Z ⊆ X/Y

is:

〈∀ c , b : 〈∃ a : cZa : aYb〉 : cXb〉
≡
〈∀ c , a : cZa : 〈∀ b : aYb : cXb〉〉

If we drop variables and regard the uppercase letters as Boolean terms
dealing without variable c , this becomes

〈∀ b : 〈∃ a : φ : ψ〉 : γ〉 ≡ 〈∀ a : φ : 〈∀ b : ψ : γ〉〉

recognizable as the splitting rule (232) of the Eindhoven calculus.

Put in other words: existential quantification is lower adjoint to
universal quantification.
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Exercises

Exercise 55: Prove the equalities

X · f = X/f ◦ (121)

X/⊥ = > (122)

X/id = X (123)

and check their pointwise meaning. �

Exercise 56: Define

X \ Y = (Y ◦/X ◦)◦ (124)

and infer:

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (125)

R · X ⊆ Y ≡ X ⊆ R \ Y (126)

�
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Patterns in diagrams (again!)

Back to our good old ”squares”:

A

S

��

C

Q

��

Roo

⊆

B D
P

oo

S · R ⊆ P · Q

... i.e. the pointwise:

∃ a d

S · R ⇒ P · Q

∀ b c b c
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Patterns in diagrams - very special case

Again assuming two preorders (v) and (6):

A

f ◦

��

A

g

��

(v)oo

=

B B
(6)

oo

f ◦ · (v) = (6) · g

f b v a ≡ b 6 g a (127)

In this very special situation,
f and g in

(A,v)

g
**
(B,6)

f

jj

are said to be Galois
connected (GC) and we
write

f ` g (128)
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Patterns in diagrams - even more special case

Preorders (v) and (6) are the identity:

A

f ◦

��

A

g

��

idoo

=

B B
id

oo

f ◦ = g

f b = a ≡ b = g a (129)

That is to say,

A

g

''∼= B

f

gg

Isomorphisms are
special cases of
Galois
connections.
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GC — mechanics analogy

Stability:
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GC — mechanics analogy

Instability:
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GC — mechanics analogy

Stability restored:

“Restauratio” rule (Middle Ages).
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Example of GC

Integer division GC:

z × y 6 x ≡ z 6 x ÷ y

that is:

z (×y)︸ ︷︷ ︸
f

6 x ≡ z 6 x (÷y)︸ ︷︷ ︸
g

So:

(×y) ` (÷y)

Principle:

Difficult (÷y) explained by easy (×y).
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GCs

Interpreting:

f ◦ · (v) = (6) · g , ie.
f b v a ≡ b 6 g a, ie.

f ` g

• f b is the smallest a such that b 6 g a holds.

• g a is the largest b such that f b v a holds.

Thus z × y 6 x ≡ z 6 x ÷ y reads like this:

x ÷ y is the largest z such that z × y 6 x.
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GCs as specifications

Thus:

z × y 6 x ≡ z 6 x ÷ y is a specification of x ÷ y

How does it relate to its implementation, e.g.

x ÷ y =
if x < y then 0
else 1 + (x − y)÷ y

?

It is a long story. For the moment, let us appreciate the power of
the GC concept.
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GCs as specifications

Consider the following requirements about the take function in
Haskell:

take n xs should yield the longest possible prefix of xs
not exceeding n in length.

Warming up examples:

take 2 [10, 20, 30] = [10, 20]
take 20 [10, 20, 30] = [10, 20, 30]
...

How do we write a formal specification for these requirements?
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Specifying functions on lists

Clearly,

• take n xs is a prefix of xs — specify this as e.g.

take n xs � xs

where � denotes the prefix partial order.

• the length of take n xs cannot exceed n — easy to specify:

length (take n xs) 6 n

Altogether:

length (take n xs) 6 n ∧ take n xs � xs (130)

But this is not enough — (silly) implementation take n xs = [ ]
meets (130)!
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Superlatives...

The crux is how to formally specify the superlative in

...take n xs should yield the longest possible prefix...

This is the hard part but there is a standard method to follow:

• think of an arbitrary list ys also satisfying (130)

length ys 6 n ∧ ys � xs

• Then (from above) ys should be a prefix of take n xs:

length ys 6 n ∧ ys � xs ⇒ ys � take n xs (131)
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Final touch

So we have two clauses,

a easy one (130)

and

a hard one (131).

Interestingly, (130) can be derived from (131) itself,

length ys 6 n ∧ ys � xs ⇐ ys � take n xs

by letting ys := take n xs and simplifying.

So a single line is enough to formally specify take:

length ys 6 n ∧ ys � xs ≡ ys � take n xs (132)

— a GC.
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Reasoning about specifications (GCs)

One of the advantages of formal specification is that one may
quest the specification (aka model) to derive useful properties of
the design before the implementation phase.

GCs + indirect equality (on partial orders) yield much in this
process — see the following exercise.

Exercise 57: Solely relying on specification (132) use indirect equality
to prove that

take (length xs) xs = xs (133)

take 0 xs = [ ] (134)

take n [ ] = [ ] (135)

hold. �
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GCs: many properties for free

(f b) 6 a ≡ b v (g a)

Description f = g [ g = f ]

Definition f b =
∧
{a : b v g a} g a =

⊔
{b : f b 6 a}

Cancellation f (g a) 6 a b v g(f b)
Distribution f (b t b′) = (f b) ∨ (f b′) g(a′ ∧ a) = (g a′) u (g a)

Monotonicity b v b′⇒ f b 6 f b′ a 6 a′⇒ g a v g a′

Exercise 58: Derive from (127) that both f and g are monotonic. �
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Remark on GCs

Galois connections originate from the
work of the French mathematician
Evariste Galois (1811-1832). Their main
advantages,

simple, generic and highly
calculational

are welcome in proofs in computing,
due to their size and complexity, recall
E. Dijkstra:

elegant ≡ simple and
remarkably effective.

In the sequel we will re-interpret the relational operators we’ve
seen so far as Galois adjoints.
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Examples

Not only

z (×y)︸ ︷︷ ︸
f z

6 x ≡ z 6 x (÷y)︸ ︷︷ ︸
g x

but also the two shunting rules,

(h·)X︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ (h◦·)Y︸ ︷︷ ︸
g Y

X (·h◦)︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ Y (·h)︸ ︷︷ ︸
g Y

as well as converse,

X ◦︸︷︷︸
f X

⊆ Y ≡ X ⊆ Y ◦︸︷︷︸
g Y

and so and so forth — are adjoints of GCs: see the next slides.
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Converse

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

converse ( )◦ ( )◦ b R◦ a ≡ a R b

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦

Exercise 59: Why is it that converse-monotonicity can be strengthened

to an equivalence? �
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Example of calculation from the GC

Converse involution (cancellation):

(R◦)◦ = R (136)

Proof of (136):

(R◦)◦ = R

≡ { antisymmetry (”ping-pong”) }

(R◦)◦ ⊆ R ∧ R ⊆ (R◦)◦

≡ { ◦-universal X ◦ ⊆ Y ≡ X ⊆ Y ◦ twice }

R◦ ⊆ R◦ ∧ R◦ ⊆ R◦

≡ { reflexivity (twice) }

True
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Relational division

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

right-division (·R) ( / R) right-factor
left-division (R·) (R \ ) left-factor

that is,

X · R ⊆ Y ≡ X ⊆ Y / R (137)

R · X ⊆ Y ≡ X ⊆ R \ Y (138)

Immediate: (R·) and (·R) are monotonic and distribute over union:

R · (S ∪ T ) = (R · S) ∪ (R · T )

(S ∪ T ) · R = (S · R) ∪ (T · R)

(\R) and (/R) are monotonic and distribute over ∩.
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Functions

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

shunting rule (h·) (h◦·) NB: h is a function
“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: R · h = R/h◦
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Other operators

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

implication (R ∩ ) (R ⇒ ) b(R ⇒ X )a ≡ bRa⇒ bXa

difference ( − R) (R ∪ ) b (X − R) a ≡
{

b X a
¬ (b R a)

Thus the universal properties of implication and difference,

R ∩ X ⊆ Y ≡ X ⊆ R ⇒ Y (139)

X − R ⊆ Y ≡ X ⊆ R ∪ Y (140)

are GCs — etc, etc

Exercise 60: Show that R ∩ (R⇒Y ) ⊆ Y (“modus ponens”) holds. �
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Class 8 — How predicates
become relations
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How predicates become relations

Recall from (38) the notation

f

g
= g◦ · f

and, given predicate B A
poo , the relation A X

true
poo , where

true is the everywhere-True constant function.

Now define:

Φp = id ∩ true

p
(141)

Clearly, Φp is the coreflexive relation which represents predicate
p as a binary relation — see the following exercise.

Exercise 61: Show that y Φp x ≡ y = x ∧ p x �
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Φeven
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Predicates become relations

Moreover,

Φp · > =
true

p
(142)

thanks to distributive property (65) and

k · R ⊆ k (143)

Then:

R · Φp = R ∩ > · Φp (144)

Φq · R = R ∩ Φq · > (145)

These are called pre and post restrictions of R.

Exercise 62: Why does (143) hold? �
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Relational restrictions

Pre restriction R · Φp:

Post restriction Φq · R:
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Exercises

Exercise 63: Show that R − S ⊆ R, R −⊥ = R and R − R = ⊥
hold. �

Exercise 64: Prove the distributive property:

g◦ · (R ∩ S) · f = g◦ · R · f ∩ g◦ · S · f (146)

Then show that

g◦ · Φp · f =
f

g
∩ true

p · g
(147)

holds (both sides of the equality mean g b = f a ∧ p (g b)). �

Exercise 65: Infer

Φq · Φp = Φq ∩ Φp (148)

from properties (144) and (145). �
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Contracts
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More on pre/post relational restrictions

Looking at the types in a pre
restriction

A

R

��

A
Φpoo

B

... and those in a post
restriction

A

R

��
B B

Φq

oo

we immediately realize they
fit together into a “magic”
square...

A

R

��

A
Φpoo

R

��

⊆

B B
Φq

oo
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“Magic squares” — again!

A

R

��

A
Φpoo

R

��

⊆

B B
Φq

oo

R · Φp ⊆ Φq · R (149)

What does this mean?

Let us see this for the (simpler) case in which R is a function f :

A

f

��

A
Φpoo

f

��

⊆

B B
Φq

oo

f · Φp ⊆ Φq · f (150)
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Contracts

By shunting, (150) is the same as Φp ⊆ f ◦ · Φq · f , therefore meaning:

〈∀ a : p a : q (f a)〉 (151)

by exercise 61.

In words:

For all inputs a such that condition p a holds, the output f a
satisfies condition q.

In software design, this is known as a (functional) contract, which we
shall write

p
f // q (152)

— a notation that generalizes the type of f . Important: thanks to
(145), (150) can also be written: f · Φp ⊆ Φq · >.
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Weakest pre-conditions

Note that more than one
(pre) condition p may
ensure (post) condition q
on the outputs of f .

Indeed, contract

false
f // q always

holds, but pre-condition
false is useless (“too
strong”).

The weaker p, the better.
Now, is there a weakest
such p?

See the calculation aside.



f · Φp ⊆ Φq · f
≡ { see above (145) }

f · Φp ⊆ Φq · >
≡ { shunting (35); (142) }

Φp ⊆ f ◦ · trueq
≡ { (40) }

Φp ⊆ true
q·f

≡ { Φp ⊆ id ; (57) }
Φp ⊆ id ∩ true

q·f

≡ { (141) }
Φp ⊆ Φq·f

We conclude that q · f is such a
weakest pre-condition.
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Perfect magic square

The special situation of a weakest precondition is nicely captured
by the universal property:

f · Φp = Φq · f ≡ p = q · f (153)

that is, the “perfect square”:

A

f

��

A
Φq·foo

f

��
=

B B
Φq

oo

f · Φq·f = Φq · f (154)
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Weakest pre-conditions

Notation wp(f , q) = q · f is often used for weakest pre-conditions.

Exercise 66: Calculate the weakest pre-condition wp(f , q) for the
following function / post-condition pairs:

• f x = x2 + 1 , q y = y 6 10 (in R)

• f = N succ // N , q = even

• f x = x2 + 1 , q y = y 6 0 (in R)

�

Exercise 67: Show that q p
g ·foo holds provided r p

foo and

q r
goo hold. �
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Invariants versus contracts

In case contract

q
f // q

holds (152), we say that q is an invariant of f — meaning that
the “truth value” of q remains unchanged by execution of f .

More generally, invariant q is preserved by function f provided

contract p
f // q holds and p ⇒ q, that is, Φp ⊆ Φq.

Some pre-conditions are weaker than others:

We shall say that w is the weakest pre-condition for f to
preserve invariant q wherever wp(f , q) = w ∧ q, where
Φ(p∧q) = Φp · Φq.
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Class 9 - Weakest
precondition calculation
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Library loan example

ISBN Name

Title Book
titleoo

Auth
��

isbn

OO

R // User
addr

//

card
��

name

OO

Address

Author Id

u R b means “book b currently on loan to library user u”.

Desired properties:

• same book not on loan to more than one user;

• no book with no authors;

• no two users with the same card Id.

NB: lowercase arrow labels denote functions, as usual.



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Library loan example

Encoding of desired properties:

• no book on loan to more than one user:

Book
R // User is simple

• no book without an author:

Book
Auth // Author is entire

• no two users with the same card Id:

User
card // Id is injective

NB: as all other arrows are functions, they are simple+entire.
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Library loan example

Encoding of desired properties as relational invariants:

• no book on loan to more than one user:

img R ⊆ id (155)

• no book without an author:

id ⊆ ker Auth (156)

• no two users with the same card Id:

ker card ⊆ id (157)
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Library loan example

Now think of two operations on User Book
Roo , one that

returns books to the library and another that records new
borrowings:

return S R = R − S (158)

borrow S R = S ∪ R (159)

Clearly, these operations only change the books-on-loan relation R,
which is conditioned by invariant:

inv R = img R ⊆ id
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Library loan example

The question is, then: given

inv R = img R ⊆ id (160)

are the following “types”

inv inv
return Soo (161)

inv inv
borrow Soo (162)

ok?

We check (161,162) below.
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Library loan example

Checking (161):

inv (return S R)

≡ { inline definitions }

img (R − S) ⊆ id

⇐ { since img is monotonic }

img R ⊆ id

≡ { definition }

inv R

�

So, for all R, inv R ⇒ inv (return S R) holds — invariant inv is
preserved.



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Library loan example

Checking (161):

inv (return S R)

≡ { inline definitions }

img (R − S) ⊆ id

⇐ { since img is monotonic }

img R ⊆ id

≡ { definition }

inv R

�

So, for all R, inv R ⇒ inv (return S R) holds — invariant inv is
preserved.
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Library loan example

At this point note that (161) was checked only as a warming-up
exercise — we don’t need to worry about it! Why?

As R − S is smaller than R (exercise 63) and “smaller
than injective is injective” (exercise 24), it is immediate
that inv (160) is preserved.

To see this better, unfold and draw definition (160):

inv R =

Book

R

��

User
R◦oo

id

��
⊆

User User
id

oo

As R is on the lower-path of the square, it can always get smaller.



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Library loan example

This “rule of thumb” does not work for borrow S because, in
general, R ⊆ borrow S R.

So R gets bigger, not smaller, and we have to check the contract:

inv (borrow S R)

≡ { inline definitions }

img (S ∪ R) ⊆ id

≡ { exercise 36 }

img R ⊆ id ∧ img S ⊆ id ∧ S · R◦ ⊆ id

≡ { definition of inv }

inv R ∧ img S ⊆ id ∧ S · R◦ ⊆ id︸ ︷︷ ︸
wp(borrow S,inv)
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Library loan example (Alloy)

In practice, our proposed workflow does not rush to the
calculation of the weakest precondition of a contract.

We model-check the contract first, in order to save the process
from childish errors:

What is the point in trying to prove something that a
model checker can easily tell is a nonsense?

This follows a systematic process, illustrated next.
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Relation Algebra + Alloy round-trip
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Library loan example (Alloy)

First we write the Alloy model of what we have thus far:

sig Book {
title : one Title,
isbn : one ISBN,
Auth : some Author ,
R : lone User
}
sig User {

name : one Name,
add : some Address,
card : one Id
}
sig Title, ISBN,Author ,

Name,Address, Id { }

fact {
card .˜ card in iden

-- card is injective
}
fun borrow

[S ,R : Book → lone User ] :
Book → lone User {

R + S
}
fun return

[S ,R : Book → lone User ] :
Book → lone User {

R − S
}
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Library loan example (Alloy)

As we have seen, return is no problem, so we focus on borrow .

Realizing that most attributes of Book and User don’t play any role in
borrow , we comment them all, obtaining a much smaller model:

sig Book {R : lone User }
sig User { }

fun borrow
[S ,R : Book → lone User ] :

Book → lone User {
R + S
}
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Library loan example (Alloy)

Next, we single out the invariant, making it explicit as a
predicate:

sig Book {R : User }
sig User { }
pred inv {

R in Book → lone User
}
fun borrow

[S ,R : Book → User ] :
Book → User {

R + S
}
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Library loan example (Alloy)

In the step that follows, we make the model dynamic, in the sense
that we need at least two instances of relation R — one before
borrow is applied and the other after.

We introduce Time as a way
of recording such two
moments, pulling R out of
Book

sig Time {r : Book → User }
sig Book { }
sig User { }

and re-writing inv accordingly
(aside).

pred inv [t : Time ] {
t · r in Book → lone User
}

Note how
r : Time → (Book → User) is
a function — it yields, for
each t ∈ Time, the relation

Book
r t // User .
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Library loan example (Alloy)

This makes it possible to express contract inv
borrow S // inv in

terms of t ∈ Time,

〈∀ t, t ′ : inv t ∧ r t ′ = borrow S (r t) : inv t ′〉

i.e. in Alloy:

assert contract {
all t, t ′ : Time,S : Book → User |

inv [t ] and t ′ · r = borrow [t · r , S ]⇒ inv [t ′ ]
}

Once we check this, for instance running

check contract for 3 but exactly 2 Time

we shall obtain counter-examples. (These were expected...)
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Library loan example (Alloy)

The counter-examples will quickly tell us what the problems are,
guiding us to add the following pre-condition to the contract:

pred pre [t : Time,S : Book → User ] {
S in Book → lone User
∼S · (t · r) in iden
}

The fact that this yields no more counter-examples does not tell us
that

• pre is enough in general

• pre is weakest.

This we have to prove by calculation — as we have seen before.
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Library loan example (Alloy)

Note that pre-conditioned borrow S · Φpre is no longer a function,
because it is not entire anymore.

We can encode such a relation in Alloy in an easy-to-read way, as a
predicate structured in two parts — pre-condition and
post-condition:

pred borrow [t, t ′ : Time, S : Book → User ] {
-- pre-condition
S in Book → lone User
∼S · (t · r) in iden
-- post-condition
t ′ · r = t · r + S
}
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Alloy + Relation Algebra round-trip
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Summary

• The Alloy + Relation Algebra round-trip enables us to take
advantage of the best of the two verification strategies.

• Diagrams of invariants help in detecting which contracts
don’t need to be checked.

• Functional specifications are good as starting point but soon
evolve towards becoming relations, comparable to the
methods of an OO programming language.

• Time was added to the model just to obtain more than one
”state”. In general, Time will be linearly ordered so that the
traces of the model can be reasoned about.5

5In Alloy, just declare: open util/ordering[Time].
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Relational contracts

Relation borrow S · Φpre above invites us to go back to (149) and
define

p
R // q ≡ R · Φp ⊆ Φq · R (163)

thus generalizing functional contracts (150) to arbitrary relations,
meaning:

〈∀ a : p a : 〈∀ b : b R a : q b〉〉 (164)

— see the exercise below.

Exercise 68: Sow that an alternative way of stating (163) is

p
R // q ≡ R · Φp ⊆ Φq · > (165)

Then derive (164) from (165). �
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Exercises

Exercise 69: In Alloy, wherever on writes

sig A {disj R,S : set B }

the keyword disj enforces the following invariant:

No b ∈ B is related by both R and S to the same a ∈ A:

〈∀ a, b : b R a : 〈∀ b′ : b′ S a : b′ 6= b〉〉 (166)

Show that (166) is nothing but (167) below:

S · R◦ ∩ id ⊆ ⊥ (167)

�
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Two distinguished coreflexives: domain and range

Remember...

Kernel of R Image of R

A A
ker Roo B B

img Roo

ker R
def
= R◦ · R img R

def
= R · R◦

How about intersecting both with id?

δR = ker R ∩ id (168)

ρR = img R ∩ id (169)
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Two distinguished coreflexives: domain and range

Clearly:

a′ δR a ≡ a′ = a ∧ 〈∃ b : b R a′ : b R a〉

that is

δR = Φp where p a = 〈∃ b :: b R a〉

Thus δR captures all a which R reacts to.

Dually,

ρR = Φq where q b = 〈∃ a :: b R a〉

Thus ρR captures all b which R hits as target.
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Distinguished coreflexives: domain and range

Universal properties:

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f g Obs.

domain δ (>·) left ⊆ restricted to coreflexives

range ρ (·>) left ⊆ restricted to coreflexives

Spelling out these GC:

δX ⊆ Y ≡ X ⊆ > · Y (170)

ρR ⊆ Y ≡ R ⊆ Y · > (171)
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Distinguished coreflexives: domain and range

Some facts about domain and range:

R = R · δR (172)

R = ρR · R (173)

δ(R · S) = δ(δR · S) (174)

ρ(R · S) = ρ(R · ρS) (175)

> · δR = > · R (176)

ρR · > = R · > (177)

δR ⊆ δS ≡ R ⊆ > · S (178)
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Case study: railway topology
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Case study: railway topology

Sw N
Soo N

Roo P // Sl

where

Sw − switches (‘agulhas’)

Sl − signals (‘sinais’)
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Case study: railway topology

Sw N
Soo N

Roo P // Sl

Switches:

switchOk(S ,R,P) = δS ⊆ R◦ · (6=) · R
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Case study: railway topology

Sw N
Soo N

Roo P // Sl

Add a switch:

addSwitch (s, n) (S ,R,P) = (S ∪ s · n◦,R,P)
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Case study: railway topology

switchOk (addSwitch (s, n) (S ,R,P))

≡ { .......... }

δ(S ∪ s · n◦) ⊆ R◦ · ( 6=) · R

≡ { .......... }

switchOk (S ,R,P) ∧ n · > · n◦ ⊆ R◦ · ( 6=) · R

≡ { .......... }

switchOk (S ,R,P) ∧ > ⊆ n◦ · R◦ · (6=) · R · n

≡ { .......... }

switchOk (S ,R,P) ∧ 〈∃ n1, n2 : n1 6= n2 : n R◦ n1 ∧ n2 R n〉

≡ { .......... }

switchOk (S ,R,P) ∧ 〈∃ n1, n2 : n1 6= n2 : n1 R n ∧ n2 R n〉︸ ︷︷ ︸
WP
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Exercise 21 (continued)

Exercise 70: Recalling exercise 21, let the following relation specify
that two dates are at least one week apart in time:

d Ok d ′ ≡ | d − d ′ | >1 week

Looking at the type diagram below right, say in your own words the
meaning of the invariant specified by the relational type (??) statement
below, on the left:

ker (home ∪ away)− id
date // Ok

G
home∪away //

date
��

T

D G

home∪away

OO

date
oo

�
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Class 10 - 10-4-2025
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Difunctions
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Difunctional relations

A relation R is said to be difunctional or regular wherever
R · R◦ · R = R holds, which amounts to R · R◦ · R ⊆ R since the
converse inclusion always holds.

Exercise 71: Is the following relation difunctional ?

R a1 a2 a3 a4 a5

b1 0 0 1 0 1
b2 0 0 0 0 0
b3 0 1 0 0 0
b4 0 1 0 1 0
b5 0 0 0 1 0

(179)

Justify your answer. �

Exercise 72: Use (172) — or (173) — to show that R ⊆ R · R◦ · R
always holds. �
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Difunctional relations

Some intuition about R being difunctional:

R is such that, wherever two inputs have a common
image, then they have exactly the same set of images.

That is: columns in the matrix representation of R are either the
same or disjoint.

Useful:

A difunctional relation that is reflexive and symmetric
necessarily is an equivalence relation.
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Exercises

Exercise 73: Find the smallest difunctional relation that contains R

(179) of exercise 71. �

Exercise 74: Show that f
g is difunctional. �

Exercise 75: Use the difunctionality of ker f = f
f to show that ker f is

an equivalence relation. �

Exercise 76: Show that the unit circunference

y R x ≡ y2 + x2 = 1 is
difunctional. Hint: recall
exercise 18.

�
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Shrinking and overriding
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Relation shrinking

Given relations R : A← B and S : A← A, define R � S : A← B,
pronounced “R shrunk by S”, by

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (180)

cf. diagram:

B

R
��

R�S

��
A A

S
oo

Property (180) states that R � S is
the largest part of R such that, if it
yields an output for an input x , this
must be a ‘maximum, with respect
to S , among all possible outputs of
x by R.
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Relation shrinking

Given relations R : A← B and S : A← A, define R � S : A← B,
pronounced “R shrunk by S”, by

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (180)

cf. diagram:

B

R
��

R�S

��
A A

S
oo

Property (180) states that R � S is
the largest part of R such that, if it
yields an output for an input x , this
must be a ‘maximum, with respect
to S , among all possible outputs of
x by R.
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Exercises

Exercise 77: Show, by indirect equality, that (180) is equivalent to:

R � S = R ∩ S/R◦ (181)

�

Exercise 78: Show that not only the injectivity but also the simplicity

of a given relation R is preserved by its shrinking R � S by any other

relation S on its output type. �
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Relation shrinking

Example Given

Examiner ×Mark Student
Roo =



Examiner Mark Student
Smith 10 John
Smith 11 Mary
Smith 15 Arthur
Wood 12 John
Wood 11 Mary
Wood 15 Arthur


suppose we wish to choose the best mark for each student.
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Relation shrinking

Then S = π2 · R is the relation

Mark Student
π2·Roo =


Mark Student

10 John
11 Mary
12 John
15 Arthur


and

Mark Student
S�(>)oo =


Mark Student

11 Mary
12 John
15 Arthur


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Properties of shrinking

Two fusion rules:

(S · f ) � R = (S � R) · f (182)

(f · S) � R = f · (S � (f ◦ · R · f )) (183)

“Chaotic optimization”:

R �> = R (184)

“Impossible optimization”:

R �⊥ = ⊥ (185)

“Brute force” determinization:

R � id = largest simple fragment of R (186)
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Relation overriding

The relational overriding combinator

R † S = S ∪ R ∩ ⊥/S◦ (187)

yields the relation which contains the whole of S and that part of
R where S is undefined — read R † S as “R overridden by S”.
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Exercise on relation overriding

Let R : A→ B be given as in
the picture, where
A = {a1, a2, a3, a4, a5} and
B = {b1, b2, b3, b4}:

Represent as a Boolean matrix the following relation overriding:

P = > † R =

a1 a2 a3 a4 a5

b1

b2

b3

b4
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Exercise on relation overriding

And now this other one:

Q = R † (b4 · a2
◦) =

a1 a2 a3 a4 a5

b1

b2

b3

b4

�

Exercise 79: (a) Show that ⊥ † S = S , R † ⊥ = R and R † R = R hold.
(b) Infer the universal property:

X ⊆ R † S ≡ X − S ⊆ R ∧ (X − S) · S◦ = ⊥ (188)

�
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Propositio de homine et capra et lvpo

Recalling the Alcuin puzzle (4)

Being
Eats // Being

where
��

Bank
cross // Bank

we can specify the move of Beings to the other bank is an example
of relational restriction and overriding:

carry(where,who) = where † (cross · where · Φwho) (189)

In Alloy syntax:

fun carry[where: Being -> one Bank,

who: set Being]: Being -> one Bank

{ where ++ (who <: where).cross }
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Invariants versus contracts

Let us now define the
starvation invariant as a
predicate on the state of the
puzzle, passing the where
function as a parameter w :

Being

w

��

Being
CanEatoo

Farmer

��

⊆

Bank Beingw
oo

R · Φp ⊆ Φq · R

starving w = w · CanEat ⊆ w · Farmer

Recalling (189),

carry(where,who) = where † (cross · where · Φwho)

we also define:

trip b w = carry (w , b) (190)
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Invariants versus contracts

Then the contract

starving
trip b // starving

means that the function trip b — that should carry b to the other
bank of the river — always preserves the invariant:
wp(trip b, starving) = starving .

Things are not that easy, however: there is a need for a
pre-condition ensuring that b is on the Farmer ’s bank and is the
right being to carry.
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Exercises

Exercise 80: Show that

R † f = f

holds, arising from (188,140) — where f is a function, of course. �

Exercise 81: Function move (189) could have been defined by

move = wherecross
who

using the following (generic) selective update operator:

R f
p = R † (f · R · Φp) (191)

Prove the equalities: R id
p = R, R f

false = R and R f
true = f · R.

�
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Class 11 — 8-5-2025
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Relators
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Relators

Parametric datatype G is said to be a relator [2] wherever, given a
relation from A to B, GR extends R to G-structures: it is a relation

A

R

��

GA

GR
��

B GB

(192)

from GA to GB which obeys the following properties:

Gid = id (193)

G (R · S) = (G R) · (G S) (194)

G(R◦) = (G R)◦ (195)

and is monotonic:

R ⊆ S ⇒ GR ⊆ GS (196)
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“Functorial squares””

For any relator G:

A

P

��

C

Q

��

Roo

⊆

B D
S

oo

⇒

G A

G P

��

G C

G Q

��

G Roo

⊆

G B G D
G S

oo

(197)

This follows from the monotonicity (196) and functoriality (194) of
G.
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Relators: “Maybe” example

A

R

��

GA = 1 + A

GR=id+R

��
B GB = 1 + B

(Read 1 + A as “maybe A”)

Unfolding GR = id + R:

y(id + R)x

≡ { unfolding the sum, cf. id + R = [i1 · id , i2 · R] }

y(i1 · i◦1 ∪ i2 · R · i◦2 )x

≡ { relational union (51); image }

y(img i1)x ∨ y(i2 · R · i◦2 )x

≡ { let NIL be the inhabitant of the singleton type }

y = x = i1NIL ∨ 〈∃ b, a : y = i2 b ∧ x = i2 a : b R a〉
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Relators: R∗ example

Take G X = X ∗.

Then, for some B A
Roo , relator B? A?

R?
oo is the relation

R∗ = [nil , cons · (R × R∗)] · out (198)

where

out = in◦

in = [nil , cons]

nil = [ ]

cons (h, t) = h : t.

What does (198) mean?
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Relators: R∗ example

To unfold

R∗ = [nil , cons · (R × R∗)] · out

look at this diagram first:

A

R
��

A∗

R∗

��

out // 1 + A× A∗

id+id×R∗
��

B B∗ 1 + B × B∗
in

oo 1 + A× B∗
id+R×id
oo
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About R∗

Then:

R∗ · in = [nil , cons · (R × R∗)]

≡ { in = [nil , cons] etc }{
R∗ · nil = nil
R∗ · cons = cons · (R × R∗)

that is: {
y R∗ [ ] ≡ y = [ ]
y R∗ (h : t) ≡ 〈∃ b, x : y = (b : x) : b R a ∧ x R∗ t〉

In case R := f , R∗ = map f .
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Exercises

Exercise 82: Show that ⊥∗ 6= ⊥ because, in fact, ⊥∗ = nil · nil◦.

Hint: recall the divide & conquer rule (110), among others. �

Exercise 83: Show that the identity relator I, which is such that

I R = R and the constant relator K (for a given data type K )

which is such that K R = idK are indeed relators. �

Exercise 84: Show that (Kronecker) product

A

R

��

C

S

��

G(A,C ) = A× C

G(R,S)=R×S
��

B D G(B,D) = B × D

is a (binary) relator. �
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Theorems for free
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Parametric polymorphism by example

Function

countBits : IN0← Bool?

countBits [ ] = 0
countBits(b:bs) = 1 + countBits bs

and

countNats : IN0← IN?

countNats [ ] = 0
countNats(b:bs) = 1 + countNats bs

are both subsumed by generic (parametric):

count : (∀a) IN0← a?

count [ ] = 0
count(a:as) = 1 + count as
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Parametric polymorphism: why?

• Less code ( specific solution = generic solution +
customization )

• Intellectual reward

• Last but not least, quotation from Theorems for free!, by
Philip Wadler [8]:

From the type of a polymorphic function we can
derive a theorem that it satisfies. (...) How useful
are the theorems so generated? Only time and
experience will tell (...)

• No doubt: free theorems are very useful!
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Back to magic squares

A very common square with 2 functions:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

f · R ⊆ S · g (199)

It captures a higher-order relation on functions:

f SR g ≡ f · R ⊆ S · g (200)

In words:

“R-related inputs are mapped to S-related outputs”.
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Recall (79)...

Let R := id , S := (6):

A

f

��

A

g

��

idoo

⊆

C D
(6)

oo

f ⊆ (6) · g

This square captures the (6)-pointwise-ordering of functions:

f (6)id g ≡ 〈∀ a :: f a 6 g a〉

In words:

“The same input is mapped to (6)-related outputs”.
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“Higher-order” squares

Because of their role in free theorems,
these squares will be referred to as
Reynolds squares:

A

f

��

B

g

��

Roo

⊆

C D
S

oo

that is to say,

A B
Roo

C D
Soo

CA DBSR
oo

J.C. Reynolds
(1935–2013)

Thus one is lead to relational exponentials SR such that e.g.

(SR)◦ = (S◦)(R◦) (201)

id id = id (202)

etc. NB: We often write S ← R or R → S instead of SR when
exponents get too nested.
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“Higher-order” squares

Functions-only Reynolds squares:

f (h→ k) g ≡ f · h = k · g (203)

In case of h◦ instead of h,

f (h◦ → k) g ≡ f · h◦ ⊆ k · g (204)

we get a higher-order function:

(h◦ → k) g = k · g · h (205)

Exercise 85: Prove (203) and (205). �



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

“Higher-order” squares

Then:

(id → k) g = k · g (206)

(h◦ → id) g = g · h (207)

cf. covariant and contravariant exponentials.

In fully pointfree notation, the exponentials (206,207) become

k id = (k ·)
id (h◦) = (·h)

Then, by (201):

idh = (·h)◦ (208)

and so and so forth.
R Rich construction!
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Higher-order Reynolds squares

Exponential relations SR can involve other exponentials, for

instance (SQ)
R

i.e. R → SQ :

A

f

��

B

g

��

Roo

⊆

XC Y D

SQ
oo

f (R → SQ) g

Let us unfold this, assuming all fresh variables universally
quantified:
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Higher-order Reynolds squares

f (R → SQ) g (209)

≡ { Reynolds square (199) }

f · R ⊆ SQ · g
≡ { shunting (35) followed by “nice rule” (21) }

a R b ⇒ (f a) SQ (g b)

≡ { (199) again }

a R b ⇒ ((f a) · Q ⊆ S · (g b))

≡ { (35) followed by (21) again }

a R b ⇒ c Q d ⇒ (f a c) S (g b d) (210)
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Currying / uncurrying (relationally)

a R b ⇒ c Q d ⇒ (f a c) S (g b d)

≡ { uncurrying f and g }

a R b ∧ c Q d ⇒ f̂ (a, c) S ĝ (b, d)

≡ { relational product (90) }

(a, c) (R × Q) (c , d)⇒ f̂ (a, c) S ĝ (b, d)

≡ { go pointfree by shunting (35), cf “nice rule” (21) }

(R × Q) ⊆ f̂ ◦ · S · ĝ

≡ { Reynolds square (199) }

f̂ (R × Q → S) ĝ
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Relational types

SR ∩ id captures all Reynolds squares (199) in which f = g :

A

f

��

A

f

��

Roo

⊆

C C
S

oo

f · R ⊆ S · f (211)

In this case we often abbreviate f (R → S) f to f : R → S ,
meaning that f has relational type R → S .

Note how type variables A and C in f : A→ C are
straightforwardly replaced by relations R and S in
f : R → S.

R Types “are” relations [7].
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Free theorems

Let a parametric function f : F X → G X be given.

Its free theorem states that f has relational type
f : F R → G R (212)

for any R relating its parameters.

The square captured by (212) is:

F B

f

��

F A
F Roo

f

��

⊆

G B G A
G R

oo

This extends to multi-parametric f , as will be shown briefly.
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First example (id)

The simplest of all polymorphic functions is:

id : A→ A

So F A = G A = A in (212), thus we have relational type

id : R → R

which means the free theorem (FT)

id · R ⊆ R · id

cf:

A

id

��

B
Roo

id

��
⊆

A B
R

oo
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First example (id)

In case R is a function f , the FT theorem boils down to id ’s
natural property:

id · f = f · id

cf.

A

f
��

A
idoo

f
��

B B
id
oo

which can be read alternatively as stating that id is the unit of
composition.
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Second example (reverse)

In this example the target function is:

reverse : A∗ → A∗

So F A = G A = A∗ in (212), and thus we have relational type

reverse : R∗ → R∗

where R? is given by (198), leading to the FT:

reverse · R∗ ⊆ R∗ · reverse (213)

In case R is a function r , the FT theorem boils down to reverse’s
natural property:

reverse · r? = r? · reverse
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Second example (reverse)

However, the interest of (213) goes far beyond the case of
functions, for instance:

reverse · ⊥∗ ⊆ ⊥∗ · reverse

≡ { exercise 82 ; nil = [ ] }

reverse · [ ] · [ ]◦ ⊆ [ ] · [ ]◦ · reverse

≡ { shunting + converses + constant functions }

reverse [ ] · reverse [ ]◦ ⊆ [ ] · [ ]◦

≡ { a · b◦ ⊆ c · d◦ ≡
{

a = c
b = d

}

reverse [ ] = [ ]
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Second example (reverse)

In the opposite direction, let R :=> in (213):

reverse · >∗ ⊆ >∗ · reverse

≡ { it can be proved that >∗ = length
length }

reverse · length

length
⊆ length

length
· reverse

≡ { shunting + (40) }

length

length
⊆ length · reverse

length · reverse

≡ { pointwise }

length a = length b ⇒ length (reverse a) = length (reverse b)
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Third example (constant functions)

Example: Haskell constant function const : a→ b → a, that is
const : A→ AB .

By (212), const has relational type R → RS , that is:

A

const

��

C

const

��

Roo

⊆

AB CD

RS
oo

const · R ⊆ RS · const (214)

Pointwise equivalent, recall (209,210):

a R c ⇒ b S d ⇒ (const a b) R (const c d)

for all a, b, c , d .
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Third example (constant functions)

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R := id
-

A

const

��

A
idoo

const

��
⊆

AB AD

idS
oo

?

6

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

� -

B

id

��

D
Soo

const a

��
⊆

B A
const a◦
oo
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Third example (constant functions)

B

id

��

D
Soo

const a

��
⊆

B A
const a◦
oo

S ⊆ (const a)◦ · (const a)

So (const a)◦ · const a is the largest possible S , i.e. the top
relation >:

(const a)◦ · (const a) = > (215)

Thus no other function can be less injective than const a.



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

Third example (constant functions)

B

const a

��

D
Soo

const a

��
⊆

A A
id

oo

S := h
-

B

const a

��

D
hoo

const a

��
=

A A
id

oo

const a · h = const a

A

const

��

C
Roo

const

��
⊆

AB CD

RS
oo

R, S := h, id
-

A

const
��

C
hoo

const
��

=

AB CD

hid
oo

h · (const c) = const (h c)
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Fourth example: filtering

Type in Haskell:

filter :: (a→ B)→ [a ]→ [a ]

Because B is not parametric, the relational type of filter is

filter : idR → R∗R
∗

and its FT square is:

BB

filter

��

BAidR
oo

filter

��
⊆

B∗B
∗

A∗A
∗

R∗R
∗

oo

(216)



Motivation Relations Monotonicity Pairs & sums Divisions Coreflexives Contracts TFF Reynolds squares Background

FT square decomposition for filter

Thus we see that (216) unfolds into two squares: first

B

f

��

A
Roo

g

��
⊆

B B
id

oo

which is sufficient for:

B∗

filter f

��

A∗
R∗oo

filter g

��
⊆

B∗ A∗
R∗

oo

Altogether:

f · R ⊆ g ⇒ (filter f ) · R∗ ⊆ R∗ · (filter g) (217)
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Exercises

Exercise 86: From (217) infer

filter p [ ] = [ ]

by an argument similar to what was done for reverse earlier on. �

Exercise 87: In many sorting problems, data are sorted according to a
given ranking function which computes each datum’s numeric rank (eg.
students marks, credits, etc). In this context one may parameterize
sorting with an extra parameter f ranking data into a fixed numeric
datatype, eg. the integers: serial : (a→ IN)→ a? → a?.

Calculate the FT of serial . �
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Fifth example: Sorting

Type in Haskell:

sort :: Ord a⇒ [a ]→ [a ]

Because of Ord , the relational type of sort is not sort : R∗ → R∗

(as was the caso of reverse) but rather:

sort : (R → idR)→ (R∗ → R∗)

cf:

class Eq a⇒ Ord a where
compare :: a→ a→ Ordering
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Fifth example: Sorting

Haskell:

class Eq a⇒ Ord a where
compare :: a→ a→ Ordering

We can uncurry compare and work with:

sort : (R × R → id)→ (R∗ → R∗)

that is, we have the relational type:

sort : idR×R → R∗R
∗
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Fifth example: Sorting

OrderingB×B

sort

��

OrderingA×AidR×R
oo

sort

��
⊆

B∗B
∗

A∗A
∗

R∗R
∗

oo

(218)

means

sort · (idR×R) ⊆ R∗R
∗
· sort

that is

idR×R ⊆ sort◦ · R∗R
∗
· sort

that is (adding variables):

f (idR×R) g ⇒ (sort f ) R∗R
∗

(sort g)
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Sorting — FT square

Again we see that (218) unfolds into two squares: first

B × B

f

��

A× A
R×Roo

g

��

⊆

Ordering Ordering
id

oo

which is sufficient for:

B∗

sort f

��

A∗
R∗oo

sort g

��
⊆

B∗ A∗
R∗

oo

Altogether:

f · (R × R) ⊆ g ⇒ (sort f ) · R∗ ⊆ R∗ · (sort g)
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Sorting — FT square
Case R := r :

f · (r × r) = g ⇒ (sort f ) · r? = r? · (sort g)

≡ { introduce variables }〈
∀ a, b ::

f (r a, r b) = g(a, b)

〉
⇒

〈
∀ l ::

(sort f )(r? l) = r?(sort g l)

〉
Denoting predicates f , g by infix orderings 6,�:〈

∀ a, b ::
r a 6 r b ≡ a � b

〉
⇒

〈
∀ l ::

sort (6)(r? l) = r?(sort (�) l)

〉
That is, for r monotonic and injective,

sort (6) [ r a | a← l ]

is always the same list as

[ r a | a← sort (�) l ]
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Exercises

Exercise 88: Calculate the free theorem associated with the projections

A A× B
π1oo π2 // B and instantiate it to (a) functions; (b)

coreflexives. Introduce variables and derive the corresponding pointwise

expressions. �

Exercise 89: Consider the following function from Haskell’s Prelude:

findIndices :: (a→ B)→ [a ]→ [Z]
findIndices p xs = [ i | (x , i)← zip xs [0 . .], p x ]

which yields the indices of elements in a sequence xs which satisfy p. For

instance, findIndices (< 0) [1,−2, 3, 0,−5] = [1, 4]. Calculate the FT of

this function. �

Exercise 90: Choose arbitrary functions from Haskell’s Prelude and

calculate their FT. �
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Exercises

Exercise 91: Recalling (79), wherever two equally typed functions f , g
such that f a 6 g a, for all a, we say that f is pointwise at most g and

write f
.
6 g . In symbols:

f
.
6 g = f ⊆ (6) · g cf. diagram A

f

��
g

��
⊆

B B
6
ooShow that implication

f
.
6 g ⇒ (map f )

.

6? (map g) (219)

follows from the FT of the function map : (a→ b)→ a? → b?. �

Exercise 92: Infer the FT of the McCarthy conditional:

( )→ ( ), ( ) : (A→ B)→ (A→ B)→ (A→ B)→ (A→ B)

�
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Automatic generation of free theorems (Haskell)

See the interesting site in Janis Voigtlaender’s home page:

http: // www-ps. iai. uni-bonn. de/ ft

Relators in our calculational style are implemented in this
automatic generator by structural lifting.

Exercise 93: Infer the FT of the following function, written in Haskell

syntax,

while :: (a→ B)→ (a→ a)→ (a→ b)→ a→ b
while p f g x = if ¬ (p x) then g x else while p f g (f x)

which implements a generic while-loop. Derive its corollary for functions

and compare your result with that produced by the tool above. �

http://www-ps.iai.uni-bonn.de/ft
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Background — Eindhoven quantifier calculus

Trading:

〈∀ k : φ ∧ ϕ : γ〉 = 〈∀ k : φ : ϕ⇒ γ〉 (220)

〈∃ k : φ ∧ ϕ : γ〉 = 〈∃ k : φ : ϕ ∧ γ〉 (221)

de Morgan:

¬〈∀ k : φ : γ〉 = 〈∃ k : φ : ¬ γ〉 (222)

¬〈∃ k : φ : γ〉 = 〈∀ k : φ : ¬ γ〉 (223)

One-point:

〈∀ k : k = e : γ〉 = γ[k := e] (224)

〈∃ k : k = e : γ〉 = γ[k := e] (225)
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Background — Eindhoven quantifier calculus
Nesting:

〈∀ a, b : φ ∧ ϕ : γ〉 = 〈∀ a : φ : 〈∀ b : ϕ : γ〉〉 (226)

〈∃ a, b : φ ∧ ϕ : γ〉 = 〈∃ a : φ : 〈∃ b : ϕ : γ〉〉 (227)

Rearranging-∀:

〈∀ k : φ ∨ ϕ : γ〉 = 〈∀ k : φ : γ〉 ∧ 〈∀ k : ϕ : γ〉 (228)

〈∀ k : φ : γ ∧ ϕ〉 = 〈∀ k : φ : γ〉 ∧ 〈∀ k : φ : ϕ〉 (229)

Rearranging-∃:

〈∃ k : φ : γ ∨ ϕ〉 = 〈∃ k : φ : γ〉 ∨ 〈∃ k : φ : ϕ〉 (230)

〈∃ k : φ ∨ ϕ : γ〉 = 〈∃ k : φ : γ〉 ∨ 〈∃ k : ϕ : γ〉 (231)

Splitting:

〈∀ j : φ : 〈∀ k : ϕ : γ〉〉 = 〈∀ k : 〈∃ j : φ : ϕ〉 : γ〉 (232)

〈∃ j : φ : 〈∃ k : ϕ : γ〉〉 = 〈∃ k : 〈∃ j : φ : ϕ〉 : γ〉 (233)
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