
A Relational Approach to Software Specification
and Formal Modelling

J.N. Oliveira

Dept. Informática & HASLAB/Univ. Minho & INESC TEC
Braga, Portugal

(Original slides: 2007 ; this version: 21 Nov 2017)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

About FM

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Global picture

Concerning software ‘engineering’:

Software

Process —

Product —

Formal methods provide an answer to the question mark
above.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Global picture

Concerning software ‘engineering’:

Credits: Zhenjiang Hu, NII, Tokyop JP

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Brief introduction to FM

Science
Science is about understanding how things work

Engineering

This is about ensuring that some desirable things happen
repetitively and reliably.

Theodore Von Karman, an aerospace engineer quoted in
http://www.discoverengineering.org, puts it in this way:

“ Scientists discover the world that exists; engineers
create the world that never was.”

In both cases
Need for scientific methods.

http://www.discoverengineering.org

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Brief introduction to FM

Science
Science is about understanding how things work

Engineering

This is about ensuring that some desirable things happen
repetitively and reliably.

Theodore Von Karman, an aerospace engineer quoted in
http://www.discoverengineering.org, puts it in this way:

“ Scientists discover the world that exists; engineers
create the world that never was.”

In both cases
Need for scientific methods.

http://www.discoverengineering.org

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Brief introduction to FM

Science
Science is about understanding how things work

Engineering

This is about ensuring that some desirable things happen
repetitively and reliably.

Theodore Von Karman, an aerospace engineer quoted in
http://www.discoverengineering.org, puts it in this way:

“ Scientists discover the world that exists; engineers
create the world that never was.”

In both cases
Need for scientific methods.

http://www.discoverengineering.org

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Have you ever used a FM?

Of course you have! Check this:

A problem

My three children
were born at a 3 year
interval rate.
Altogether, they are
as old as me. I am 48.
How old are they?

A model

x + (x + 3) + (x + 6) = 48

— maths description of the
problem.

Some calculations

3x + 9 = 48

≡ { ”al-djabr” rule }

3x = 48− 9

≡ { ”al-hatt” rule }

x = 16− 3

The solution

x = 13

x + 3 = 16

x + 6 = 19

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Have you ever used a FM?

”Al-djabr” rule ? ”al-hatt” rule ?

These rules that you have used so many times were discovered by
Persian mathematicians, notably by Al-Huwarizmi (9c AD).

NB: “algebra” stems from ”al-djabr” and ”algarismo” from
Al-Huwarizmi.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Software problems

Now, suppose the problem
was

I have a class of
students. Please
write a program to
list the students
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Software problems

Now, suppose the problem
was

I have a class of
students. Please
write a program to
list the students
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Software problems

Now, suppose the problem
was

I have a class of
students. Please
write a program to
list the students
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Software problems

Now, suppose the problem
was

I have a class of
students. Please
write a program to
list the students
ordered by their
marks.

Is there a mathematical
model for this problem?

Yes, of course there is — see
aside:

sort ⊆ bag
bag ∩

true
sorted

where
sorted = . . .marks . . .
bag =

But,

• what do X ∩ Y , f
g ...

mean here?

• Is there an “algebra” for
such symbols?

Yes — Wait and see :-)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

FM — scientific software design

What

calculate

||

specification (model)

Why

OO

justification

How

analyse

::

OO

implementation (program)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

FM — simplified life-cycle

client ′s problem // Requirements

specify

��

Specification

model check

%%

calculate
��

Model (Alloy)

revise

dd

Implementation

encode
��

designed solution Codeoo

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Notation matters!

Credits: Cliff B. Jones 1980 [5]

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Well-known FM notations / tools / resources

Just a sample, as there are many — follow the links (in alphabetic
order):

Notations:

• Alloy

• B-Method

• JML

• mCRL2

• SPARK-Ada

• TLA+

• VDM

• Z

Tools:

• Alloy 4

• Coq

• Frama-C

• NuSMV

• Overture

Resources:

• Formal Methods Europe

• Formal Methods wiki
(Oxford)

http://alloy.mit.edu/alloy/book.html
http://www.methode-b.com/
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.mcrl2.org/web/user_manual/index.html
http://www.adacore.com/sparkpro
http://lamport.azurewebsites.net/tla/hyperbook.html
https://web-beta.archive.org/web/20080828013815/http://www.vdmportal.org
http://spivey.oriel.ox.ac.uk/mike/zrm/
http://alloy.mit.edu/alloy/download.html
https://coq.inria.fr/
http://frama-c.com/
http://nusmv.fbk.eu/
http://overturetool.org
http://www.fmeurope.org/
http://formalmethods.wikia.com/wiki/VL
http://formalmethods.wikia.com/wiki/VL

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Basic Relation algebra

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relation algebra

In previous courses you may have used predicate logic, finite
automata, grammars etc to capture the meaning of real-life
problems.

Question: Is there a unified formalism for formal modelling?

Historically, predicate logic was not the
first to be proposed:

• Augustus de Morgan (1806-71) —
recall de Morgan laws — proposed
a Logic of Relations as early as
1867.

• Predicate logic appeared later.

Perhaps de Morgan was right in the first place: in real life,
“everything is a relation”...

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Everything is a relation...

... as diagram

shows. (Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Arrow notation for relations

The picture is a collection of relations — vulg. a semantic
network — elsewhere known as a (binary) relational system.

However, in spite of the use of
arrows in the picture (aside)
not many people would write

mother of : People → People

as the type of relation
mother of .

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Pairs

Consider assertions

0 6 π

Catherine isMotherOf Anne

3 = (1+) 2

They are statements of fact concerning various kinds of object —
real numbers, people, natural numbers, etc

They involve two such objects, that is, pairs

(0, π)

(Catherine, Anne)

(3, 2)

respectively.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Sets of pairs

So, we might have written instead:

(0, π) ∈ 6

(Catherine, Anne) ∈ isMotherOf

(3, 2) ∈ (1+)

What are (6), isMotherOf , (1+)?

• they could be regarded as sets of pairs

• better: they should be regarded as binary relations.

Therefore,

• orders — eg. (6) — are special cases of relations

• functions — eg. succ = (1+) — are special cases of relations.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation. The usual infix notation used in natural
language — eg. Catherine isMotherOf Anne — and in

maths — eg. 0 6 π — extends to arbitrary B A
Roo :

we write

b R a

to denote that (b, a) ∈ R.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation. The usual infix notation used in natural
language — eg. Catherine isMotherOf Anne — and in

maths — eg. 0 6 π — extends to arbitrary B A
Roo :

we write

b R a

to denote that (b, a) ∈ R.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Binary relations are matrices

Binary relations can be regarded as Boolean matrices, eg.

Relation R: Matrix M:

In this case A = B = {1..11}. Relations A A
Roo over a single

type are also referred to as (directed) graphs.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alloy: where “everything is a relation”

Declaring binary

relation A
R // B

is Alloy (aside).

Alloy is a tool
designed at MIT
(http://alloy.
mit.edu/alloy)

We shall be using
Alloy [4] in this
course.

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Functions are relations

Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a (1)

Therefore, we generalize

B A
foo

b = f a
to B A

Roo

b R a

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercise

Taken from Propositiones ad acuendos iuuenes (“Problems
to Sharpen the Young”), by abbot Alcuin of York († 804):

XVIII. Propositio de homine et capra et lvpo.
Homo quidam debebat ultra fluuium transferre lupum,
capram, et fasciculum cauli. Et non potuit aliam nauem
inuenire, nisi quae duos tantum ex ipsis ferre ualebat.
Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis
illaesis transire potuit?

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercise

XVIII. Fox, goose and bag of beans puzzle. A
farmer goes to market and purchases a fox, a goose, and
a bag of beans. On his way home, the farmer comes to a
river bank and hires a boat. But in crossing the river by
boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans.
(If left alone, the fox would eat the goose, and the goose
would eat the beans.) Can the farmer carry himself and
his purchases to the far bank of the river, leaving each
purchase intact?

Identify the main types and relations involved in the puzzle and
draw them in a diagram.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Data types:

Being = {Farmer ,Fox ,Goose,Beans} (2)

Bank = {Left,Right} (3)

Relations:

Being
Eats // Being

where
��

Bank
cross // Bank

(4)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Specification source written in Alloy:

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Diagram of specification (model) given by Alloy:

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Diagram of instance of the model given by Alloy:

Silly instance, why? — specification too loose...

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Composition

Recall function
composition (aside).

We extend f · g to
relational composition
R · S in the obvious way:

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(5)

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (6)

Example: Uncle = Brother · Parent, that expands to

u Uncle c ≡ 〈∃ p :: u Brother p ∧ p Parent c〉

Note how this rule removes ∃ when applied from right to left.

Notation R · S is said to be point-free (no variables, or points).

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Check generalization

Back to functions, (6) becomes1

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c (1) }

〈∃ a :: b f a ∧ a = g c〉

≡ { ∃-trading (170) ; b f a means b = f a (1) }

〈∃ a : a = g c : b = f a〉

≡ { ∃-one point rule (174) }

b = f (g c)

So, we easily recover what we had before (5).

1Check the appendix on predicate calculus.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relation inclusion

Relation inclusion generalizes function equality:

Equality on functions

f = g ≡ 〈∀ a : a ∈ A : f a =B g a〉 (7)

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a : b R a : b S a〉 (8)

(read R ⊆ S as “R is at most S”).

Inclusion is typed:

For R ⊆ S to hold both R and S need to be of the same type,

say B A
R,Soo .

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relation inclusion

R ⊆ S is a partial order, that is, it is

reflexive,

R ⊆ R (9)

transitive

R ⊆ S ∧ S ⊆ Q⇒ R ⊆ Q (10)

and antisymmetric:

R ⊆ S ∧ S ⊆ R ≡ R = S (11)

Therefore:

R = S ≡ 〈∀ b, a :: b R a ≡ b S a〉 (12)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational equality

Both (12) and (11) establish relation equality, resp. in PW/PF
fashion.

Rule (11) is also called “ping-pong” or cyclic inclusion, often
taking the format

R

⊆ { }

S

⊆ { }

R

:: { “ping-pong” }

R = S

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relation equality

Most often we prefer an indirect way of proving relation equality:

Indirect equality rules:

R = S ≡ 〈∀ X :: (X ⊆ R ≡ X ⊆ S)〉 (13)

≡ 〈∀ X :: (R ⊆ X ≡ S ⊆ X)〉 (14)

The typical layout is e.g.

X ⊆ R

≡ { ... }
X ⊆ . . .

≡ { ... }
X ⊆ S

:: { indirect equality (13) }
R = S

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
>oo , which is such that, for all b, a,

b>a ≡ True

Every type A Aoo has the

• identity relation A A
idoo which is nothing but function

id a = a (15)

Clearly, for every R,

⊥ ⊆ R ⊆ > (16)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Diagrams

Assertions of the form X ⊆ Y where X and Y are relation
compositions can be represented graphically by square-shaped
diagrams, see the following exercise.

Exercise 1: Let a S n mean: “student a is assigned number n”. Using
(6) and (8), check that assertion

S ·> ⊆ > · S depicted by diagram

N

S

��

N

S

��

>oo

⊆

A A
>

oo

means that numbers are assigned to students sequentially. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 2: Use (6) and (8) and predicate calculus to show that

R · id = R = id · R (17)

R · ⊥ = ⊥ = ⊥ · R (18)

hold and that composition is associative:

R · (S · T) = (R · S) · T (19)
�

Exercise 3: Use (7), (8) and predicate calculus to show that

f ⊆ g ≡ f = g

holds (moral: for functions, inclusion and equality coincide). �

(NB: see the appendix for a compact set of rules of the predicate
calculus.)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Converses

Every relation B A
Roo has a converse B

R◦ // A which is
such that, for all a, b,

a(R◦)b ≡ b R a (20)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (21)

and with itself:

(R◦)◦ = R (22)

Converse captures the passive voice: Catherine eats the apple —
R = (eats) — is the same as the apple is eaten by Catherine —
R◦ = (is eaten by).

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful!) property,

(f b)R(g a) ≡ b(f ◦ · R · g)a (23)

cf. diagram:
C D

Roo

B

f

OO

A

g

OO

f ◦·R·g
oo

Therefore (tell why):

b(f ◦ · g)a ≡ f b = g a (24)

Let us see an example of using these rules.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

PF-transform at work

Transforming a well-known PW-formula into PF notation:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x : (f y) = (f x) : y = x〉

≡ { (24) for f = g }

〈∀ y , x : y(f ◦ · f)x : y = x〉

≡ { (23) for R = f = g = id }

〈∀ y , x : y(f ◦ · f)x : y(id)x〉

≡ { go pointfree (8) i.e. drop y , x }

f ◦ · f ⊆ id

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

The other way round

Now check what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (8) }

〈∀ y , x : y(id)x : y(f · f ◦)x〉

≡ { identity relation ; composition (6) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-one point (173) ; converse (20) }

〈∀ x :: 〈∃ z :: x f z ∧ x f z〉〉

≡ { trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉 (check as homework);

• Say R is coreflexive (or diagonal) iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

img Roo

ker R
def
= R◦ · R img R

def
= R · R◦

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alloy: checking for coreflexive relations

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Kernels of functions

Meaning of ker f :

a′(ker f)a

≡ { substitution }

a′(f ◦ · f)a

≡ { rule (24) }

f a′ = f a

In words: a′(ker f)a means a′

and a “have the same
f -image”.

Exercise 4: Let K be a
nonempty data domain, k ∈ K
and k be the “everywhere k”
function:

k : A // K
k a = k

(25)

Compute which relations are
defined by the following
expressions:

ker k , b · c◦, img k (26)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Binary relation taxonomy

Topmost criteria:

binary relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(27)

Facts:

ker (R◦) = img R (28)

img (R◦) = ker R (29)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Binary relation taxonomy

The whole picture:

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

(30)

Exercise 5: Resort to (28,29) and (27) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

The same in Alloy

(Courtesy of Alcino Cunha.)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 6: Label the items (uniquely) in these drawings2

and compute, in each case, the kernel and the image of each relation.

Why are all these relations functions? �

2Credits: http://www.matematikaria.com/unit/injective-surjective-bijective.html.

http://www.matematikaria.com/unit/injective-surjective-bijective.html

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 7: So-called “Entity-Relationship” (ER) diagrams are
commonly used to capture relational information, e.g.3

Draw the same using A
R // B notation and tell which properties in

(30) are required for each relation in the diagram. �

3Credits: https://dba.stackexchange.com/questions.

https://dba.stackexchange.com/questions

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 8: Prove the following fact

A relation f is a bijection iff its converse f ◦ is a function (31)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker (f ◦) ∧ img (f ◦) ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection
�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Exercise 9: Let relation Bank
cross // Bank (4) be defined by:

Left cross Right

Right cross Left

It therefore is a bijection. Why? �

Exercise 10: Check which of the following properties,

simple, entire,
injective,
surjective,
reflexive,
coreflexive

Fox Goose Beans Farmer

Fox 0 1 0 0
Goose 0 0 1 0
Beans 0 0 0 0
Farmer 0 0 0 0

hold for relation Eats (4) above (“food chain” Fox > Goose > Beans).

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Exercise 11: Relation where : Being → Bank should obey the following
constraints:

• everyone is somewhere in a bank

• no one can be in both banks at the same time.

Encode such constraints in relational terms. Conclude that where should

be a function. �

Exercise 12: There are only two constant functions (25) in the type

Being // Bank of where. Identify them and explain their role in the

puzzle. �

Exercise 13: Two functions f and g are bijections iff f ◦ = g , recall

(31). Convert f ◦ = g to point-wise notation and check its meaning. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Adding detail to the
previous Alloy
model (aside)

(More about Alloy
syntax and semantics
later.)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Functions in one slide

Recapitulating: a function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by
lowercase characters (eg. f , g , φ) or identifiers starting with lowercase
characters, and function application will be denoted by juxtaposition, eg.
f a instead of f (a).

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Functions, relationally

(The following properties of any function f are extremely useful.)

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (32)

R · f ◦ ⊆ S ≡ R ⊆ S · f (33)

Equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (34)

Rule (34) follows from (32,33) by “cyclic inclusion” (next slide).

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Proof of functional equality rule (34)

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f ◦ · g
≡ { shunting on g }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f

Then:

f = g

≡ { cyclic inclusion (11) }

f ⊆ g ∧ g ⊆ f

≡ { aside }

f ⊆ g

≡ { aside }

g ⊆ f

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Dividing functions

Given functions B
g // C A

foo , we define their division by

f

g
= g◦ · f (35)

Exercise 14: Check the properties:

f

id
= f (36)

f · h
g · k

= k◦ · f

g
· h (37)

f

f
= ker f (38)(

f

g

)◦
=

g

f
(39)

�

Exercise 15: Infer id ⊆ ker f (f is total) and img f ⊆ id (f is simple)

from the shunting rules (32) or (33). �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Taxonomy of endo-relations

Besides

reflexive: iff id ⊆ R (40)

coreflexive: iff R ⊆ id (41)

an endo-relation A A
Roo can be

transitive: iff R · R ⊆ R (42)

symmetric: iff R ⊆ R◦(≡ R = R◦) (43)

anti-symmetric: iff R ∩ R◦ ⊆ id (44)

irreflexive: iff R ∩ id = ⊥
connected: iff R ∪ R◦ = > (45)

where, in general, for R, S of the same type:

b (R ∩ S) a ≡ b R a ∧ b S a (46)

b (R ∪ S) a ≡ b R a ∨ b S a (47)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Taxonomy of endo-relations

Combining these criteria, endo-relations A A
Roo can further be

classified as

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Taxonomy of endo-relations

Exercise 16: Consider the relation

b R a ≡ team b is playing against team a

Is this relation: reflexive? irreflexive? transitive? anti-symmetric?

symmetric? connected? �

Exercise 17: Expand criteria (42) to (45) to pointwise notation. �

Exercise 18: A relation R is said to be co-transitive or dense iff the
following holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (48)

Write the formula above in PF notation. Find a relation (eg. over

numbers) which is co-transitive and another which is not. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Taxonomy of endo-relations

In summary:

• Preorders are reflexive and transitive orders.
Example: age y 6 age x .

• Partial orders are anti-symmetric preorders
Example: y ⊆ x where x and y are sets.

• Linear orders are connected partial orders
Example: y 6 x in N

• Equivalences are symmetric preorders
Example: age y = age x . 4

• Pers are partial equivalences
Example: y IsBrotherOf x .

4Kernels of functions are always equivalence relations, see exercise 23.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Injectivity preorder

ker R = R◦ · R measures the level of injectivity of R according to
the preorder

R 6 S ≡ ker S ⊆ ker R (49)

telling that R is less injective or more defined (entire) than S .

Exercise 19: Let R and S be the two relations depicted on the right.

Check the assertions:

1. R 6 S

2. S 6 R

3. Both hold

4. None holds.

C W
Roo S // IN0

"Armstrong"
� //

(
tt

9

’A’ "Albert"
� //�oo 6

’M’ "Minho"
� //�oo 5

’B’ "Braga"
(

44

�oo

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 20: Check which of the following properties,

transitive, symmetric, anti-symmetric, connected

hold for the relation Eats of exercise 10. �

Exercise 21: As follow up to exercise 7,

• specify the relation R between students and teachers such that t R s
means: t is the mentor of s and also teaches one of her/his courses.

• Specify the property: mentors of students necessarily are among
their teachers.

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Meet and join

Recall meet (intersection) and join (union), introduced by (46)
and (47), respectively.

They lift pointwise conjunction and disjunction, respectively, to the
pointfree level.

Their meaning is nicely captured by the following universal
properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (50)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (51)

NB: recall the generic notions of greatest lower bound and least
upper bound, respectively.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Properties

Meet and join have the
expected properties, e.g.
associativity

(R ∩ S) ∩ T = R ∩ (S ∩ T)

proved aside by indirect
equality.

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (50) twice }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T)

≡ { ∩-universal (50) twice }

X ⊆ R ∩ (S ∩ T)

:: { indirection (13) }

(R ∩ S) ∩ T = R ∩ (S ∩ T)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

In summary

Type B Aoo forms a lattice:

> “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S meet, glb (“greatest lower bound”)

⊥ “bottom”

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercise

Exercise 22: Let bag : A∗ → NA be the function that, given a finite
sequence (list) indicates the number of occurrences of its elements, for
instance,

bag [a, b, a, c] a = 2

bag [a, b, a, c] b = 1

bag [a, b, a, c] c = 1

Let ordered : A∗ → B be the obvious predicate assuming a total order
predefined in A. Finally, let true = True. Having defined

S =
bag

bag
∩ true

ordered
(52)

identify the type of S and, going pointwise and simplifying, tell which

operation is specifyied by S . �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Back to our running example, we specify:

Being at the same bank:

SameBank = ker where

Risk of somebody eating somebody else:

CanEat = SameBank ∩ Eats

Then

“Starvation” is ensured by Farmer ’s presence at the same
bank:

CanEat ⊆ SameBank · Farmer (53)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

By (32), “starvation” property (53) converts to:

where · CanEat ⊆ where · Farmer

In this version, (53) can be depicted as a diagram:

Being

where
��

Being
CanEatoo

Farmer

��
⊆

Bank Being
where

oo

(54)

which “reads” in a nice way:

where (somebody) CanEat (somebody else) (that’s)

where (the) Farmer (is).

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Properties which —
such as (54) — are
desirable and must
always hold are
called invariants.

See aside the
‘starvation’
invariant (54)
written in Alloy.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Carefully observe
instance of such an
invariant (aside):

• SameBank is an
equivalence —
exactly the
kernel of where

• Eats is simple
but not
transitive

• cross is a
bijection

• CanEat is empty

• etc

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Another
instance of the
same invariant,
in which:

• CanEat is
not empty

(Fox can
eat Goose!)

• but Farmer
is on the
same bank
:-)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Why is SameBank an equivalence?

Recall that SameBank = ker where. Then SameBank is an equivalence
relation by the exercise below.

Exercise 23: Knowing that property

f · f ◦ · f = f (55)

holds for every function f , prove that ker f = f
f (38) is an equivalence

relation. �

Equivalence relations expressed in this way are captured in natural
language by the textual pattern

a(ker f)b means “a and b have the same f ”

which is very common in requirements.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Distributivity

As we will prove later, composition distributes over union

R · (S ∪ T) = (R · S) ∪ (R · T) (56)

(S ∪ T) · R = (S · R) ∪ (T · R) (57)

while distributivity over intersection is side-conditioned:

(S ∩ Q) · R = (S · R) ∩ (Q · R) ⇐

Q · img R ⊆ Q

∨
S · img R ⊆ S

(58)

R · (Q ∩ S) = (R · Q) ∩ (R · S) ⇐

(ker R) · Q ⊆ Q

∨
(ker R) · S ⊆ S

(59)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 24: The teams (T) of a football league play games (G) at
home or away, and every game takes place in some date:

T G
homeoo away //

date
��

T

D

Moreover, (a) No team can play two games on the same date; (b) All
teams play against each other but not against themselves; (c) For each
home game there is another game away involving the same two teams.
Show that

id ⊆ away

home
· away

home
(60)

captures one of the requirements above (which?) and that (60) amounts

to forcing home · away◦ to be symmetric. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 25: Show that 1 1
>oo = id . �

Exercise 26: As generalization of exercise 1, draw the most general
type diagram that accommodates relational assertion:

M · R◦ ⊆ > ·M (61)

�

Exercise 27: Type the following relational assertions

M · N◦ ⊆ ⊥ (62)

M · N◦ ⊆ id (63)

M◦ · > · N ⊆ > (64)

and check their pointwise meaning. Confirm your intuitions by repeating

this exercise in Alloy. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 28: An SQL-like relational operator is projection,

πg ,f R
def
= g · R · f ◦ B

g

��

A
Roo

f
��

C D
πg,f R
oo

(65)

whose set-theoretic meaning is

πg ,f R = {(g b, f a) : b ∈ B ∧ a ∈ A ∧ b R a} (66)

Derive (66) from (65). �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 29: A relation R is said to satisfy functional dependency

(FD) g → f , written g
R // // f wherever projection πf ,gR (65) is

simple.

1. Recalling (49), prove the equivalence:

g
R // // f ≡ f 6 g · R◦ (67)

2. Show that (67) trivially holds wherever g is injective and R is
simple, for all (suitably typed) f .

3. Prove the composition rule of FDs:

h g
S·Roooo ⇐ h f

Soooo ∧ f g
Roooo (68)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Monotonicity

All relational combinators studied so far are ⊆-monotonic, namely:

R ⊆ S ⇒ R◦ ⊆ S◦ (69)

R ⊆ S ∧ U ⊆ V ⇒ R · U ⊆ S · V (70)

R ⊆ S ∧ U ⊆ V ⇒ R ∩ U ⊆ S ∩ V (71)

R ⊆ S ∧ U ⊆ V ⇒ R ∪ U ⊆ S ∪ V (72)

etc hold.

Exercise 30: Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (73)

Derive from (73) the corresponding rule for injective relations. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Proofs by ⊆-transitivity

Wanting to prove R ⊆ S , the following rules are of help by relying on a
“mid-point” M (analogy with interval arithmetics):

• Rule A: lowering the upper side

R ⊆ S

⇐ { M ⊆ S is known ; transitivity of ⊆ (10) }

R ⊆ M

and then proceed with R ⊆ M.

• Rule B: raising the lower side

R ⊆ S

⇐ { R ⊆ M is known; transitivity of ⊆ }

M ⊆ S

and then proceed with M ⊆ S .

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Example

Proof of shunting rule (32):

R ⊆ f ◦ · S
⇐ { id ⊆ f ◦ · f ; raising the lower-side }

f ◦ · f · R ⊆ f ◦ · S
⇐ { monotonicity of (f ◦·) }

f · R ⊆ S

⇐ { f · f ◦ ⊆ id ; lowering the upper-side }

f · R ⊆ f · f ◦ · S
⇐ { monotonicity of (f ·) }

R ⊆ f ◦ · S

Thus the equivalence in (32) is established by circular implication.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises (monotonicity and transitivity)

Exercise 31: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

• R ∩ S is injective (simple) provided one of R or S is so

• R ∪ S is entire (surjective) provided one of R or S is so.

�

Exercise 32: Prove that relational composition preserves all relational

classes in the taxonomy of (30). �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

By the way: relational programming

A simple Prolog program:

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

grand_parent(X, Y) :- parent_child(X, Z), parent_child(Z, Y).

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational programming

Relational meaning:

Types:

P P

sibling
grand parent
oo
father child
mother child
parent child

oo 1
trude,sally ,...
oo

Facts:

mother child =
trude · sally◦

father child =
tom · sally◦ ∪
tom · erica◦ ∪
mike · tom◦

Clauses:

mother child ∪ father child ⊆ parent child (74)

parent child◦ · parent child ⊆ sibling (75)

parent child · parent child ⊆ grand parent (76)

Note how type P (for “people”) is made explicit.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational programming

Running query

?- sibling(erica,sally)

cf. diagram

1
erica

��
sally
��

P P
sibling
oo

corresponds to checking whether arrow 1 1
erica◦·sibling ·sally
oo (a

“scalar”) is empty or not.

NB: erica and sally are atoms captured by constant functions
erica and sally , respectively.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational programming
Checking:

> = erica◦ · sibling · sally

≡ { R ⊆ >,∀ R ; 1 1
>oo = id , cf exercise 25 }

id ⊆ erica◦ · sibling · sally

⇐ { shunting (32) ; ker parent child ⊆ sibling }

erica ⊆ ker parent child · sally

⇐ { tom · erica◦ ⊆ parent child etc }

erica ⊆ (tom · erica◦)◦ · (tom · sally◦) · sally

≡ { kernel of constant functions in type 1 }

erica ⊆ erica · id · id
≡ { trivial }

true

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational pairing

Pairing is among the most important operations in relation algebra:

A A× B
π1oo π2 // B

C
R

ff

〈R,S〉

OO

S

88

We assume projections π1(a, b) = a and π2(a, b) = b. Then:

ψ PF ψ

a R c ∧ b S c (a, b)〈R, S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

(77)

From pairing one derives the (Kronecker) product:

R × S = 〈R · π1, S · π2〉 (78)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational pairing example (in matrix layout)

Example — given relations

where◦ =

Left Right

Fox 1 0
Goose 0 1
Beans 0 1

and cross =
Left Right

Left 0 1
Right 1 0

pairing them up evaluates to:

〈where◦, cross〉 =

Left Right

(Fox , Left) 0 0
(Fox ,Right) 1 0
(Goose, Left) 0 1

(Goose,Right) 0 0
(Beans, Left) 0 1

(Beans,Right) 0 0

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 33: Show that

(b, c)〈R,S〉a ≡ b R a ∧ c S a

PF-transforms to

〈R,S〉 = π◦1 · R ∩ π◦2 · S (79)

Then infer universal property

π1 · X ⊆ R ∧ π2 · X ⊆ S ≡ X ⊆ 〈R,S〉 (80)

from (79) via indirect equality (13). �

Exercise 34: What can you say about (80) in case X , R and S are

functions? �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 35: Unconditional distribution laws

(P ∩ Q) · S = (P · S) ∩ (Q · S)

R · (P ∩ Q) = (R · P) ∩ (R · Q)

will hold provide one of R or S is simple and the other injective. Tell

which (justifying). �

Exercise 36: Derive from

〈R,S〉◦ · 〈X ,Y 〉 = (R◦ · X) ∩ (S◦ · Y) (81)

the following properties:

ker 〈R,S〉 = ker R ∩ ker S (82)

〈R, id〉 is always injective, for whatever R�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relation pairing continued

The fusion-law of relation pairing requires a side condition:

〈R,S〉 · T = 〈R · T ,S · T 〉
⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S

(83)

The absorption law

(R × S) · 〈P,Q〉 = 〈R · P,S · Q〉 (84)

holds unconditionally.

Exercise 37: Derive from the laws of pairing studied thus far the
following facts about relational product:

id × id = id (85)

(R × S) · (P × Q) = (R · P)× (S · Q) (86)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 38: Show that (83) holds. Suggestion: recall (58). From this

infer that no side-condition is required for T simple. �

Exercise 39:

Consider the adjacency relation A
defined by clauses:
(a) A is symmetric;
(b) id × (1+) ∪ (1+)× id ⊆ A

(y + 1, x)

(y, x − 1) (y, x) (y, x + 1)

(y − 1, x)

Show that A is neither transitive nor reflexive.

NB: consider (1+) : Z→ Z a bijection, i.e. pred = (1+)◦ is a function.

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 40: Recalling (31), prove that

swap = 〈π2, π1〉 (87)

is a bijection. (Assume property (R ∩ S)◦ = R◦ ∩ S◦.) �

Exercise 41: Let 6 be a preorder and f be a function taking values on
the carrier set of 6.

1. Define the pointwise version of relation v = f ◦ ·6 · f

2. Show that v is a preorder.

3. Show that v is not (in general) a total order even in the case 6 is
so.

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))

Bool + String

[Boo ,Err]
��

String
i2oo

Err
uuX

(88)

where

[R ,S] = (R · i◦1) ∪ (S · i◦2) cf. A
i1 //

R
%%

A + B

[R ,S]
��

B
i2oo

S
yy

CDually: R + S = [i1 · R , i2 · S]

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational sums

From [R , S] = (R · i◦1) ∪ (S · i◦2) above one easily infers, by
indirect equality,

[R ,S] ⊆ X ≡ R ⊆ X · i1 ∧ S ⊆ X · i2

(check this).

It turns out that inclusion can be strengthened to equality, and
therefore relational coproducts have exactly the same properties
as functional ones, stemming from the universal property:

[R ,S] = X ≡ R = X · i1 ∧ S = X · i2 (89)

Thus [i1 , i2] = id — solve (89) for R and S when X = id , etc etc.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Divide and conquer

The property for sums (coproducts) corresponding to (81) for
products is:

[R ,S] · [T ,U]◦ = (R · T ◦) ∪ (S · U◦) (90)

NB: This divide-and-conquer rule is essential to parallelizing
relation composition by block decomposition.

Exercise 42: Show that:

img [R ,S] = img R ∪ img S (91)

img i1 ∪ img i2 = id (92)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

+ meets ×
The exchange law

[〈R,S〉 , 〈T ,V 〉] = 〈[R ,T], [S ,V]〉 (93)

holds for all relations as in diagram

A
i1 //

R

�� S
))

A + B B

T

uu

V

��

i2oo

C C × D
π1

oo
π2

// D

and the fusion law

〈R,S〉 · f = 〈R · f ,S · f 〉 (94)

also holds, where f is a function. (Why?)

Exercise 43: Relying on both (89) and (94) prove (93). �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Lexicographic orderings

Let R ⇒ S be the relational operator

b(R ⇒ S)a ≡ (b R a)⇒ (b S a) (95)

It can be that ⇒ has the universal property:

R ∩ X ⊆ Y ≡ X ⊆ (R ⇒ Y) (96)

We define the lexicographic chaining of two relations R and S as
follows:

R ; S = R ∩ (R◦⇒ S) (97)

Exercise 44: Show that (97) is the same as the universal property

X ⊆ (R; S) ≡ X ⊆ R ∧ X ∩ R◦ ⊆ S (98)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercise

Exercise 45: Let students in a course have two numeric marks,

N Student
mark1oo mark2 // N

and define the preorders:

6mark1 = mark1◦ ·6 ·mark1

6mark2 = mark2◦ ·6 ·mark2

Spell out in pointwise notation the meaning of lexicographic ordering

6mark1 ;6mark2

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 46: (a) From (96) infer:

⊥⇒ R = > (99)

R ⇒> = > (100)

(b) via indirect equality over (97) show that

> ; S = S (101)

holds for any S and that, for R symmetric, we have:

R ; R = R (102)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational division

In the same way

z × y 6 x ≡ z 6 x ÷ y

means that x ÷ y is the largest number which multiplied by y
approximates x ,

Z · Y ⊆ X ≡ Z ⊆ X/Y (103)

means that X/Y is the largest relation which pre-composed with
Y approximates X .

What is the pointwise meaning of X/Y ?

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

We reason:

First, the types of

Z · Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��
C B

Y

OO

X
oo

Next, the calculation:

c (X/Y) a

≡ { introduce points C 1
coo and A 1

aoo }

x(c◦ · (X/Y) · a)x

≡ { one-point (173) }

x ′ = x ⇒ x ′(c◦ · (X/Y) · a)x

Proceed by going pointfree:

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

We reason

id ⊆ c◦ · (X/Y) · a

≡ { shunting rules }

c · a◦ ⊆ X/Y

≡ { universal property (103) }

c · a◦ · Y ⊆ X

≡ { now shunt c back to the right }

a◦ · Y ⊆ c◦ · X
≡ { back to points via (23) }

〈∀ b : a Y b : c X b〉

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Outcome

In summary:

c (X/Y) a ≡ 〈∀ b : a Y b : c X b〉 a?
X/Y

��
c b

_
Y

OO

�
X
oo

(104)

Example:

a Y b = passenger a choses flight b

c X b = company c operates flight b

c (X/Y) a = company c is the only one trusted by passenger
a, that is, a only flies c .

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Pointwise meaning in full

The full pointwise encoding of

Z · Y ⊆ X ≡ Z ⊆ X/Y

is:

〈∀ c , b : 〈∃ a : cZa : aYb〉 : cXb〉 ≡ 〈∀ c , a : cZa : 〈∀ b : aYb : cXb〉〉

If we drop variables and regard the uppercase letters as denoting Boolean
terms dealing without variable c , this becomes

〈∀ b : 〈∃ a : Z : Y 〉 : X 〉 ≡ 〈∀ a : Z : 〈∀ b : Y : X 〉〉

recognizable as the splitting rule (181) of the Eindhoven calculus.

Put in other words: existential quantification is lower adjoint to
universal quantification.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 47: Prove the equalities

X · f = X/f ◦ (105)

X/⊥ = > (106)

X/id = X (107)

and check their pointwise meaning. �

Exercise 48: Define

X \ Y = (Y ◦/X ◦)◦ (108)

and infer:

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (109)

R · X ⊆ Y ≡ X ⊆ R \ Y (110)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relation difference and overriding
Relational difference R − S is defined by the following universal
property:

R − S ⊆ X ≡ R ⊆ S ∪ X (111)

The relational overriding combinator

R † S = S ∪ R ∩ ⊥/S◦ (112)

yields the relation which contains the whole of S and that part of R
where S is undefined — read R † S as “R overridden by S”.

Exercise 49: Show that R − S ⊆ R, R −⊥ = R and R − R = ⊥
hold. �

Exercise 50: (a) Show that ⊥ † S = S , R † ⊥ = R and R † R = R hold.
(b) Infer the universal property:

X ⊆ R † S ≡ X − S ⊆ R ∧ (X − S) · S◦ = ⊥ (113)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Predicates become relations

Recall from (35) the notation

f

g
= g◦ · f

and define, given a predicate p,

p? = id ∩ true

p
(114)

where true denotes the constant function yielding true for every
argument.

Clearly, p? is the coreflexive relation which represents predicate p
as a binary relation, see the following exercise.

Exercise 51: Show that y p? x ≡ y = x ∧ p x �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Predicates become relations

Thanks to distributive property (58) and the so-called free theorem
of any constant function k,

k · R ⊆ k (115)

— see exercise 68 later on — we get

p? · > =
true

p
(116)

and then:

q? · R = R ∩ q? · > (117)

R · p? = R ∩ > · p? (118)

(The second is obtained from (117) by taking converses.)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Propositio de homine et capra et lvpo

Recalling the data model (4)

Being
Eats // Being

where
��

Bank
cross // Bank

we specify the move of Beings to the other bank is an example of
relational restriction and overriding:

move(where,who) = where † (cross · where · who?) (119)

In Alloy syntax:

fun move[where: Being -> one Bank,

who: set Being]: Being -> one Bank

{ where ++ (who <: where).cross }

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 52: Show that

R † f = f

holds, arising from (113,111) — where f is a function, of course. �

Exercise 53: Function move (119) could have been defined by

move = wherecross
who

using the following (generic) selective update operator:

R f
p = R † (f · R · p?) (120)

Prove the equalities: R id
p = R, R f

false = R and R f
true = f · R.

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 54: Prove the distributive property:

g◦ · (R ∩ S) · f = g◦ · R · f ∩ g◦ · S · f (121)

Then show that

g◦ · p? · f =
f

g
∩ true

p · g
(122)

holds (both sides of the equality mean g b = f a ∧ p (g b)). �

Exercise 55: Infer

q? · p? = q? ∩ p? (123)

from properties (118) and (117). �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Power transpose

Implicit in how Alloy handles relations and sets is the fact that relations

can be represented by functions. Let A
R // B be a relation in

ΛR : A→ P B
ΛR a = {b | b R a}

such that:

ΛR = f ≡ 〈∀ b, a :: b R a ≡ b ∈ f a〉

That is:

A→ P B

(∈·)
**∼= A→ B

Λ

jj f = ΛR ≡ ∈ · f = R (124)

In words: any relation can be represented by set-valued function.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

“Maybe” transpose

Let A
S // B be a simple relation. Define the function

ΓS : A→ B + 1

such that:

ΓS = f ≡ 〈∀ b, a :: b S a ≡ (i1 b) = f a〉

That is:

A→ B + 1

(i◦1 ·)
**∼= A→ B

Γ

jj f = ΓS ≡ S = i◦1 · f (125)

In words: simple relations can be represented by “pointer”-valued
functions.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Contracts

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Contracts

Given a function f , assume that p and q are predicates such that

f · p? ⊆ q? · f (126)

holds. That is, 〈∀ a : p a : q (f a)〉 by exercise 51. In words:

For all inputs a such that condition p a holds, the output f a
satisfies condition q.

In software design, this is known as a (functional) contract, which we
shall write

p
f // q (127)

— a notation that generalizes the type of f . Important: thanks to
(117), (126) can also be written: f · p? ⊆ q? · >.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Weakest pre-conditions

Note that more than one
(pre) condition p may
ensure (post) condition q
on the outputs of f .

Indeed, contract

false
f // q always

holds, but pre-condition
false is useless (“too
strong”).

The weaker p, the better.
Now, is there a weakest
such p?

See the calculation aside.

f · p? ⊆ q? · f
≡ { see above (117) }

f · p? ⊆ q? · >
≡ { shunting (32); (116) }

p? ⊆ f ◦ · trueq
≡ { (37) }

p? ⊆ true
q·f

≡ { p? ⊆ id ; (50) }
p? ⊆ id ∩ true

q·f

≡ { (114) }
p? ⊆ (q · f)?

We conclude that q · f is such a
weakest pre-condition.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Weakest pre-conditions

Notation wp(f , q) = q · f is often used for weakest pre-conditions.

Exercise 56: Calculate the weakest pre-condition wp(f , q) for the
following function / post-condition pairs:

• f x = x2 + 1 , q y = y 6 10 (in R)

• f = N succ // N , q = even

• f x = x2 + 1 , q y = y 6 0 (in R)

�

Exercise 57: Show that q p
g ·foo holds provided r p

foo and

q r
goo hold. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Invariants versus contracts

In case contract

q
f // q

holds (127), we say that q is an invariant of f — meaning that
the “truth value” of q remains unchanged by execution of f .

More generally, invariant q is preserved by function f provided

contract p
f // q holds and p ⇒ q, that is, p? ⊆ q?.

Some pre-conditions are weaker than others:

We shall say that w is the weakest pre-condition for f to
preserve invariant q wherever wp(f , q) = w ∧ q, where
(p ∧ q)? = p? · q?.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Invariants versus contracts

Recalling the Alcuin puzzle, let us define the starvation invariant
as a predicate on the state of the puzzle, passing the where
function as a parameter w :

starving w = w · CanEat ⊆ w · Farmer

Then the contract

starving
trip b // starving

would mean that the function trip b — that should carry b to the
other bank of the river — always preserves the invariant:
wp(trip b, starving) = starving .

Things are not that easy, however: there is a need for a
pre-condition ensuring that b is on the farmer’s bank and is the
right being to carry! Let us see a simple example first.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example

ISBN Name

Title Book
titleoo

Auth
��

isbn

OO

R // User
addr

//

card
��

name

OO

Address

Author Id

u R b means “book b currently on loan to library user u”.

Desired properties:

• same book not on loan to more than one user;

• no book with no authors;

• no two users with the same card Id.

NB: lowercase arrow labels denote functions, as usual.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example

Encoding of desired properties:

• no book on loan to more than one user:

Book
R // User is simple

• no book without an author:

Book
Auth // Author is entire

• no two users with the same card Id:

User
card // Id is injective

NB: as all other arrows are functions, they are simple+entire.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example

Encoding of desired properties as relational invariants:

• no book on loan to more than one user:

img R ⊆ id (128)

• no book without an author:

id ⊆ ker Auth (129)

• no two users with the same card Id:

ker card ⊆ id (130)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example

Now think of two operations on User Book
Roo , one that

returns books to the library and another that records new
borrowings:

return S R = R − S (131)

borrow S R = S ∪ R (132)

Clearly, these operations only change the books-on-loan relation R,
which is conditioned by invariant

inv R = img R ⊆ id (133)

The question is, then: are the following “types”

inv inv
return Soo (134)

inv inv
borrow Soo (135)

ok? We check (134,135) below.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example

Checking (134):

inv (return S R)

≡ { inline definitions }

img (R − S) ⊆ id

⇐ { since img is monotonic }

img R ⊆ id

≡ { definition }

inv R

�

So, for all R, inv R ⇒ inv (return S R) holds — invariant inv is
preserved.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example

At this point note that (134) was checked only as a warming-up
exercise — we don’t need to worry about it! Why?

As R − S is smaller than R (exercise 49) and “smaller
than injective is injective” (exercise 31), it is immediate
that inv (133) is preserved.

To see this better, unfold and draw definition (133):

inv R =

Book

R

��

User
R◦oo

id

��
⊆

User User
id

oo

As R is on the lower-path of the diagram, it can always get smaller.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example

This “rule of thumb” does not work for borrow S because, in
general, R ⊆ borrow S R.

So R gets bigger, not smaller, and we have to check the contract:

inv (borrow S R)

≡ { inline definitions }

img (S ∪ R) ⊆ id

≡ { exercise 30 }

img R ⊆ id ∧ img S ⊆ id ∧ S · R◦ ⊆ id

≡ { definition of inv }

inv R ∧ img S ⊆ id ∧ S · R◦ ⊆ id︸ ︷︷ ︸
wp(borrow S,inv)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example (Alloy)

Note, however, that in general our workflow does not go
immediately to the calculation of the weakest precondition of a
contract.

We model-check first the contract first, in order to save the
process from childish errors:

What is the point in trying to prove something that a
model checker can easily tell is a nonsense?

This follows a systematic process, illustrated next.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example (Alloy)

First we write the Alloy model of what we have thus far:

sig Book {
title : one Title,
isbn : one ISBN,
Auth : some Author ,
R : lone User
}
sig User {

name : one Name,
add : some Address,
card : one Id
}
sig Title, ISBN,Author ,

Name,Address, Id { }

fact {
card .˜ card in iden

-- card is injective
}
fun borrow

[S ,R : Book → lone User] :
Book → lone User {

R + S
}
fun return

[S ,R : Book → lone User] :
Book → lone User {

R − S
}

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example (Alloy)

As we have seen, return is no problem, so we focus on borrow .

Realizing that most attributes of Book and User don’t matter wrt.
checking borrow , we comment them all, obtaining a much smaller model:

sig Book {R : lone User }
sig User { }
fun borrow

[S ,R : Book → lone User] :
Book → lone User {

R + S
}

Next, we single out the
invariant, making it explicit as a
predicate (aside).

sig Book {R : User }
sig User { }
pred inv {

R in Book → lone User
}
fun borrow

[S ,R : Book → User] :
Book → User {

R + S
}

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example (Alloy)

In the step that follows, we make the model dynamic, in the sense
that we need at least two instances of relation R — one before
borrow is applied and the other after.

We introduce Time as a way
of recording such two
moments, pulling R out of
Book

sig Time {r : Book → User }
sig Book { }
sig User { }

and re-writing inv accordingly
(aside).

pred inv [t : Time] {
t · r in Book → lone User
}

Note how
r : Time → (Book → User) is
a function — it yields, for
each t ∈ Time, the relation

Book
r t // User .

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example (Alloy)

This makes it possible to express contract inv
borrow S // inv in

terms of t ∈ Time,

〈∀ t, t ′ : inv t ∧ r t ′ = borrow S (r t) : inv t ′〉

i.e. in Alloy:

assert contract {
all t, t ′ : Time,S : Book → User |

inv [t] and t ′ · r = borrow [t · r , S]⇒ inv [t ′]
}

Once we check this, for instance running

check contract for 3 but exactly 2 Time

we shall obtain counter-examples. (These were expected...)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example (Alloy)

The counter-examples will quickly tell us what the problems are,
guiding us to add the following pre-condition to the contract:

pred pre [t : Time,S : Book → User] {
S in Book → lone User
∼S · (t · r) in iden
}

The fact that this does not yield counter-examples anymore does
not tell us that

• pre is enough in general

• pre is weakest.

This we have to prove by calculation — as we have seen before.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example (Alloy)

Note that pre-conditioned borrow S · pre? is not longer a function,
because it is not entire anymore.

We can encode such a relation in Alloy in an easy-to-read way, as a
predicate structured in two parts — pre-condition and
post-condition:

pred borrow [t, t ′ : Time, S : Book → User] {
-- pre-condition
S in Book → lone User
∼S · (t · r) in iden
-- post-condition
t ′ · r = t · r + S
}

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alloy + Relation Algebra round-trip

Alloy
Model "Checking"

PF-calculus
Proof

OK
Success

PF-notation
Refinement

Model refinedFound flaw

Refinement validated Check proof steps

Source: [6].

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Summary

• The Alloy + Relation Algebra round-trip enables us to take
advantage of the best of the two verification strategies.

• Diagrams of invariants help in detecting which contracts
don’t need to be checked.

• Functional specifications are good as starting point but soon
evolve towards becoming relations, comparable to the
methods of an OO programming language.

• Time was added to the model just to obtain more than one
”state”. In general, Time will be linearly ordered so that the
traces of the model can be reasoned about.5

5In Alloy, just declare: open util/ordering[Time].

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example revisited

More detailed data model of our library with invariants captured
by diagram

ISBN

M

�

ISBN × UID

R

�

π1oo π2 // UID

N

�
⊇ ⊆

Title ×
Publisher >

// Date
Name×
Address×
Phone

>
oo

(136)

where

• M — records books on loan, identified by ISBN;

• N — records library users (identified by user id’s in UID);

(both simple) and

• R — records loan dates.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example revisited

The two squares in the diagram impose bounds on R:

• Non-existing books cannot be on loan (left square);

• Only known users can take books home (right square).

(NB: in the database terminology these are known as integrity
constraints.)

Exercise 58: Add variables to both squares in (136) so that the same
conditions are expressed pointwise. Then show that the conjunction of
the two squares means the same as assertion

R◦ ⊆ 〈M◦ · >,N◦ · >〉 (137)

and draw this in a diagram. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example revisited

Exercise 59: Consider implementing M, R and N as files in a relational
database. For this, think of operations on the database such as, for
example, that which records new loans (K):

borrow(K , (M,R,N)) = (M,R ∪ K ,N) (138)

It can be checked that the pre-condition

pre-borrow(K , (M,R,N)) = R · K◦ ⊆ id

is necessary for maintaining (136) (why?) but it is not enough. Calculate

— for a rectangle in (136) of your choice — the corresponding clause to

be added to pre-borrow . �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Library loan example revisited

Exercise 60: The operations that buy new books

buy(X , (M,R,N)) = (M ∪ X ,R,N) (139)

and register new users

register(Y , (M,R,N)) = (M,R,N ∪ Y) (140)

don’t need any pre-conditions. Why? (Hint: compute their WP.) �

NB: see annex on proofs by ⊆-monotonicity for a strategy
generalizing the exercise above.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Abstract interpretation

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Abstraction

Model checking / proofs of particular properties may be hard to
perform due to the complexity of real-life problems.

“On demand” abstraction can help.

By “on demand” we mean making a model more abstract with
respect to the property we want to check.

In general, techniques of this kind are known as abstract
interpretation and play a major role in program analysis, for
instance.

We need the two extensions to functional contracts (126) which
follow.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational types vs abstract simulation

A function h is said to have relation type R → S,

written R
h // S if

h · R ⊆ S · h
B

h
��

B
Roo

h
��

A A
Soo

(141)

holds.

Regarding h : B → A as an abstraction function, we also say that

A A
Soo is an abstract simulation of B B

Roo .

Exercise 61: What does (141) mean in case R and S are partial orders?

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Invariant functions

A special case of relational type defines invariant functions:

A function of relation type R
h // id is said to be

R-invariant, in the sense that
〈∀ b, a : b R a : h b = h a〉 (142)

holds.

When h is R-invariant, observations by h are not affected by
R-transitions.

Exercise 62: Show that an R-invariant function h is always such that
R ⊆ h

h holds.

Moreover, show that relational types compose, that is Q S
koo and

S R
hoo entail Q R

k·hoo . �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relational contracts

Finally, let the following definition

p
R // q ≡ R · p? ⊆ q? · R (143)

generalize functional contracts (126) to arbitrary relations,
meaning:

〈∀ b, a : b R a : p a⇒ q b〉 (144)

Exercise 63: Sow that an alternative way of stating (143) is

p
R // q ≡ R · p? ⊆ q? · > (145)

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercise 24 (continued)

Exercise 64: Recalling exercise 24, let the following relation specify
that two dates are at least one week apart in time:

d Ok d ′ ≡ | d − d ′ | >1 week

Looking at the type diagram below right, say in your own words the
meaning of the invariant specified by the relational type (141) statement
below, on the left:

ker (home ∪ away)
date // Ok

G
home∪away //

date
��

T

D G

home∪away

OO

date
oo

�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Abstract interpretation

Suppose that you want to show that q : B → B is an invariant of

B
R // B , i.e. that q

R // q holds and you know that
q = p · h, for some h : B → A.

Then you can factor your proof in two steps:

• show that there is an abstract simulation S such that

R
h // S

• Prove p
S // p , that is, that p is an (abstract) invariant of

(abstract) S .

See the calculation in the next slide.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Abstract interpretation

R · (p · h)? ⊆ (p · h)? · >

≡ { (116) etc }

R · (p · h)? ⊆ h◦ · p? · >

≡ { shunting }

h · R · (p · h)? ⊆ p? · >

⇐ { R
h // S }

S · h · (p · h)? ⊆ p? · >

⇐ { (p · h)? ⊆ h◦ · p? · h (122) }

S · h · h◦ · p? · h ⊆ p? · >
⇐ { > = > · h (cancel h); img h ⊆ id }

S · p? ⊆ p? · >
�

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

State-based models

Functional models generalize to so called state-based models in
which there is

• a set Σ of states

• a subset I ⊆ Σ of initial states

• a step relation Σ
R // Σ which expresses transition of states

We define:

• R0 = id — no action or transition takes place

• R i+1 = R · R i — a ”path” of i + 1 transitions.

• R∗ =
⋃

i>0 R i — the set of all possible paths

We represent the set I by the coreflexive Σ
(∈ I)? // Σ , simplified to

Σ
I // Σ to avoid symbol cluttering.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Safety properties

Safety properties are of the form R∗ · I ⊆ S , that is,

〈∀ n : n > 0 : Rn · I ⊆ S〉 (146)

for some safety relation S : Σ→ Σ, meaning:

All paths in the model originating from its initial states
are bounded by S .

In particular, S = Φ · > — in this case,

〈∀ n : n > 0 : Rn · I ⊆ Φ · >〉 (147)

means that formula Φ (encoded as a coreflexive) holds for every
state reachable by R from an initial state.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Liveness properties

Liveness properties are of the form

〈∃ n : n > 0 : Q ⊆ Rn · I 〉 (148)

for some target relation Q : Σ→ Σ, meaning:

A target relation Q is eventually realizable, after n steps
starting from an initial state.

In particular, Q = Φ · > — in this case,

〈∃ n : n > 0 : Φ · > ⊆ Rn · I 〉 (149)

means that, for a sufficiently large n, formula Φ will eventually
hold.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Ensuring safety / liveness properties

The first difficulty in ensuring properties such as (147) e (149) is
the quantification on the number of path steps.

In the case of (149) one can try and find a particular path using a
model checker.

In both cases, the complexity /size of the state space may offer
some impedance to proving / model checking.

Below we show how to circumvent such difficulties by use of
abstract interpretation.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Example — Heavy armchair problem

In this problem taken from [3] the step
relation is

R = P × Q

where P captures the adjacency of two
squares and Q captures 90◦ rotations.

A rotation multiplies by ± i a complex
number in {1, i ,−1,−i } indicating the
orientation of the armchair.

Altogether:

((y ′, x ′), d ′) R ((y , x), d) ≡{
y ′ = y ± 1 ∧ x ′ = x ∨ y ′ = y ∧ x ′ = x ± 1
d ′ = (± i) d

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Heavy armchair problem

We want to check the liveness property:

For some n, ((y , x + 1), d) Rn ((y , x), d) holds. (150)

The same, in pointfree notation:

〈∃ n :: (id × (1+))× id ⊆ Rn〉

In words: there is a path with n steps whose meaning is function
(id × (1+))× id .

Note how the state of this problem is arbitrarily big (the squared
area is unbounded).

We resort to abstract interpretation to obtain a bounded,
functional model.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Heavy armchair — abstract interpretation

We color the floor as a chess board and
abstract the armchair by function
h = col × dir which tells the colour of
the square where the armchair is and its
orientation.

Since there are two colours (black,
white) and two orientations (horizontal,
vertical), we can model both by
Booleans.

The action of moving to any adjacent square abstracts to color negation
and any 90◦ rotation abstracts to direction negation:

P
col // (¬)

Q
dir // (¬)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Heavy armchair — abstract interpretation

Thus

R
col×dir // (¬ × ¬)

that is, the step relation R is simulated by the function s = col × dir , i.e.

s (c , d) = (¬ c ,¬ d)

over a state space with 4 possibilities only.

At this level, we note that observation function

f (c , d) = c ⊕ d (151)

is s-invariant (142), that is

f · s = f (152)

since ¬ c ⊕ ¬ d = c ⊕ d holds. By induction on n, f · sn = f .

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Heavy armchair abstraction

Expressed under
this abstraction,
(150) is rephrased
into: there is a
number of steps n
such that
sn (c , d) = (¬ c , d)
holds.

Aside we check
this, assuming
variable n
existentially
quantified:

sn (c , d) = (¬ c , d)

⇒ { Leibniz }

f (sn (c , d)) = f (¬ c , d)

≡ { f is s-invariant }

f (c , d) = f (¬ c , d)

≡ { (151) }

c ⊕ d = ¬ c ⊕ d

≡ { 1 ⊕ d = ¬ d and 0 ⊕ d = d }

d = ¬ d

≡ { trivia }

false

Thus, for all paths of arbitrary length n, sn (c , d) 6= (¬ c , d).

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alcuin puzzle example

16 possible states of type Being → Bank, 24 = 16.

Symmetry of the problem invites us to unify Fox with Beans [3]:

f : Being → {α, β, γ}

f =

Goose // α

Fox // β

Beans

77

Farmer // γ

So we define a state-abstraction function based on f

h : (Being → Bank)→ ({α, β, γ} → {0, 1, 2})
h w x = 〈

∑
b : x = f b ∧ w b = Left : 1〉

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alcuin puzzle example

For instance,

h Left = 121

h Right = 000

abbreviating the mapping {α 7→ x , β 7→ y , γ 7→ z } by the vector
xyz.

Moreover, to obtain the other bank, we use the a complement
operator:

x = 121− x

Note that there are 2× 3× 2 = 12 possible state vectors.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alcuin puzzle abstraction

8 valid state vectors ordered by (6):

121

021 111 120

011 020 101 110

001 010 100

000

The four invalid states are marked in red.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Only 4 state vectors required

Due to complementation, we only need to reach state 010, and
then reverse the path through the complements:

121

021 111

020 101

010 100

000

→

121

021

020

010

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alcuin puzzle: abstract determinism

Abstract automaton:

121

−101

		

021[[

±001
��

−011

++

020

010

Termination is ensured by
disabling toggling between
states 021 and 020:

121
−101

020
+001

021
−011

010

We then take the complemented path 111→ 100→ 101→ 000.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Alcuin puzzle: abstract solution

Altogether:

121

−101

		

021ZZ

±001

��

−011

++

111

−011

��

020 101

−101

		

ZZ

±001

��
010

+101

OO

100

000

121
−101

020
+001

021
−011

010
+101

111
−011

100
+001

101
−101

000

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Theorems for free

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Parametric polymorphism by example

Function

countBits : IN0← Bool?

countBits [] = 0
countBits(b:bs) = 1 + countBits bs

and

countNats : IN0← IN?

countNats [] = 0
countNats(b:bs) = 1 + countNats bs

are both subsumed by generic (parametric):

count : (∀a) IN0← a?

count [] = 0
count(a:as) = 1 + count as

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Parametric polymorphism: why?

• Less code (specific solution = generic solution +
customization)

• Intellectual reward

• Last but not least, quotation from Theorems for free!, by
Philip Wadler [8]:

From the type of a polymorphic function we can
derive a theorem that it satisfies. (...) How useful
are the theorems so generated? Only time and
experience will tell (...)

• No doubt: free theorems are very useful!

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Polymorphic type signatures

Polymorphic function signature:

f : t

where t is a functional type, according to the following ”grammar”
of types:

t ::= t ′ ← t ′′

t ::= F(t1, . . . , tn) type constructor F
t ::= v type variables v , cf. polymorphism

What does it mean for f to be parametrically polymorphic?

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Free theorem of type t

Let

• V be the set of type variables involved in type t

• {Rv}v∈V be a V -indexed family of relations (fv in case all
such Rv are functions).

• Rt be a relation defined inductively as follows:

Rt:=v = Rv (153)

Rt:=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) (154)

Rt:=t′←t′′ = Rt′ ← Rt′′ (155)

Questions: What does F in the RHS of (154) mean? What kind
of relation is Rt′ ← Rt′′? See next slides.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Background: relators

Parametric datatype G is said to be a relator [2] wherever, given a
relation from A to B, GR extends R to G-structures: it is a relation

A

R

��

GA

GR
��

B GB

(156)

from GA to GB which obeys the following properties:

Gid = id (157)

G (R · S) = (G R) · (G S) (158)

G(R◦) = (G R)◦ (159)

and is monotonic:

R ⊆ S ⇒ GR ⊆ GS (160)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relators: “Maybe” example

A

R

��

GA = 1 + A

GR=id+R

��
B GB = 1 + B

(Read 1 + A as “maybe A”)

Unfolding GR = id + R:

y(id + R)x

≡ { unfolding the sum, cf. id + R = [i1 · id , i2 · R] }

y(i1 · i◦1 ∪ i2 · R · i◦2)x

≡ { relational union (47); image }

y(img i1)x ∨ y(i2 · R · i◦2)x

≡ { let NIL be the inhabitant of the singleton type }

y = x = i1NIL ∨ 〈∃ b, a : y = i2 b ∧ x = i2 a : b R a〉

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Relators: example

Take FX = X ?.

Then, for some B A
Roo , relator B? A?

R?
oo is the relation

s ′(R?)s ≡ inds s ′ = inds s ∧ (161)

〈∀ i : i ∈ inds s : (s ′ i)R(s i)〉

Exercise 65: Check properties (157) and (159) for the list relator

defined above. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 66: Show that the identity relator I, which is such that

I R = R and the constant relator K (for a given data type K)

which is such that K R = idK are indeed relators. �

Exercise 67: Show that (Kronecker) product

A

R

��

C

S

��

G(A,C) = A× C

G(R,S)=R×S
��

B D G(B,D) = B × D

is a (binary) relator. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Background: “Reynolds arrow” operator

The following relation on functions

f (R ← S)g ≡ f · S ⊆ R · g A

f
��

B
Soo

g
��

C D
R
oo

(162)

generalizes (141).

That is to say, A B
Soo

C D
Roo

CA DBR←Soo

For instance, f (id ← id)g ≡ f = g that is, id ← id = id

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Free theorem (FT) of type t

The free theorem (FT) of type t is the following
(remarkable) result due to J. Reynolds [7],
advertised by P. Wadler [8] and re-written by
Backhouse [1] in the pointfree style:

Given any function θ : t, and V as
above, then θ Rt θ holds, for any
relational instantiation of type variables
in V . J.C. Reynolds

(1935–2013)

Note that this theorem

• is a result about t

• holds independently of the actual definition of θ.

• holds about any polymorphic function of type t

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

First example (id)

The target function:

θ = id : a← a

Calculation of Rt=a←a:

Ra←a

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra ← Ra

Calculation of FT (Ra abbreviated to R):

id(R ← R)id

≡ { (162) }

id · R ⊆ R · id

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

First example (id)

In case R is a function f , the FT theorem boils down to id ’s
natural property:

id · f = f · id

cf.

a

f
��

a
idoo

f
��

b b
id
oo

which can be read alternatively as stating that id is the unit of
composition.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Second example (reverse)

The target function: θ = reverse : a? ← a?.

Calculation of Rt=a?←a? :

Ra?←a?

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra? ← Ra?

≡ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) }

Ra
? ← Ra

?

where s R?s ′ is given by (161). The calculation of FT follows.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Second example (reverse)

The FT itself will predict (Ra abbreviated to R):

reverse(R?← R?)reverse

≡ { definition f (R ← S)g ≡ f · S ⊆ R · g }

reverse · R? ⊆ R? · reverse

In case R is a function r , the FT theorem boils down to reverse’s
natural property:

reverse · r? = r? · reverse

that is,

reverse [r a | a← l] = [r b | b← reverse l]

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Second example (reverse)

Further calculation (back to R):

reverse · R? ⊆ R? · reverse

≡ { shunting rule (32) }

R? ⊆ reverse◦ · R? · reverse

≡ { going pointwise (8, 23) }

〈∀ s, r :: s R?r ⇒ (reverse s)R?(reverse r)〉

An instance of this pointwise version of reverse-FT will state that,
for example, reverse will respect element-wise orderings (R :=<):

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Second example (reverse)

length s = length r ∧ 〈∀ i : i ∈ inds s : (s i) < (r i)〉
⇓

length(reverse s) = length(inv r)

∧
〈∀ j : j ∈ inds s : (reverse s)j < (reverse r)j〉

(Guess other instances.)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Third example: FT of sort

Our next example calculates the FT of

sort : a? ← a? ← (Bool ← (a× a))

where the first parameter stands for the chosen ordering relation,
expressed by a binary predicate:

sort(R(a?←a?)←(Bool←(a×a)))sort

≡ { (154, 153, 155); abbreviate Ra := R }

sort((R? ← R?)← (RBool ← (R × R)))sort

≡ { Rt:=Bool = id (constant relator) — cf. exercise 66 }

sort((R? ← R?)← (id ← (R × R)))sort

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Third example: FT of sort

sort((R? ← R?)← (id ← (R × R)))sort

≡ { (162) }

sort · (id ← (R × R)) ⊆ (R? ← R?) · sort

≡ { shunting (32) }

(id ← (R × R)) ⊆ sort◦ · (R? ← R?) · sort

≡ { introduce variables f and g (8, 23) }

f (id ← (R × R))g ⇒ (sort f)(R? ← R?)(sort g)

≡ { (162) twice }

f · (R × R) ⊆ g ⇒ (sort f) · R? ⊆ R? · (sort g)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Third example: FT of sort
Case R := r :

f · (r × r) = g ⇒ (sort f) · r? = r? · (sort g)

≡ { introduce variables }〈
∀ a, b ::

f (r a, r b) = g(a, b)

〉
⇒

〈
∀ l ::

(sort f)(r? l) = r?(sort g l)

〉
Denoting predicates f , g by infix orderings 6,�:〈

∀ a, b ::
r a 6 r b ≡ a � b

〉
⇒

〈
∀ l ::

sort (6)(r? l) = r?(sort (�) l)

〉
That is, for r monotonic and injective,

sort (6) [r a | a← l]

is always the same list a

[r a | a← sort (�) l]

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 68: Let C be a nonempty data domain and let and c ∈ C .
Let c be the “everywhere c” function, recall (25). Show that the free
theorem of c reduces to

〈∀ R :: R ⊆ >〉 (163)

�

Exercise 69: Calculate the free theorem associated with the projections

A A× B
π1oo π2 // B and instantiate it to (a) functions; (b)

coreflexives. Introduce variables and derive the corresponding pointwise

expressions. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 70: Consider higher order function const: a -> b -> a

such that, given any x of type a, produces the constant function const x .
Show that the equalities

const(f x) = f · (const x) (164)

(const x) · f = const x (165)

(const x)◦ · (const x) = > (166)

arise as corollaries of the free theorem of const. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 71: The following is a well-known Haskell function

filter :: (a→ B)→ [a]→ [a]

Calculate the free theorem associated with its type

filter : a? ← a? ← (Bool ← a)

and instantiate it to the case where all relations are functions. �

Exercise 72: In many sorting problems, data are sorted according to a
given ranking function which computes each datum’s numeric rank (eg.
students marks, credits, etc). In this context one may parameterize
sorting with an extra parameter f ranking data into a fixed numeric
datatype, eg. the integers: serial : (a→ IN)→ a? → a?.

Calculate the FT of serial . �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 73: Consider the following function from Haskell’s Prelude:

findIndices :: (a→ B)→ [a]→ [Z]
findIndices p xs = [i | (x , i)← zip xs [0 . .], p x]

which yields the indices of elements in a sequence xs which satisfy p. For

instance, findIndices (< 0) [1,−2, 3, 0,−5] = [1, 4]. Calculate the FT of

this function. �

Exercise 74: Choose arbitrary functions from Haskell’s Prelude and

calculate their FT. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Exercises

Exercise 75: Wherever two equally typed functions f , g such that
f a 6 g a, for all a, we say that f is pointwise at most g and write

f
.
6 g . In symbols:

f
.
6 g = f ⊆ (6) · g cf. diagram A

f

��
g

��
⊆

B B
6
oo

(167)

Show that implication

f
.
6 g ⇒ (map f)

.

6? (map g) (168)

follows from the FT of the function map : (a→ b)→ a? → b?. �

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Automatic generation of free theorems (Haskell)

See the interesting site in Janis Voigtlaender’s home page:

http: // www-ps. iai. uni-bonn. de/ ft

Relators in our calculational style are implemented in this
automatic generator by structural lifting.

Exercise 76: Infer the FT of the following function, written in Haskell

syntax,

while :: (a → B) → (a → a) → (a → b) → a → b
while p f g x = if ¬ (p x) then g x else while p f g (f x)

which implements a generic while-loop. Derive its corollary for functions

and compare your result with that produced by the tool above. �

http://www-ps.iai.uni-bonn.de/ft

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Background — Eindhoven quantifier calculus

Trading:

〈∀ k : R ∧ S : T 〉 = 〈∀ k : R : S ⇒ T 〉 (169)

〈∃ k : R ∧ S : T 〉 = 〈∃ k : R : S ∧ T 〉 (170)

de Morgan:

¬〈∀ k : R : T 〉 = 〈∃ k : R : ¬T 〉 (171)

¬〈∃ k : R : T 〉 = 〈∀ k : R : ¬T 〉 (172)

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (173)

〈∃ k : k = e : T 〉 = T [k := e] (174)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Background — Eindhoven quantifier calculus
Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (175)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (176)

Rearranging-∀:

〈∀ k : R ∨ S : T 〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : S : T 〉 (177)

〈∀ k : R : T ∧ S〉 = 〈∀ k : R : T 〉 ∧ 〈∀ k : R : S〉 (178)

Rearranging-∃:

〈∃ k : R : T ∨ S〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : R : S〉 (179)

〈∃ k : R ∨ S : T 〉 = 〈∃ k : R : T 〉 ∨ 〈∃ k : S : T 〉 (180)

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉(181)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉(182)

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

References

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

K. Backhouse and R.C. Backhouse.
Safety of abstract interpretations for free, via logical relations
and Galois connections.
SCP, 15(1–2):153–196, 2004.

R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.
Voermans, and J. van der Woude.
Polynomial relators.
In AMAST’91, pages 303–362. Springer-Verlag, 1992.

Roland Backhouse.
Algorithmic Problem Solving.
Wiley Publishing, 1st edition, 2011.

D. Jackson.
Software Abstractions: Logic, Language, and Analysis.
The MIT Press, Cambridge Mass., 2012.
Revised edition, ISBN 0-262-01715-2.

C.B. Jones.
Software Development — A Rigorous Approach.

Motivation Binary Relations Composition Inclusion Converse Pairs and sums Background

Series in Computer Science. Prentice-Hall International, Upper
Saddle River, NJ, USA, 1980.
C.A.R. Hoare (series editor).

J.N. Oliveira and M.A. Ferreira.
Alloy meets the algebra of programming: A case study.
IEEE Trans. Soft. Eng., 39(3):305–326, 2013.
.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
Information Processing 83, pages 513–523, 1983.

P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming
Languages and Computer Architecture, pages 347–359,
London, Sep. 1989. ACM.

	Motivation
	Binary Relations
	Composition
	Inclusion
	Converse
	Pairs and sums
	Background

