
What can Industry 4.0 learn from SE?!

CIRP GA 2016!
Guimarães, August 21-27 !

2016!

José Nuno Oliveira!
HASLAB/ Univ. Minho & INESC TEC!

Introduction Software Lessons learned

for i = 1 to 4 do {industry (i); } !

Credit:! (2015)!

Introduction Software Lessons learned

Turning point!

(“L’enfant terrible” is born)!

Introduction Software Lessons learned

Crisis!

1st NATO Conference on Software Engineering,
Darmstadt, October 1968!

Introduction Software Lessons learned

Meanwhile (50 years)!

“Traditional” engineering principles apply to process but
not so well to product — why?!

Introduction Software Lessons learned

Software!
Process — !

Product —

Introduction Software Lessons learned

“L’enfant terrible”!

Hardware and other “traditional” industrial products fabricated according to
the laws of physics.!

Software not governed by the laws of physics:!
•  it does not weight / does not smell!
•  it does not warm up / cool down!
•  it is chemically neutral ...!

Anthony Oettinger (ACM President, 1967):!

”(...) the scientific, rigorous component of computing, is more
like mathematics than it is like physics”!

Introduction Software Lessons learned

Software = mathematics in motion!
Can one pretend that software production is not affected by its!
special nature and simply move on?!

People have tried to do so, for 50 years, with little success. !

Still Oettinger (already in 1967):!

”It is a matter of complexity. Once you start putting thousands of these
instructions together you create a monster which is unintelligible to
anyone save its creator and, most of the time, unfortunately even to the
creator.”!

Introduction Software Lessons learned

Industry 4.0 and software!

Industry 4.0 to rely on highly
sophisticated software on an
unprecedented scale.!

Billions, not thousands, of lines of code
required to!

for !""##do {$%&!'#:= ()*)+#}

Software correctness and robustness
therefore essential.!

Introduction Software Lessons learned

What have we learned about software?!

Software lives on abstraction:!

”The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.” (E. Dijkstra)!

From a Robot Programming Tutorial:!
“The fundamental challenge of all robotics is this: It is impossible to ever
know the true state of the environment. A robot can only guess the
state of the real world based on measurements returned by its sensors.”!

We have developed a sound theory for (safe) guessing called!
abstract interpretation — widely used in program analysis tools!
nowadays.!

Introduction Software Lessons learned

Type oriented programming!

Something we’ve also learned is how important types are.!

Every computation, piece of data
should have a formal type.!

Types permit (automatic) checking!
before building.!

Doing software without types is like doing biology without a post-
Linnaean taxonomy ...!

Beware: most of the software running today is (still) untyped or too
weakly typed (!)!

Introduction Software Lessons learned

Parametricity and scalability!

We also learned to appreciate generic (parametric)!
programs which automatically instantiate to specific !
needs.!

Polymorphic types do this - nice theory called parametric
polymorphism (John Reynolds, CMU).!

So nice that one derives properties of programs
before even writing them — very helpful in
correctness arguments.!

Thanks to techniques like “lazy programming” our generic!
programs have also become scalable.!

Introduction Software Lessons learned

Divide & conquer metaphor!

Thanks to D&C our programs have become parallel. Think of!
Google, cloud computing, ...!

We have learned to
better understand
and take advantage
of this ‘quinta
essentia’ of
programming.!

Introduction Software Lessons learned

 Cyber-security!

We are learning how to use
number theory and
automata theory to build
software that is provably
secure.!

Surely the most critical
problem ahead.!

for ,)&-#do {$%&!'#:=
.'+(%/-(}

Introduction Software Lessons learned

Contract-oriented programming!

We have also learned that, as
in the regular functioning of
any society, programming
should be based on formal
contracts validated using the
underlying maths.!

Contracts ensure safety and security essential to safety-critical!
equipment operation.!

Introduction Software Lessons learned

What can I4.0 learn from SE?!

Level of sophistication and safety !
needed in I4.0 incompatible with!
ad hoc software development.!

I4.0 should invest on high-assurance,
parametric software components
developed on a grand scale.!

Opportunity for developing widely available, certified cyber
physical component (CPC) libraries.!

