
Historical Records Processing in the HiTeX
System

J.N. Oliveira
A.S. Araújo
A.M. Silva

August 1991

Abstract

This paper presents an outline of HITEX, an open software system for record-
ing, organizing and maintaining historical data. Particular attention is paid to a
formalization of the model chosen to support data organization in HITEX, which is
a hybrid between the AI semantic network model and the object oriented compu-
tational model.

The notion of a re-usable historical component is put forward as a basis for
standardization and exchange of machine readable historical data.

Practical aspects concerning historical knowledge acquisition and source tran-
scription in the current HITEX prototype are discussed.

In Yesterday, 149--168 (Editors: Hans J. Marker and
Kirsten Pagh), Proceedings of AHC’91 -- 6 International
Conference of the Association of History and Computing,
Odense, Denmark, 28--30 Aug. 1991, Odense University
Press, 1994.

Dept. de Informática, UM/INESC, Rua D.Pedro V, 88-3, 4700 Braga, Portugal.
Arquivo Distrital de Braga, Largo do Paço, 4719 Braga Codex, Portugal.
Universidade do Minho, Largo do Paço, 4719 Braga Codex, Portugal.

1

1 Introduction
The main purpose of this paper is to describe the motivation behind the conception of
HITEX, a software system for recording, organizing and maintaining historical data.
This system is currently being developed for the District Archives of Braga (ADB),
Portugal, in collaboration with the Computer Science Department of Minho University
at Braga and IBM Portugal, under the financial support of the Calouste Gulbenkian
Foundation (Lisbon).

The paper’s structure is as follows: we start by reviewing currently open issues
concerning the mechanical handling of historical records. This is followed by an
outline of the project’s evolution and of the mathematical model chosen to support data
organization in HITEX. The user’s interface with the system and details concerning its
pratical use are presented in the sequel. A review of related work followed by a few
conclusions and an outline of future work end the paper.

1.1 Computing and the Historical Disciplines
Many institutional problems concerning the organization ofmodern society are still hard
to treat by computer. Although many others have known a successful mechanization
in the recent past (bank accounting is a paradigmatic example), there is a general
feeling that a significant gap lies between the available technology and the enormous
complexity of some non-trivial problems one would like to tackle by computer. Typical
non-trivial application domains are legal systems, linguistics and historical research
(to quote only a few of them).

Amost striking shortcoming of computers ismade evidentwherever one endeavours
to replace human activity by automatic processing— computers are unable to copewith
vagueness or ambiguity, two essential aspects of human nature. This may explain why
human-computer interaction is so relevant an area of R&D in present day computer
technology.

As a matter of fact, computers understand the real world only through “stylized”
models from which every subjective subtlety has been ruled out. Therefore, any
automated solution for a given “human” problem presupposes the conception of an
unambiguous model of the problem domain. Such unambiguous models are formal
in the sense that they possess some objective mathematical structure, which can be
emulated by an automaton— by a piece of computer software, for instance.

Such an emulation is affected by yet another “epistemologicalgap” between humans
and computers — however fast and efficient, the latter are grotesque automata whose
“language” is hard to read and reason about by the former. As a consequence, software
design is normally split in two phases according to the dicotomy between so-called
specifications (formal models of real world problems written in some mathematical
notation) and implementations (machine-readable descriptions of such models written
in some programming language). Current software technology is much concernedwith
strategies for reliably deriving the latter from the former.

2

In summary, the reliable application of computing technology to areas such as
historical research is faced with (at least) two levels of technical complexity:

“disambiguation” (= build specifications)

implementation (= build programs).

as described above. We write “at least” because further elaboration is required, arising
from the evolutive nature of the historical data themselves. There is hardly a stable,
consistent specification of one’s historical “knowledge”, which is typically under per-
manent revision. To worsen things, many questions which arise in historical research
involve processing of huge amounts of (presumably inconsistent) data.

Lack of information stability is determinant to the kind of software technology
adequate to the historical disciplines, ruling out conventional data-processing tools
based on rigid database schemata. On the one hand, it forces formal models developed
in each application domain to step from “compile-time” to “run-time”, in order to
become modifiable throughout the application’s lifetime. The need for interactive
processing (i.e. user assistance) is therefore obvious. On the other hand, efficient
connection to the original information source (e.g. manuscripts, record books etc.)
is desirable, suggesting the need for multi-media environments. For huge amounts
of documentation one may resort to high capacity memory devices such as optical
disks. Furthermore, the dependence of traditional historical research on publishing
source transcriptions suggests that text processing tools should be made available for
computerized typesetting.

1.2 The Hypertext Paradigm
Hypertext systems [4, 12] meet most of the above requirements and have been success-
fully applied to small-scale historical case-studies, cf. e.g. reference [16]. However, it
is difficult to assess commercial hypertext systems because of their “ad hoc” semantics
hidden behind sophisticated user-interface layers.

A helpful formalization of the hypertext paradigm has been developed at T.U.
Denmark by Lange [12] using the Vienna Development Method (VDM) [10]. His
model for hypertext consists of a networked collection of attributed units of information,
named nodes, together with links, the “glue that holds hypertext together”.

As Fountain et al [8] point out, hypertext techniques give rise to further usability
problems that have yet to be resolved. Currently available hypertext packages are
basically closed systemswhich do not communicate bi-directionally with other software
packages. Documents are becoming available in computer readable form far faster
than they can be converted to hypertext. Standard hypertext systems add structure to
documents by means of links or tags hard-coded into their textual representation. Such
links cannot be added or revised on read-only media (e.g. CD-ROM).

Although some hypertext systems partly solve these problems, it is clear that there
is room for technical innovation in the area. HITEX attempts to provide an alternative
system philosophy based upon an open architecture communicating with pre-existing

3

software tools such as text processors, knowledge/data-bases, image scanning software,
optical disk software packagesetc.HITEX’s open philosophy is suggestedby the system
name itself — HITEX— which comes from TEX[11], the well-known open document
preparation system designed by Donald Knuth, chosen to be HITEX’s “default” text
processing tool. Such a motivation to build HITEX is shared by other research com-
munities, notably by the LACE and MICROCOSM projects at Southampton University
[19, 8], which will be related to HITEX in section 6.

1.3 The Need for Re-usability
Aconcern related to systemopenness is re-usability. Awell-known, negative syndrome
tends to affect the uncontrolled fragmentation of computing resources in independent
personal workstations — incompatible models of the same problem may proliferate
(everybody doing it in their own way!) rendering future integration very hard, if not
impossible.

The AHC’91 expected topic “Standardization and exchange of machine read-
able data in the historical disciplines” expresses some concern about this syndrome
reaching the historians’ community, where many personal databases are being built
independently, with little concern for compatibility.

Re-use is the “magic word” waved in the computer industry against this long
identified incompatibility epidemic. Both the hardware and software industries have
learnt to fight it by producing re-usable components, that is, standard system building-
blocks with appropriately defined interfaces making for the exchange of equivalent
components 1. Larger systems become available by mere integration of pre-existing
system components, instead of being built from scratch. Productivity is thus much
improved.

The HITEX system attempts a parallel of this strategy by introducing the notion of
a re-usable historical component (RHC). RHCs are archived according to a standard
taxonomy of historical concept classes expressing a subsumption ordering on historical
knowledge. As detailed later on (cf. section 3), RHCs are tolerant towards incomplete
information, a final aspect of practical relevance to one’s incremental acquisition of
historical knowledge.

2 HITEX Antecedents and Project Evolution
TheHITEX project was launched in January 1989, arising from two confluent directives
of ADB management concerning the effective use of computing resources formerly in-
stalled in theArchives by IBMPortugal. On the one hand, a software infra-structurewas
needed for incrementally organizing and accessing the vast collections of documents
entrusted to the Archives. On the other hand, ADB’s editorial board wanted to upgrade
its publishing technology whilst launching a new editorial series of commented source

1Due to its relative technical under-development, software has been slower than hardware to adopt such
a production strategy, cf. e.g. reference [22].

4

transcriptions of particularly interesting originals. The intended software system was
furthermore expected to absorb reports issued by pre-existing databases 2.

The first phase of the HITEX project was concerned with designing a simple to
use mark up language (the HiTeX format) satisfying ADB’s editorial requirements.
A laborious task in manually editing source transcripts is the compilation of indices
which historians traditionally use as “textual databases” — e.g. chronological indices
(recording the occurrence in the original source of dates or other chronological data),
toponymical indices (referring to toponyms or other geographical data), anthroponymi-
cal indices (collecting every reference to people) etc. Therefore, special emphasis was
put on automatic compilation of these indices.

LATEX [11] was chosen as the underlying text preparation system for several rea-
sons 3:

LATEX itself is a structured mark up language;

LATEX has widespread over UNIX, MS/DOS andMacIntosh enviroments;

its underlying formatting system (TEX) is of a good standard;

its openness suggests its use as a versatile target language.

The HiTeX format front-end processor is written in LEX,YACC [23] and generates
standard LATEX for both text and indices. The latter are compiled from textual labels
accepted by the HiTeX format (marking the ocurrence of index items) but expunged
from the output LATEX code.

A description of the HiTeX format and its processor can be found in reference [17].
The project’s second phase was devoted to knowledge representation. The indices

produced by theHiTeX format processor could have been regarded as a form of (textual)
knowledge representation. We agree with Rahtz et al [19] about books being “the
primary repository of past knowledge; any new form of presentation must have some
continuity with existing methods of knowledge representation”. However (and again
agreeing with the same authors), such indices are flat, unstructured records of textual
information which ignore the intertwined texture of human knowledge. Moreover, their
quality standard would remain highly dependent on authorship.

Bearing compatibility in mind, the system’s design evolved towards regarding such
indices not as knowledge sources, but rather as by-products of a knowledge-based
system. That is, we expected indices to be automatically produced as filtered, textual
“dumps” of some knowledge-base.

Design of the HITEX knowledge-base (for short) was influenced by both the
AI semantic network paradigm [6] and the recently so much favoured object oriented
paradigm[7]. The resulting datamodel chosen tomould historical knowledge in HITEX
is described in section 3. Special attentionwas paid to itsmathematical definition, due in

2For instance, the report of the Inquirições de Génere database, recording so far 30% of about 80,000
ordainment processes (17c–19c).

3We became aware later on of a similar choice in the LACE project [19].

5

part to the unsecure ‘ad hoc’ presentation of such paradigms in the computing literature
(Wolczko’s work [24] is among the outstanding exceptions).

The original formal specification of (written in the VDM notation [10]) can
be found in reference [17]. It has remained a standard reference document throughout
project design. The impact of later revisions was carefully analysed and this analysis
greatly simplified by the unambiguous semantics of the formal specification. This was
tested via its corresponding functional prototype executable on the XMETOO shell [18].

Recently, a more user-friendly prototype was encoded in SMALLTALK [3] which
takes advantage of this language’s object-oriented semantics [7]. This prototype’s
user interface (described in section 5) provides on-line access to source image files
obtained from an IBM 3117 scanner and archived in an IBM 3363 optical disk device,
cf. reference [20].

3 The HITEX Data Model
As suggested above, the architecture of the HITEX knowledge-base () resem-
bles, in many respects, a hierarchical semantic-network or an object-oriented system.
Historical information is recorded in terms of information “granules” which have a
unique identity, that is, which can be referred to by quoting their unique name. The
RHC acronym (for “re-usable historical component”) will be used to denote such in-
formation granules. RHC is HITEX’s most primitive entity for building up historical
knowledge.

We will write the following expression,

(1)

as a shorthand for the sentence “the HITEX knowledge-base () maps Names to
RHCs”. The -symbol is intended to mean that not every name in has an
associated (think of people, by analogy: it is easy to think of a name which
is not the name of anybody).

It is up to the user to decide how fine or coarse information units RHCs should be.
Consider the following text fragment which starts folio 1 of the first volume of the ADB
Index das Gavetas (part of a collection of manuscripts once belonging to the chapter of
Braga’s cathedral church):

Certidão da doação que o arcebispo de Braga D.Martinho de Oliveira fez
ao Cabido de Braga [] Ano de 1300.
(Certificate of the donation by Martinho de Oliveira archbishop of Braga,
to the chapter of Braga [] Year 1300.)

Ameticulous analysis of this sentence fragment reveals the presence of the following
information granules:

Martinho de Oliveira was the archbishop of Braga in 1300;

6

this archbishop endowed the chapter of Braga’s cathedralwith something, in the
same year;

the chapter of Braga’s cathedral kept a certificate of this endowment;

such a certificate is archived in the ADB Gavetas do Cabido collection;

a reference to the same certificate can be foundon fol.1,vol.1 of the corresponding
Index (a series of six volumes compiled in the 18c).

How should we record these RHCs in a flexible, incremental way? We need to know
what an RHC actually “is”.

HITEX follows the object-oriented philosophy of associating types or classes to
RHCs. Let us attempt a classification for the above items:

Martinho de Oliveira Arcebispo (Archbishop);

cabido de Braga Cabido (Chapter);

doação Contracto (Contract);

certidão da doação Certidão (Certificate).

Now our question is: what “is” a class? For instance, what is a Certificate? Every
certificate is surely a document. But it is a document of a particular kind — a formal
(public) document. Other documents may be referred to in the sequel of the above text
fragment which are not formal, e.g. private letters. So we are tempted to introduce a
few more classes helping us to “frame” our (so far sketchy) notion of a certificate:

Documento
(Document)

Particular
(Private)

...
Carta
(Letter)
...

Formal
(Formal)

...

Notarial
(Public)

...
Certidão
(Certificate)
...

...
...

(2)

In summary, we have sketched a class taxonomy for documents, much in the same
way biological species have been classified by biologists in the past. Of course, we do
not claim that (2) is the “best” taxonomy framing the notion of a certificate! We simply

7

want to show that building an RHC taxonomy may be a helpful way of telling what a
given RHC “is” and “is not”, due to the implicit subsumption ordering. In this way, we
may talk about subclasses subsumed under superclasses (e.g. Certificate is a subclass
of Public, Document is a superclass of Private).

Taxonomies can be established by recording the intended relationship between
class names. The HITEX block which records the system’s current taxonomy is ,
whose model is

(3)

That is, records, for each class name (), the name of its immediate class
ancestor. The overall subsumption ordering is obtained by transitivity. For instance,

will map Certificate to Public and Public to Formal. It follows that Certificate
transitively “maps” to Formal, and so on.

Is a class name hierarchy such as (3) enough to make up a taxonomy in the usual
sense of the word? From Biology or Linguistics (the linguistic counterpart of a class
is a syntatic category) we know that classes are not atomic entities but rather feature
bundles (as originally suggested byChomsky) [21]. Some classes exhibit featureswhich
others do not. For instance, a Public document is produced by a known Notary-public,
but it is meaningless to say the same thing about a private Letter. That is, features
provide the actual differentiation between classes. Subclasses inherit all features of
their superclasses, and may exhibit additional features of their own. For instance, if we
associate a date to every document of classDocument, then such a feature, or attribute,
will be inherited by every class in (2). The Notary-public feature of Public is inherited
by Certificate, but Certificate may have specific features which cannot be found in
every Public document. In this “feature factorization” resides the essence of a class
taxonomy.

Under the above inheritance assumption, it suffices to revise (3) by adding,
for each class name, the set of features it exhibits, which are not exhibited by any of its
ancestor classes:

(4)

The subexpression means that each class name is associated to
not only its immediate ancestor class name () but also to its specific features
().

Nowwe need an expression formalizing how features are prescribed for each class:

(5)

According to (5), a set of features is a classified collection of feature names (),
that is, an association of a feature name to the class name of its expected values.
For instance, class name Publicwill be mapped not only to its immediate ancestor class
name Formal, but also to the association of its feature name #Notary to a new class,

8

Notary-public 4. We will write

: 1
...
:

whereverwewant to stress that class name has features of its own, 1
ranging over classes 1 respectively, e.g.

: Notary-public

or

:

Let us now come back to theHITEXknowledge-base (1) and see a simpleway
of classifying RHCs (recall that this has been our motivation to build up a taxonomy).
To each RHC identifier we attach the name of its intended class, obtaining

(6)
(7)

That is, every RHC may be regarded as a particular instance of a class (which must be
a valid class, i.e. archived in).

It remains to fill in the “ ” in (7) showing how different instances of the same
class are recorded. Think of a class Indivı́duo (Individual) endowed with features such
as

:
:
:

Two particular individuals will naturally differ from each otherwrt. the particular values
they exhibit for the features allowed by their common class (Individual), e.g. a different
sex, same sex but different name, a different birth-date etc. 5. So the core of an RHC of
class is its particular collection of specific values instantiating features exhibited by
in the underlying taxonomy. So we may resort to the mapping () notation once

again and complete (7) as follows:

4For improved readability, feature names will be prefixed by character “#”.
5Of course, different individuals may happen to exhibit exactly the same values for all features, but this

only means that the available features provide too abstract a characterization of Individual; passport number
is an example of a feature which would provide a finer distinction.

9

where is defined by

(8)

The “ ” symbol in (8) means alternative (either or) definition: a particular
value () is associated to a feature name () which is either an atomic
value (, e.g. a number, a character etc.) or an RHC name (), i.e.
a reference to another RHC.

In summary, RHCs may refer to each other by means of feature instantiation. In
this resides the “networked” (or “linked”) structure of , cf. semantic networks
[6].

A few comments on (8) are needed:
Type checking: it is illegal for a particular RHC to provide instantiations for
features which are absent from its class definition.

Incomplete information: by contrast, a particular RHC need not provide insta-
tiation for every feature present in its class definition, since some of its values
may be yet unknown; the missing data may eventually become available from
historical evidence gathered later on.

Definedness: it is illegal for a particular RHC to refer to other non-existing
RHCs; potential problems arising from circular cross-references are solved by
incremental feature instantiation (i.e. declare RHCs first and add features later
on).

Interfacing: RHC “re-usability” arises naturally from the underlying taxonomy,
which provides classified standards for the existing RHCs.

Our brief presentation of the HITEX data model ends by writing

conveying the idea that HITEX is made up of at least two consistent basic blocks, a
taxonomy (4) and a knowledge-base (6). Putting all definitions together we obtain

(9)

This collection of definitions may be regarded as a simplified formal definition
of part of the HITEX system. In fact, the symbols , , etc. are not casually
chosen— they belong to the specification notation SETS [14] and have a very precise,
mathematical meaning (intentionally ignored above) which can be reasoned about 6.

6The SETS notation is similar to the VDM notation.

10

Mathematical reasoning is the only way of guaranteeing the correctness and compati-
bility of HITEX’s data when ported to other implementation environments. Thus our
emphasis on formally defining HITEX.

The actual formal definition of HITEX can be found in [17]. It is — of course —
much larger than the above model, which was made simpler for ease of explanation 7.

Some of the technical elaborations of the actual system’s model which are of some
interest to the historian are briefed below.

Multiple instantiation: RHCs may be instances of more than a single class, each
class mirroring different views, complementary descriptions or even distinct
historical phases of the same entity — e.g. a nobleman who is a notary-public, a
bishop who becomes a member of some cathedral church chapter etc.

Unification (a particularly useful device for incremental gathering of historical
knowledge): if two seemingly different RHCs are found eventually to be com-
plementary views of the same entity, this device provides for their consistent
aglutination.

Structured features: practical application of HITEX has suggested that some
features possess some internal structure, that is, their values are not single entities
as above but rather collections of Values which dynamically vary from RHC to
RHC within the same class (cf. e.g.many-to-many relationships such as property
limits). In the actual HITEX system, a may take the form of a set or list
of , or even a mapping from to .

Cross-references: a final facet of the HITEX model is source cross-referencing.
Every class is by default endowed with a set-valued feature which is intended
to record the identifiers of all sources which are known to refer to a particular
RHC. Wherever a source transcription is performed in the HITEX environment,
updating of such features is automatic, see section 5.

Note that the HITEX’s taxonomy itself can be used for catalogue/cross-referencing
purposes, that is, the archivist’s data and the historian’s data may be merged together
in the same conceptual framework. See below a sketch of ADB’s structure expressed
by a HITEX taxonomy fragment:

.

.

.
Arquivo Particular
(Private Collection)

Arquivo Semi-público
(Semi-public Collection)

.

.

.

Eclesiástico
(Clerical)

Cabido de Braga
(Cathedral Chapter)

Índice das Gavetas
()

.

.

.

Câmara Eclesiástica
(Clerical Chamber)

Inquirições de Génere
()

.

.

.

7Many formal properties of HITEX other then definedness, type checking etc. have been left out.

11

H
U
I

HFP

HKB

HTax

HIG L
a
T
e
X

Figure 1: Block diagram of the HITEX prototype.

Every archival reference may be regarded as an instance of class

:
:

where

:
: # :

and so on.

4 The HITEX System Structure
The structure of the HITEX system’s current prototype is shown in the block diagram
of Figure 1.

User communication with the system is provided by the block (HITEX User
Interface), see section 5 for details. Much of the user’s input is concerned with creating
and maintaining the system’s RHC taxonomy () and knowledge-base ()
where the bulk of HITEX’s data is archived (cf. section 3).

12

The other system blocks are concerned with source transcription. is the
HiTeX format syntax processor. It outputs LATEX code (recall that LATEX is the default
text preparation system of HITEX). All RHC names (labels) annotating a HITEX source
file are removed but their information is used to update archival cross-references in

(cf. section 3). Finally, the block (HITEX Indices Generator) may be
invoked to generate a LATEX encoding of a hierarchical, -driven traversal of

. This collects textual descriptions of all RHCs whose names have been found
as labels in a particular source transcription. This corresponds to the generation of
textual indices referred to in section 2. Reference [15] contains an illustration of index
generation concerning the first volume of the Índice das Gavetas.

5 The User’s Perspective of HITEX
The current prototype version of the HITEX system (encoded in SMALLTALK and C)
provides for user interface facilities concerned with

Knowledge-base house-keeping.

Access to document facsimiles from optical disk memory.

Source transcription.

Knowledge-base house-keeping comprises facilities such as

pictorial browsing of the system’s taxonomy;

search for a given RHC name;

enter a new RHC of class currently selected from the taxonomy (RHC names are
automatically generated);

instantiate features in currently selected RHC;

specialize/abstract a given RHC (i.e. push it down/up the taxonomy);

add a new class to the system’s taxonomy;

add new features to currently selected class;

query the knowledge-base (type-assisted construction of syntactically correct
queries which may be run to obtain knowledge-base reports 8).

etc.
Figures 2 and 3 depict snapshots of the prototype. The upper-left window depicts

the system’s current taxonomy. Conversation with the user is driven by pop-up menus.
8This facility, available in the XMETOO prototype, has not yet been incorporated in the SMALLTALK

prototype.

13

Figure 2: Snapshot of the HITEX prototype.

14

Figure 3: Access to image files from the HITEX prototype.

The lower window is concerned with source transcription. It may be regarded as a
simple text-editor which communicates with the knowledge-base wherever required.
Note that source files may be edited using other text editors and then up-loaded by this
HITEX editor, provided that they do not contain obscure character controls. However,
cross-reference labelling is semi-automatic using the system’s editor: leaving the cursor
in the required position, the usermay search the knowledge-base for the relevant RHCs.
A mouse click (cf. the para o texto i.e. “to text” menu entry in Figure 2) will be
enough for the selected RHCs’ names to be automatically inserted in the text-window
right after the cursor position.

Source transcription texts must obey the standard HiTeX format syntax [17]. No
syntax-direction is provided in the current prototype yet. The invoking of HITEX’s
HFP unit (see section 4) will automatically pick up the current source transcription
file, which is then passed on to the HiTeX format translator which generates LATEX
code, as well as an internal commands file which may be run to automatically update
cross-references in the HITEX knowledge-base, affecting the involved RHCs.

15

6 Related Work
Computers have often been used to help historians. Significant use has been made of
traditional databases and statistical packages, cf. e.g. references [1, 2]. However, the
facilities provided by traditional tools are still weak when handling the complexity of
information which is relevant to the historian.

The development of the HITEX software is one amongmany R&D efforts to design
more helpful tools for the historical disciplines. An approach similar to HITEX’s
in many respects is followed by the MICROCOSM system [8]. Departing from the
hypertext paradigm, MICROCOSM’s philosophy is that “hypermedia links in themselves
are a valuable store of knowledge”. Such as in HITEX, complex links are not stored
in the documents but rather separated out into a knowledge-base. MICROCOSM’s
global universe of discourse bears some relationship with HITEX’s taxonomy. The
MICROCOSM project has produced two parallel implementations, one in MS-windows
and another in the Actor object-oriented language [8].

Another system design sharing HITEX’s motivations is LACE [19]. This is another
open hypertext front end to documents, running on Sun workstations and consisting
of LATEX (the underlying medium for document creation), NeWs (a PostScript-based
windowing display system) and a (hypermedia) document library server.

Work related to HITEX has also been developed by Barroca [5] on object-oriented
database design in archæology. Her emphasis is more onmethod than on system design,
in a way similar to the HITEX’s discipline for incrementally managing historical data.

7 Conclusions and Future Research
The HITEX project at the District Archives of Braga has nearly reached the end of its
second phase by delivering a system software prototype encoded in the SMALLTALK
and C languages. An earlier prototype is also available which “animates” the system’s
standard formal specification. This prototype was straightforward to derive from the
specification but it is hard to use by the historian because of its poor user-interface.
Moreover, its performance degrades exponentially as the system’s knowledge-base
grows up. Testing this prototype over realistic data could hardly be made on a Sun
SPARC workstation (see reference [15] for a brief performance evaluation).

We believe the SMALLTALK prototype to be actually usable by the historian, since
its user-interface is much improved. However, it is hard to predict how far we can
go with this prototype wrt. knowledge-base size. The transcription of the Índice das
Gavetas 6 volume series is in progress and will provide a definitive test of the system.

The HITEX project’s third phase will start as soon as this prototype is extensively
tested and assessed by the project’s historians team. Some improvements are likely
to be needed concerning the system’s deductive power (cf. the logics of aggregation,
composition, grouping etc. proposed by Hsieh [9]) and textual index production (fully
automatic natural language generation will require an investment in computational
linguistics [21]).

16

This last phase is planned to encompass a further significant step in integrating
conventional technology in the system, e.g. relational (large) database support, access
to SPSS [13] etc. Its novelty will reside in the application of formal methods to the
implicit implementational challenge (recall the gap between specifications and imple-
mentations). We intend to “calculate” the underlying database schemata directly from
HITEX’s taxonomies, by using the SETS formal calculus [14], which guarantees cor-
rectness and compatibility. Themain problemwill probably reside in achieving a stable
taxonomy for historical knowledge, widely accepted by the historians’ community.

Acknowledgements
The authors express their thanks for the support of Dr. Maria Assunção Vasconcelos
(ADB Director) and of Mrs. Leónida Gomes (ADB staff). Special thanks go to the
project software developers Mané, Ramalho and Pedro.

The HITEX software has been developed for the IBM Microcomputer Laboratory
of ADB. Access to the network of Sun workstations of UM/INESC is gratefully
acknowledged.

The HITEX Project has been funded by the Calouste Gulbenkian Foundation under
grant Nr.E/75/88.

References
[1] Actes du IVe Congrès “History and Computing’89” L’Ordinateur et le Métier

d’Historian. CNRS, Travaux et Documents 2, Maison des Pays Ibériques 1990.

[2] Amado J.P., Cardoso J.C., Neves A.M. H ródoto 1.0 — Estação de Trabalho
Informática em História e Arquivı́stica. Fac. de Ciências Sociais e Humanas da
U.N.Lisboa, 1990 (in Portuguese).

[3] Andrade P. Relatório de Estágio, LESI, U.Minho, Braga 1991 (in preparation).

[4] Association for Computing Machinery. Special Issue on Hypertexts. ACM
Comm., 31(7), Jul. 88.

[5] Barroca L. Object-oriented Database Design in Archæology. Dept. of Computer
Science, University of Minho, 1991.

[6] Brachman R.J. On the Epistemological Status of Semantic Networks. in Asso-
ciative Networks: Representation and Use of Knowledge by Computers. N. V.
Findler, New York: Academic Press, 1979.

[7] Goldberg A., Robson D. Smalltalk’80: the Language and Its Implementation.
Addison-Wesley 1983.

17

[8] Fountain A., Hall W., Heath I., Davis H. MICROCOSM: An Open Model for
Hypermedia With Dynamic Linking. Technical Report CSTR 90-12, Dept. of
Electronics and Comp. Science, Univ. of Southampton, 1990.

[9] Hsieh D. A Logic to Unify Semantic Network Knowledge Systems with Object-
oriented Database Models. Technical Report SRI-CSL-90-15, SRI International,
Dec. 1990.

[10] Jones C.B. Systematic Software Development Using VDM. Prentice-Hall, 1986.

[11] Lamport L. LATEX— A Document Preparation System. Addison-Wesley Publish-
ing Company, 5 edition, 1986.

[12] Lange D.B. A Formal Approach to Hypertext Using Post-prototype Formal Spec-
ification. Lecture Notes in Computer Science, Vol.428, 99-121, Springer-Verlag,
1990.

[13] Norman H.N., Hull C.H., Jenkins J.G., Steinbrenner K., Bent D.H. SPSS—
Statistical Package for the Social Sciences.McGraw Hill, 2nd edition, 1975.

[14] Oliveira J.N. A Reification Calculus for Model-Oriented Software Specification.
Formal Aspects of Computing, Vol.2, 1-23, 1990, Springer-Verlag.

[15] Oliveira J.N. Projecto HiTeX — 2o¯ Relatório de Progresso. Arquivo Distrital de
Braga, Univ. do Minho, Aug. 1990 (in Portuguese).

[16] Paiva J.P. O Que é o HyperTexto. In Boletim da Assoc. Portuguesa de História e
Informática, 1, 4-9, Mar. 1989 (in Portuguese).

[17] Pereira, A.M. HiTeX — Um Sistema para Transcrição Documental em Larga
Escala. Relatório de Estágio, LESI, U.Minho, Braga 1991 (in Portuguese).

[18] Pinto A. xmetoo — metoo Estendido sobre a Máquina XLISP. Manual de
Utilização, ver.2, 1989 (in Portuguese).

[19] Rahtz S., Carr L., Hall W. New Designs for Archæological Reports. Science and
Archæology, Vol.31, 20-34, 1989.

[20] Ramalho J.C. Relatório de Estágio, LESI, U.Minho, Braga 1991 (in preparation).

[21] Ravera S.B. Information-BasedLinguistics andHead-DrivenPhrase Structure. In
Natural Language Processing, Lecture Notes in Artificial Intelligence, Vol.476,
55-101, Springer-Verlag, 1990.

[22] ROSE Consortium—E.S.F. The ROSE Subproject.Presentation at the Workshop
on Reuse of Software Development Components, Joint Organization CEC-ESF,
Berlin, 25-26 October 1989.

[23] Tare R.S. UNIX Utilities. McGraw-Hill International Editions, 1986.

18

[24] Wolczko M. Semantics of Object-oriented Languages. Tech. Report UMCS-88-
6-1, Univ. of Manchester, 1988.

19

