
PF transform: where everything becomes a
relation

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM, 2007 (last update: Oct-2014)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Motivation

So far, we have been using predicate logic in formalizing
subtleties and complex aspects of real-life problems.

Question: Is this formalism the best for formal modelling?

Historically, it was not the first to be
proposed:

• Augustus de Morgan (1806-71) —
recall de Morgan laws (12,13) —
proposed a Logic of Relations as
early as 1867.

• Predicate logic appeared later.

Perhaps de Morgan was right in the first place: in real life,
“everything is a relation”...



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Everything is a relation

... as diagram

shows. (Wikipedia: Pride and Prejudice, by Jane Austin, 1813.)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Arrow notation for relations

The picture is a collection of relations — vulg. a semantic
network — elsewhere known as a (binary) relational system.

However, in spite of
the use of arrows in
the picture (aside) not
many people would
write

mother of : People → People

as the type of relation
mother of .



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Pairs

Consider assertions

0 ≤ π

Catherine isMotherOf Anne

3 = (1+) 2

They are statements of fact concerning various kinds of object —
real numbers, people, natural numbers, etc

They involve two such objects, that is, pairs

(0, π)

(Catherine, Anne)

(3, 2)

respectively.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Sets of pairs

So, we might have written instead:

(0, π) ∈ ≤
(Catherine, Anne) ∈ isMotherOf

(3, 2) ∈ (1+)

What are (≤), isMotherOf , (1+)?

• they can be regarded as sets of pairs

• better, they should be regarded as binary relations.

Therefore,

• orders — eg. (≤) — are special cases of relations

• functions — eg. succ 4 (1+) — are special cases of
relations.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation. The usual infix notation used in natural
language — eg. Catherine isMotherOf Anne — and in

maths — eg. 0 ≤ π — extends to arbitrary B A
Roo :

we write

b R a

to denote that (b, a) ∈ R.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Binary Relations

Binary relations are typed:

Arrow notation. Arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation. The usual infix notation used in natural
language — eg. Catherine isMotherOf Anne — and in

maths — eg. 0 ≤ π — extends to arbitrary B A
Roo :

we write

b R a

to denote that (b, a) ∈ R.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Binary relations are matrices

Binary relations can be regarded as Boolean matrices, eg.

Relation R: Matrix M:

In this case A = B = {1..11}. Relations A A
Roo over a single

type are also referred to as (directed) graphs.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Alloy: where “everything is a relation”

Declaring binary

relation A
R // B

is Alloy (aside).

Alloy is a tool
designed at MIT
(http://alloy.
mit.edu/alloy)

We shall be using
Alloy later in this
course.

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy


Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Functions are relations

Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a (52)

Therefore, we generalize

B A
foo

b = f a
to B A

Roo

b R a



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercise

Taken from Propositiones ad acuendos iuuenes (“Problems
to Sharpen the Young”), by abbot Alcuin of York († 804):

XVIII. Propositio de homine et capra et lvpo.
Homo quidam debebat ultra fluuium transferre lupum,
capram, et fasciculum cauli. Et non potuit aliam nauem
inuenire, nisi quae duos tantum ex ipsis ferre ualebat.
Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis
illaesis transire potuit?



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercise

XVIII. Fox, goose and bag of beans puzzle. A
farmer goes to market and purchases a fox, a goose, and
a bag of beans. On his way home, the farmer comes to a
river bank and hires a boat. But in crossing the river by
boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans.
(If left alone, the fox would eat the goose, and the goose
would eat the beans.) Can the farmer carry himself and
his purchases to the far bank of the river, leaving each
purchase intact?

Identify the main types and relations involved in the puzzle and
draw them in a diagram.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Data types:

Being = {Farmer ,Fox ,Goose,Beans} (53)

Bank = {Left,Right} (54)

Relations:

Being
Eats // Being

where
��

Bank
cross // Bank

(55)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Specification source written in Alloy:



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Diagram of specification (model) given by Alloy:



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Diagram of instance of the model given by Alloy:

Silly instance, why? — specification too loose...



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Composition

Recall function composition

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(56)

We extend f · g to R · S in the obvious way:

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (57)

Note how this rule removes ∃ when applied from right to left.

Notation R · S is said to be point-free (no variables, or points)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Check generalization

Back to functions, (57) becomes

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c (52) }

〈∃ a :: b f a ∧ a = g c〉

≡ { ∃-trading ; b f a means b = f a (52) }

〈∃ a : a = g c : b = f a〉

≡ { ∃-one point rule (15) }

b = f (g c)

So, we easily recover what we had before (56).



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Inclusion generalizes equality

• Equality on functions

f = g ≡ 〈∀ a : a ∈ A : f a =B g a〉 (58)

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a : b R a : b S a〉 (59)

(read R ⊆ S as “R is at most S”)

• For R ⊆ S to hold both R and S need to be of the same

type, say B A
R,Soo

• R ⊆ S is a partial order (reflexive, transitive and
antisymmetric); therefore:

R ⊆ S ∧ S ⊆ R ≡ R = S (60)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
>oo , which is such that, for all b, a,

b>a ≡ True

Every type A Aoo has the

• identity relation A A
idoo which is nothing but function

id a 4 a (61)

Clearly, for every R,

⊥ ⊆ R ⊆ > (62)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 22: Let s S n mean: “student s is assigned number n”.
Using (57) and (59), check that assertion

S · ≥ ⊆ > · S (63)

means that numbers are assigned sequentially.

�

Exercise 23: Resort to PF-transform rule (57) and to the Eindhoven
quantifier calculus to show that

R · id = R = id · R (64)

R · ⊥ = ⊥ = ⊥ · R (65)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (66)

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Converses

Every relation B A
Roo has a converse B

R◦ // A which is
such that, for all a, b,

a(R◦)b ≡ b R a (67)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (68)

and with itself:

(R◦)◦ = R (69)

Converse captures the passive voice: Catherine eats the apple —
R = (eats) — the same as the apple is eaten by Catherine —
R◦ = (is eaten by).



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful) PF-transform property:

(f b)R(g a) ≡ b(f ◦ · R · g)a (70)

cf. diagram:
C D

Roo

B

f

OO

A

g

OO

f ◦·R·g
oo

Therefore (tell why):

b(f ◦ · g)a ≡ f b = g a (71)

Let us see an example of using these rules.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

PF-transform at work

Transforming a well-known PW-formula:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x : (f y) = (f x) : y = x〉

≡ { (71) for f = g }

〈∀ y , x : y(f ◦ · f )x : y = x〉

≡ { (70) for R = f = g = id }

〈∀ y , x : y(f ◦ · f )x : y(id)x〉

≡ { go pointfree (59) i.e. drop y , x }

f ◦ · f ⊆ id



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

The other way round

Now check what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (59) }

〈∀ y , x : y(id)x : y(f · f ◦)x〉

≡ { identity relation ; composition (57) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-one point (14) ; converse (67) }

〈∀ x :: 〈∃ z :: x f z ∧ x f z〉〉

≡ { trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉 (check as homework);

• Say R is coreflexive (or diagonal) iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
kerRoo B B

img Roo

kerR
def
= R◦ · R img R

def
= R · R◦



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Alloy: checking for coreflexive relations



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Example: kernels of functions
Meaning of ker f :

a′(ker f )a

≡ { substitution }

a′(f ◦ · f )a

≡ { rule (71) }

f a′ = f a

In words: a′(ker f )a means a′ and a “have the same f -image”

Exercise 24: Let K be a nonempty data domain, k ∈ K and k be the
“everywhere k” function:

k : A // K
k a 4 k

(72)

Compute which relations are defined by the following PF-expressions:

ker k , b · c◦ , img k (73)

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Binary relation taxonomy

Topmost criteria:

binary relation

VVVVVVVVVVVVVVVVVV

KKKKKKKKKK

ssssssssss

iiiiiiiiiiiiiiiiii

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R
img R surjective R simple R

(74)

Facts:

ker (R◦) = img R (75)

img (R◦) = kerR (76)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Binary relation taxonomy

The whole picture:

binary relation

ZZZZZZZZZZZZZZZ
RRR

mmm
ddddddddddddddddd

injective
QQQ

entire
mmm QQQQ

simple
PPPllll

surjective
ooo

representation
QQQ

function
RRR

mmm abstraction
nnn

injection
QQQ

surjection
lll

bijection

(77)

Exercise 25: Resort to (75,76) and (74) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercise

Exercise 26: Prove the following fact

A function f is a bijection iff its converse f ◦ is a function (78)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker (f ◦) ∧ img (f ◦) ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Exercise 27: Check which of the following properties,

simple , entire , injective ,
surjective , reflexive ,
coreflexive

hold for relation Eats (55) aside

Fox Goose Beans

Fox 0 1 0
Goose 0 0 1
Beans 0 0 0

(“food chain” Fox > Goose > Beans).

�

Exercise 28: Let relation Bank
cross // Bank (55) be defined by:

Left cross Right

Right cross Left

It therefore is a bijection. Why?

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Exercise 29: Relation where : Being → Bank should obey the following
constraints:

• everyone is somewhere in a bank

• no one can be in both banks at the same time.

Encode such constraints in relational terms. Conclude that where should
be a function.

�

Exercise 30: There are only two constant functions in the type
Being // Bank of where. Identify them and explain the role they
play in the puzzle.

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Adding detail to the
previous Alloy
model (aside)

(More about Alloy
syntax and semantics
later.)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Functions in one slide

Recapitulating: a function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by

lowercase characters (eg. f , g , φ) or identifiers starting with lowercase

characters, and function application will be denoted by juxtaposition, eg.

f a instead of f (a).



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Functions, relationally

(The following properties of any function f are extremely useful.)

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (79)

R · f ◦ ⊆ S ≡ R ⊆ S · f (80)

Equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (81)

Rule (81) follows from (79,80) by “cyclic inclusion” (next slide).



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Proof of functional equality (81)

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f ◦ · g
≡ { shunting on g }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f

�

Thus f = g ≡ f ⊆ g ∧ g ⊆ f ≡ f ⊆ g (same for g ⊆ f ).



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 31: Infer id ⊆ ker f (f is total) and img f ⊆ id (f is simple)
from any of the shunting rules (79) or (80).

�

Exercise 32: Check the meaning of shunting rules (79) and (80) by
converting them to pointwise (Eindhoven) notation.

Show that they indeed hold by resorting to the rules of the Eindhoven
calculus.

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 33: As generalization of exercise 22, draw the most general
type diagram which accommodates relational assertion:

M · R◦ ⊆ > ·M (82)

�

Exercise 34: Type the following relational assertions

M · N◦ ⊆ ⊥ (83)

M · N◦ ⊆ id (84)

M◦ · > · N ⊆ > (85)

and check their pointwise meaning.

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Relation taxonomy — orders

Orders are endo-relations A A
Roo classified as

(Criteria definitions: next slide)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Orders and their taxonomy

Besides

reflexive: iff id ⊆ R (86)

coreflexive: iff R ⊆ id (87)

an order (or endo-relation) A A
Roo can be

transitive: iff R · R ⊆ R (88)

anti-symmetric: iff R ∩ R◦ ⊆ id (89)

symmetric: iff R ⊆ R◦(≡ R = R◦) (90)

connected: iff R ∪ R◦ = > (91)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Orders and their taxonomy

Therefore:

• Preorders are reflexive and transitive orders.
Example: (age y) ≤ (age x)

• Partial orders are anti-symmetric preorders
Example: y ⊆ x

• Linear orders are connected partial orders
Example: y ≤ x

• Equivalences are symmetric preorders
Example: elems y = elems x (kernels of functions are
equivalences )

• Pers are partial equivalences
Example: y IsBrotherOf x



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 35: Check which of the following properties,

transitive , symmetric , anti-symmetric , connected

hold for the relation Eats of exercise 27.

�

Exercise 36: Suppose that finite lists are represented by simple

relations of type A IN
Loo , that is, as mappings from indices (IN) to

list elements (A). Assuming that A is equipped with a total order <A,
show that assertion

L ·< · L◦ ⊆ <A (92)

specifies that L is a strictly ordered list.

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 37: Expand all criteria in the previous slides to pointwise
notation.

�

Exercise 38: A relation R is said to be co-transitive iff the following
holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (93)

Compute the PF-transform of the formula above. Find a relation (eg.
over numbers) which is co-transitive and another which is not.

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Meet and join

Meet (intersection) and join (union) lift pointwise conjunction and
disjunction, respectively,

b (R ∩ S) a ≡ b R a ∧ b S a (94)

b (R ∪ S) a ≡ b R a ∨ b S a (95)

for R, S of the same type. Their meaning is captured by the
following universal properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (96)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (97)

NB: recall the notions of greatest lower bound and least upper
bound, respectively.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

In summary

Type B Aoo forms a lattice:

> “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S

DDDDDDDDD

zzzzzzzzz
meet, glb (“greatest lower bound”)

⊥ “bottom”



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Back to our running example, we specify:

Being at the same bank:

SameBank = ker where

Risk of somebody eating somebody else:

CanEat = SameBank ∩ Eats

“Starving” ensured by Farmer ’s presence at the same
bank:

CanEat ⊆ SameBank · Farmer (98)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

By (79), “starving” invariant (98) converts to:

where · CanEat ⊆ where · Farmer

In this version, invariant (98) can be depicted as a diagram:

Being

where

��

Being
CanEatoo

Farmer

��
⊆

Bank Being
where

oo

(99)

which “reads” in a nice way:

where (somebody) CanEat (somebody else) (that’s)

where (the) Farmer (is).



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

‘Starving’ invariant
in Alloy (aside)

(Again we stress:
missing details about
Alloy syntax and
semantics will be
given later.)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

Carefully observe
instance of
‘starving’ invariant:

• SameBank is an
equivalence —
exactly the
kernel of where

• Eats is simple
but not
transitive

• cross is a
bijection

• CanEat is empty

• etc



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Propositio de homine et capra et lvpo

In this other
instance of
‘starving’
invariant:

• CanEat is
not empty

(Fox can
eat Goose!)

• but Farmer
is on the
same bank
:-)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Why is SameBank an equivalence?

Recall that SameBank = kerwhere. Then:

Exercise 39: Knowing that property

f · f ◦ · f = f (100)

holds for every function f , prove that ker f is an equivalence relation.

�

NB: Equivalence relations of this kind are captured in natural
language by the textual pattern

a(ker f )b the same as “a and b have the same f ”

which is very common in requirements.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Distributivity

As we will prove later, composition distributes over union

R · (S ∪ T ) = (R · S) ∪ (R · T ) (101)

(S ∪ T ) · R = (S · R) ∪ (T · R) (102)

while distributivity over intersection is side-conditioned:

(S ∩ Q) · R = (S · R) ∩ (Q · R) ⇐


Q · img R ⊆ Q

∨
S · img R ⊆ S

(103)

R · (Q ∩ S) = (R · Q) ∩ (R · S) ⇐


(ker R) · Q ⊆ Q

∨
(ker R) · S ⊆ S

(104)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Monotonicity

All relational combinators seen so far are ⊆-monotonic, namely:

R ⊆ S ⇒ R◦ ⊆ S◦ (105)

R ⊆ S ∧ U ⊆ V ⇒ R · U ⊆ S · V (106)

R ⊆ S ∧ U ⊆ V ⇒ R ∩ U ⊆ S ∩ V (107)

R ⊆ S ∧ U ⊆ V ⇒ R ∪ U ⊆ S ∪ V (108)

etc hold.

Exercise 40: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises (monotonicity)

Exercise 41: Check which of the following hold:

• If relations R and S are simple, then so is R ∩ S

• If relations R and S are injective, then so is R ∪ S

• If relations R and S are entire, then so is R ∩ S

�

Exercise 42: Prove that relational composition preserves all relational
classes in the taxonomy of (77).

�

Exercise 43: Show that the following conditional fusion law holds:

〈R,S〉 · T = 〈R · T ,S · T 〉 ⇐ R · (img T ) ⊆ R ∨ S · (img T ) ⊆ S

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Back to relational equality

Although relational equality could be established in a pointwise
fashion, R = S ≡ 〈∀ b, a :: b R a ≡ b S a〉, we will prefer the
pointfree style, in basically two variants:

• Cyclic inclusion (“ping-pong”) rule:

R = S ≡ R ⊆ S ∧ S ⊆ R (109)

• Indirect equality rules:

R = S ≡ 〈∀ X :: (X ⊆ R ≡ X ⊆ S)〉 (110)

≡ 〈∀ X :: (R ⊆ X ≡ S ⊆ X )〉 (111)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Example of indirect proof

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (96) twice }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T )

≡ { ∩-universal (96) twice }

X ⊆ R ∩ (S ∩ T )

:: { indirection (110) }

(R ∩ S) ∩ T = R ∩ (S ∩ T ) (112)

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

All (data structures) in one (PF notation)

Pairing

A A× B
π1oo π2 // B

C

R

ffMMMMMMMMMMMMM
〈R,S〉

OO

S

88qqqqqqqqqqqqq

(113)

where π1(a, b) = a, π2(a, b) = b and

ψ PF ψ

a R c ∧ b S c (a, b)〈R,S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

(114)

Product: R × S = 〈R · π1,S · π2〉



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Relational pairing example (in matrix layout)

Given

where◦ =

Left Right

Fox 1 0
Goose 0 1
Beans 0 1

and cross =
Left Right

Left 0 1
Right 1 0

pairing them up evaluates to:

〈where◦, cross〉 =

Left Right

(Fox , Left) 0 0
(Fox , Right) 1 0

(Goose, Left) 0 1
(Goose, Right) 0 0
(Beans, Left) 0 1

(Beans, Right) 0 0



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 44: Show that

(b, c)〈R,S〉a ≡ b R a ∧ c S a

PF-transforms to

〈R,S〉 = π◦1 · R ∩ π◦2 · S (115)
�

Exercise 45: Infer universal property

π1 · X ⊆ R ∧ π2 · X ⊆ S ≡ X ⊆ 〈R,S〉 (116)

from (115) via indirect equality (110). What can you say about (116) in
case X , R and S are functions?

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Modeling a toy IS

Data model of a toy loan library captured by diagram

ISBN

M

�

ISBN × UID

R

�

π1oo π2 // UID

N

�
⊇ ⊆

Title ×
Publisher >

// Date
Name×
Address×
Phone

>
oo

(117)

where

• M — records books on loan, identified by ISBN;

• N — records library users (identified by user id’s in UID);

(both simple) and

• R — records loan dates.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Modeling a toy IS

The two squares in the diagram impose bounds on R:

• Non-existing books cannot be loaned (left square);

• Only known users can take books home (right square).

(NB: in the database terminology these are known as integrity
constraints.)

Exercise 46: Add variables to both squares in (117) so that the same
conditions are expressed pointwise. Then show that the conjunction of
the two squares means the same as assertion

R◦ ⊆ 〈M◦ · >,N◦ · >〉 (118)

and draw this in a diagram.

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Modeling a toy IS

Exercise 47: Consider implementing M, R and N as files in a relational
database. For this, think of operations on the database such as, for
example, that which records new loans (K ):

borrow(K , (M,R,N)) 4 (M,R ∪ K ,N) (119)

It can be checked that the pre-condition

pre-borrow(K , (M,R,N)) 4 R · K◦ ⊆ id

is necessary for maintaining (117) (why?) but it is not enough. Calculate
— for a rectangle in (117) of your choice — the corresponding clause to
be added to pre-borrow .

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Modeling a toy IS

Exercise 48: The operations which buy new books

buy(X , (M,R,N)) 4 (M ∪ X ,R,N) (120)

and register new users

register(Y , (M,R,N)) 4 (M,R,N ∪ Y ) (121)

don’t need any pre-conditions. Why? (Hint: compute their WP.)

�

NB: see annex on proofs by ⊆-monotonicity for a strategy
generalizing the exercise above.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 49: Unconditional distribution laws

(P ∩ Q) · S = (P · S) ∩ (Q · S)

R · (P ∩ Q) = (R · P) ∩ (R · Q)

will hold provide one of R or S is simple and the other injective. Tell
which (justifying).

�

Exercise 50: Derive from

〈R,S〉◦ · 〈X ,Y 〉 = (R◦ · X ) ∩ (S◦ · Y ) (122)

the following properties:

ker 〈R,S〉 = ker R ∩ kerS (123)

〈R, id〉 is always injective, for whatever R

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 51: Recalling (78), prove that

swap 4 〈π2, π1〉 (124)

is a bijection. (Assume property (R ∩ S)◦ = R◦ ∩ S◦.)

�

Exercise 52: Let ≤ be a preorder and f be a function taking values on
the carrier set of ≤.

1. Define the pointwise version of relation v 4 f ◦ · ≤ · f

2. Show that v is a preorder.

3. Show that v is not (in general) a total order even in the case ≤ is
so.

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Lexicographic orderings

Let R ⇒ S be the relational operator

b(R ⇒ S)a ≡ (b R a)⇒ (b S a) (125)

It can be shown that universal property

R ∩ X ⊆ Y ≡ X ⊆ (R ⇒ Y ) (126)

holds.

We define the lexicographic chaining of two relations R and S as
follows:

R ; S 4 R ∩ (R◦ ⇒ S) (127)



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercise

Exercise 53: Let students in a course have two numeric marks,

IN Student
mark1oo mark2 // IN

and define the preorders:

≤mark1
4 mark1◦ · ≤ ·mark1

≤mark2
4 mark2◦ · ≤ ·mark2

Spell out in pointwise notation the meaning of lexicographic ordering

≤mark1 ;≤mark2

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Exercises

Exercise 54: (a) From (126) infer:

⊥⇒ R = > (128)

R ⇒> = > (129)

(b) via indirect equality over (127) show that

> ; S = S (130)

holds for any S and that, for R symmetric, we have:

R ; R = R (131)

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Last but not least: sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))SSSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err ]

��

String
i2oo

Err
uukkkkkkkkkkkkkkkkkk

X

(132)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

CDually: R + S = [i1 · R , i2 · S ]



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Sums

From [R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) above one easily infers, by
indirect equality,

[R ,S ] ⊆ X ≡ R ⊆ X · i1 ∧ S ⊆ X · i2

(check this).

It turns out that inclusion can be strengthened to equality, and
therefore relational coproducts have exactly the same properties
as functional ones, stemming from the universal property:

[R ,S ] = X ≡ R = X · i1 ∧ S = X · i2 (133)

Thus [i1 , i2] = id — solve (133) for R and S when X = id , etc etc.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Divide and conquer

The property for sums (coproducts) corresponding to (122) for
products is:

[R ,S ] · [T ,U]◦ = (R · T ◦) ∪ (S · U◦) (134)

NB: This divide-and-conquer rule is essential to parallelizing
relation composition by block decomposition.

Exercise 55: Show that:

img [R ,S ] = img R ∪ img S (135)

img i1 ∪ img i2 = id (136)

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

+ meets ×

Exercise 56: Start by proving the fusion law

〈R,S〉 · f = 〈R · f ,S · f 〉 (137)

where f is a function. Then, relying on both (133) and (137) infer the
exchange law,

[〈R,S〉 , 〈T ,V 〉] = 〈[R ,T ], [S ,V ]〉 (138)

holding for all relations as in diagram

A
i1 //

R

�� S
))RRRRRRRRRRRRRRRRRR A + B B

T

uullllllllllllllllll

V

��

i2oo

C C × Dπ1

oo
π2

// D

�



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Annex

Rules of the PF-transform seen so far:

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
(f b) R (g a) b(f ◦ · R · g)a
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
b R a ∧ c S a (b, c)〈R,S〉a

x = i1 a ∧ c R a ∨ x = i2 b ∧ c S b c[R ,S ]x
b R a ∧ d S c (b, d)(R × S)(a, c)

True b > a
False b ⊥ a



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Annex — proofs by ⊆-transitivity

Wanting to prove R ⊆ S , the following rules may help in doing so by
relying on a “mid-point” M (analogy with interval arithmetics):

• Rule A: lowering the upper side

R ⊆ S

⇐ { M ⊆ S is known ; transitivity of ⊆ }

R ⊆ M

and then proceed with R ⊆ M.

• Rule B: raising the lower side

R ⊆ S

⇐ { R ⊆ M is known; transitivity of ⊆ }

M ⊆ S

and then proceed with M ⊆ S .



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Example

Proof of shunting rule (79):

R ⊆ f ◦ · S
⇐ { id ⊆ f ◦ · f ; raising the lower-side }

f ◦ · f · R ⊆ f ◦ · S
⇐ { monotonicity of (f ◦·) }

f · R ⊆ S

⇐ { f · f ◦ ⊆ id ; lowering the upper-side }

f · R ⊆ f · f ◦ · S
⇐ { monotonicity of (f ·) }

R ⊆ f ◦ · S

Thus the equivalence in (79) is established by circular implication.



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Annex

Conversion of simplicity (’left uniqueness’) of functions,

img f ⊆ id (139)

— recall slide 36 — into pointwise notation (Eindhoven quantifier
notation). We calculate:

img f ⊆ id

≡ { (59) etc }

〈∀ b, a : b(f · f ◦)a : b id a〉

≡ { composition (57) ; converse (67) ; id a = a }

〈∀ b, a : 〈∃ c : b f c : a f c〉 : b = a〉



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Annex

≡ { prepare for splitting (22) via nesting (16) }

〈∀ b, a : True ∧ 〈∃ c : b f c : a f c〉 : b = a〉

≡ { nesting (16) }

〈∀ b : True : 〈∀ a : 〈∃ c : b f c : a f c〉 : b = a〉〉

≡ { splitting (22) }

〈∀ b : True : 〈∀ c : b f c : 〈∀ a : a f c : b = a〉〉〉

≡ { (un)nesting (16) }

〈∀ b, c : b f c : 〈∀ a : a f c : b = a〉〉

≡ { (un)nesting (16) }

〈∀ b, c , a : b f c ∧ a f c : b = a〉



Motivation Binary Relations Composition Inclusion Converse All in one Annex Background

Final exercises

Exercise 57: Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (140)

�


	Motivation
	Binary Relations
	Composition
	Inclusion
	Converse
	All in one
	Annex
	Background

