
First Steps in Pointfree Functional Dependency Theory
(DRAFT OF MAY 14, 2005)

J.N. Oliveira

Dep. Informática, Universidade do Minho, Campus de Gualtar, 4700-320 Braga, Portugal,
jno@di.uminho.pt

Abstract. When software designers refer to the relational calculus, what they
usually mean is the set-theoretic kernel of relational database design “à la Codd”
and not the calculus of binary relations which was initiated by De Morgan in the
1860s.
Contrary to the intuition that a binary relation is just a particular case of � -ary
relation, this paper shows the effectiveness of the former in “explaining” and
reasoning about the latter. The theory of functional dependencies, which is central
to such database design techniques, is addressed in a pointfree style instead of
reasoning in the standard set-theoretic model “à la Codd”.
It turns out that the theory becomes more general and considerably simpler. Ele-
gant expressions replace lengthy formulæ and easy-to-follow calculations replace
pointwise proofs with lots of “ ����� ” notation, case analyses and natural language
explanations for “obvious” steps.

1 Introduction

In standard relational data processing, objects are recorded by assigning values to their
observable properties or attributes. A database file is a collection of attribute assign-
ments, one per object. Displayed in a bi-dimensional tabular format, each object corre-
sponds to a tuple of values, or row — eg. row 10 in some Excel spreadsheet — and each
column lists the values of a particular attribute in all tuples (eg. row ”A” in the same
spreadsheet). All values of a particular attribute (say

�
) are of the same type (say ���).

For � such attributes, a relational database file 	 can be regarded as a set of � -tuples,
that is, 	�
����������������� . A relational database is a collection of several such � -ary
relations.

When software designers refer to the relational calculus, by default what is under-
stood is the calculus of � -ary relations studied in logics and database theory, and not
the calculus of binary relations which was initiated by De Morgan in the 1860s [15] an
eventually became the core of the algebra of programming [1, 4, 3].

According to [11], it was Quine, in his 1932 Ph.D. dissertation, who showed how
to develop the theory of � -ary relations for all � simultaneously, by defining ordered � -
tuples in terms of the ordered pair. (Norbert Wiener is apparently the first mathematician
to publicly identify, in the 1910s, � -ary relations with subsets of � -tuples.) Since the
1970s, the information system community is indebted to Codd for his pioneering work
on the foundations of the relational data model theory [5].

2 J.N. Oliveira

Codd discovered and publicized procedures for constructing a set of simple � -ary
relations which can support a set of given data and constructed an extension of the cal-
culus of binary relations capable of handling most typical data retrieval problems. Since
then, relational database theory has been thoroughly studied, and several textbooks are
available on the topic, namely [12], [17] and [6].

The common understanding is that binary relations are just � -ary relations, for
��� � , and so there seems to be little point in explaining � -ary relational theory in
terms of binary relations. As a matter of fact, when Codd talks about the binary relation
representation of an � -ary relation in [5], one has the feeling that there are more dis-
advantages than advantages in such a representation. Contrary to these intuitions, this
paper aims at showing that such a strategy makes sense, at least in functional depen-
dency theory, the subset of database theory actually addressed in this paper. (Outside
the database context, functional dependencies have been used to solve ambiguities in
multiple parameter type classes in the Haskell type system [10].)

Classical pointwise relational database theory is full of lengthy formulæ, and proofs
with lots of “ ����� ” notation, case analyses and English explanations for “obvious” steps.
We show that the adoption of the (pointfree) binary relation calculus is beneficial in
several respects. First, the fact that pointfree notation abstracts from “points” or vari-
ables makes the reasoning more compact and effective. Second, proofs are performed
by easy-to-follow calculations. Third, one is able to generalize the original theory, as
will happen with our generalization of attributes to arbitrary (suitably typed) functions
in functional dependencies and multi-valued dependencies.

Paper structure. This paper is structured as follows. First we introduce the standard
notion of a functional dependency (FD) and revise the pointfree theory of functions.
Both worlds are combined in section 5, where FDs are presented in the pointfree style.
Sections 6 and 7 generalize (pointfree) FD-theory by moving from attribute projections
to arbitrary functions. Sections 8 to 10 provide calculational proofs for the standard FD-
theory, inc. the Armstrong-axioms and the theorem of lossless decomposition. Multi-
valued dependencies are the subject of section 11. The remainder of the paper presents
our conclusions and prospect for future work and (in the appendices) some auxiliary
results.

2 What is a functional dependency?

In an � -ary relation, attribute names normally replace natural numbers in the identifi-
cation of attributes. The enumeration of all attribute names in a database relation, for
instance

� ��� PILOT � FLIGHT � DATE � DEPARTS � (1)

concerning an airline scheduling system 1, is a finite set called the relation’s scheme.
This scheme captures the syntax of the data. What about semantics?

1 This example is taken from [12].

First Steps in Pointfree Functional Dependency Theory 3

Even non-experts in airline scheduling will accept the following “business” rule: A
single pilot is assigned to a given flight, on a given date. This restriction is an example
of a so-called functional dependency (FD) among attributes, which can be stated more
formally as follows: attribute PILOT is functionally dependent on FLIGHT and DATE.
In the standard practice, this will be abbreviated by writing

FLIGHT DATE � PILOT

which has the following, alternative reading: FLIGHT and DATE functionally determine
PILOT. Another FD in this example is

FLIGHT � DEPARTS (2)

since a given flight always departs at the same time.
The addition of functional dependencies to a relational schema is comparable to the

addition of axioms to an algebraic signature (eg. axioms such as ���������	��
����� ��
��� �

 adding semantics to the syntax of a stack datatype involving operators �	��
� and
�����). How do we reason about such functional dependencies? Can we simplify a set of
dependencies by removing the redundant ones, if any? How do we design a concrete
database implementation from a relational schema and its dependencies?

At the heart of relational database theory we find functional dependency (FD) the-
ory, which is axiomatic in nature and stems from the definition of FD-satisfiability
which follows.

Definition 1. Given subsets � ���
 � of the relation scheme
�

of a relation 	 , this
relation is said to satisfy functional dependency ����� iff all pairs of tuples � ������� 	
which “agree” on � also “agree” on � , that is,

��� � ��� �! � ��� � � 	 �#" �%$ �&�'�(" �	$*)+�#" �,$ �-�'�." �,$0/ (3)

(Notation �#" �	$ meaning “the values in � of the attributes in � ”, will be scrutinized in the
sequel.) 1
The closure of a set of FDs is based on the so-called Armstrong axioms [12] which can
be used as inference rules for FDs. Equivalent axioms have been found which make FD
checking more efficient.

Why has this theory “gone this way”? Perhaps one reason lays in the fact that for-
mula (3), with its logical implication inside a “two-dimensional” universal quantifica-
tion, is not particularly agile. Designs involving several FDs at the same time can be
hard to reason about.

This calls for a simplification of this very basis of FD-theory. The main purpose
of this paper is to present an alternative, more general setting for FD-theory based on
the pointfree binary relation calculus. It turns out that the theory becomes more general
and considerably simpler, thanks to the calculus of simplicity and coreflexivity. (Details
about this terminology will be presented shortly.)

We will start by reviewing some basic principles. Note that the qualifier “functional”
in “functional dependency” stems from “function”, of course. So our first effort goes
into making sure we have a clear idea of “what a function is”.

4 J.N. Oliveira

3 What is a function? — the Leibniz view

A function � is a special case of binary relation satisfying two main properties:

– “Left” Uniqueness
� � ��� � ��� �) � � � � (4)

– Leibniz principle

� � � ��)�� � ��� � � (5)

It can be shown (see an exercise later on) that this is the same as saying that functions
are simple and entire relations, respectively:

– � is simple:

img ��
 ��� (6)

– � is entire:

�	�
 ker � (7)

Formulæ (6) and (7) are examples of pointfree notation in which points — eg. � ����� � � � � �
in (4,5) — disappear. (For instance, instead of writing � � �	� , we identify the identity
relation

���
which relates � and � � when they are the same.) In order to parse such

compressed formulæ we need to understand the meaning of expressions such as ker �
(read: “kernel of � ”) and img � (read: “image of �),

ker 	 � 	�
��	 (8)

img 	 � 	���	�
 (9)

whose definitions involve two basic relational combinators: converse (
) and com-
position (�� �). The former converts a relation 	 into 	
 such that �*� 	
 � � holds iff� 	 � holds. (We write

� 	 � to mean that pair
� � ��� / is in 	 .) The latter (composition) is

defined in the usual way:
� � 	�� � ��� holds wherever there exist one or more mediating

�!� � such that
� 	 ��� � � � , where � �

�
oo and � �

�
oo are two binary rela-

tions on datatypes � (source) and � (target) and � (source) and � (target), respectively.
Converse commutes with composition in a contravariant way,

� 	�� � ��
 � �
���	�
 (10)

and so image and converse commute via converse:

ker � 	�
� � img 	 (11)

img � 	�
� � ker 	 (12)

As in (6) and (7), the underlying partial order on relations is written 	�
 � , meaning

	
 ��� ��� � ��� � 	 �) � � � / (13)

First Steps in Pointfree Functional Dependency Theory 5

for all � and
�

suitably typed.
The simple and entire classes of relation mentioned above are part of a wider binary

relation taxonomy,

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)

whose four top-level classification criteria are captured by the following table,

Reflexive Coreflexive

ker � entire � injective �
img � surjective � simple �

(14)

where 	 is said to be reflexive iff it is at least the identity (
�	�
) and it is said to be

coreflexive (or a partial identity) iff it is at most the identity, that is, if 	
 �	� holds.
Coreflexive relations are fragments of the identity relation which can be used to

model predicates or sets. The meaning of a predicate � is the coreflexive relation " " �%$ $
such that

� " " �%$ $ � � � � � � � � � ��� � . This is the relation that maps every � which
satisfies � (and only such �) onto itself. The meaning of a set

�
 � is the meaning of
its characteristic predicate " " �	� � �!� � $ $, that is,

� " " � $ $�� � � � � � � � �!� � (15)

Wherever clear from the context, we will drop brackets " "0$ $.
Before we embark on converting (3) into pointfree notation, let us see an alternative

view of functions better suited for calculation.

4 What is a function? — the “Galois view”

Shunting rules. To say that � is a function is equivalent to stating any of the two Galois
connections which follow:

� ��	
 � � 	
 �
 � � (16)

	�� �
�
 � � 	
 � � � (17)

6 J.N. Oliveira

As a warming-up exercise, let us check one of these, say (16). (The whole picture
can be found in eg. [8, 4, 3].) That � entire and simple implies equivalence (16) can be
proved by mutual implication:

� ��	�
 �

) � monotonicity of composition �
�
 � � ��	
 �
 � �

) � � is entire (7) �
	�
��
 � �

) � monotonicity of composition �
� ��	�
�� � �
 � �

) � � is simple (6) �
� ��	�
 �

That (16) implies that � is entire and simple can be checked by instantiating 	 � � ���� � � (left-cancellation) or
� � 	 � ��� � �
 (right-cancellation), respectively.

Function converses enjoy a number of properties of which the following is singled
out because of its rôle in pointwise-pointfree conversion [2] :

� � �
���	����%�'� � � � � � 	 ��� � � (18)

The use of (18) to convert (4, 5) into (6, 7), respectively, is left as an exercise.

5 FD-satisfiability in pointfree style

Attributes are functions. Let 	 be a � -ary relation with schema
�

, � be a tuple in 	 and
� be an attribute in

�
. Notation �#" � $ was adopted in (3) to mean “the value of attribute �

in � ”. This indicates that � can be identified with the projection function which extracts
the value which � exhibits as property � . Since this extends to a collection � of attributes,
we can convert (3) into

� � � ��� � � ��� � � 	 � � ��� � � � �'� �) � � ��� � � � �'� � /
Assuming the universal quantification implicit, we reason:

� � 	 � �'� � 	 � � � ��� � � � �'���) � � ��� � � � �'� �
� � (18) twice, for 	 � �	� �
� � 	 � �'� � 	 � �#� �
 �#� � �'�)+�#� �
 � � � �'�

� � (15) twice �
�#" " 	 $ $ � � � �&� � �'�." " 	 $ $ � � � �'� �&�*� � �#� �
 �#� � �'�)+�#� �
 � � � �'�

First Steps in Pointfree Functional Dependency Theory 7

� � � is commutative; substitution of equals for equals; converse �
�#" " 	 $ $ � � � � �
 �#� � �*� � �*��" " 	 $ $
 �'�) �#� �
 �#� � �'�

� � composition ; relation inclusion (13) �
" " 	 $ $ �,� �
 �#� � �," " 	 $ $

 �
 �0� (19)

� � shunting rules (16) and (17) �
� � " " 	 $ $ � �
 �#� �," " 	 $ $
 �0�

 ���

� � converse versus composition, � 	�� � �
 � �
 ��	
 , followed by (9) �
img � � � " " 	 $ $ �0�
 �
 �	�

In summary: a � -ary relation 	 as in definition 1 satisfies functional dependency � �+�
iff the binary relation

� � " " 	 $ $ �0�
 (20)

is simple, cf. (6).

6 Functional dependencies in general

Definition. Our own definition of FD starts from the observation that coreflexive rela-
tion " " 	 $ $ and projection functions � and � in (20) can be generalized to arbitrary binary
relations and functions. This leads to the more general definition which follows. (The
use of “ � ” instead of “ � ” is intentional: it stresses the move from the restricted to the
generic notion.)

Definition 2. We say that relation � �
�

oo satisfies the “ ��� � ” functional depen-

dency — written �
�
� � — iff � ��	 � �
 in

�
�

��

�
�

oo

�
��� ���� � � ���oo

is simple. Equivalent definitions are

�
�
� �

� 	��,� ker ��� ��	

 ker � (21)

— cf. (19) and (8) — and

�
�
� �

�
ker � � ��	
 �
 ker � (22)

thanks to (10).
Function � (resp. �) will be mentioned as the left side or antecedent (resp. right side

or consequent) of FD �
�
� � . 1

8 J.N. Oliveira

Generic relational projection. The little piece of notation which follows will be of some
help in the sequel: given a binary relation 	 and functions � and � such as in definition
2, we define the � � � -projection of 	 as binary relation

� ��� � 	
�����
� � � 	�� �
 (23)

So, fact �
�
� � in definition 2 can be rephrased by saying that projection � ��� � 	 is simple.

It can be shown that definition (23) extends that of the standard � -ary relation
project operator, whose set-theoretic semantics are as follows [12], for � -ary relation

�
with schema

�
and 	
 � :

��
 � � �0��" �($��� � � � (24)

In fact, while combining the lower adjoints of shunting rules (16, 17), � ��� � is itself a
lower adjoint,

� ��� � 	
 ��� 	
 �
 � � � � (25)

meaning that � ��� � 	 is the smallest relation
�

such that, wherever � is 	 -related to
�
,

��� � � is
�

-related to � � � � — recall (18). Regarding 	 and
�

as sets of pairs, we have

� ��� � 	
�����
� �,� � � � � � ��� ��� � � � � 	 �

It can be easily shown that � � � � 	 is coreflexive wherever 	 is coreflexive. From this
we draw, for � -ary relation

�
such as in (24):

" " �
 � $ $ � �
 �
 " " � $ $
(Note the use of the same symbol � to denote both the standard set-theoretic projection
operator and the pointfree one.)

Besides monotonicity and � -preservation, ensured by lower-adjointedness, binary
relation projection obeys to a number of useful properties, namely:

� ��� � ��� � ��� (26)
� � � � � ��� � � � � � � � � � � � (27)

� � � � � 	 �
 � � ��� � � 	
 � (28)� � � � � � ��� � � / � ��� � � ��� � � (29)

Another, quite interesting view of (25) is

� ��� � 	
 ��� �*� ��� 	 ��� (30)

where
��� 	 is Reynolds “arrow combinator”

��� ��� 	 � � � � ��	
 � � � (31)

which is extensively studied in [2]. So, a (� � � -parametric) relation between two rela-
tions (and

�
) can be equated as a (� � -parametric) relation on the projection func-

tions � and � themselves.

First Steps in Pointfree Functional Dependency Theory 9

Examples. The reader may wish to check that �
�
� � holds for 	 any of the relations

tabulated by the � and
�

columns of

� � � � � ��� � � ������� � �� 	�

 �
� 	�

 �

�

 �

�� 	 � �

� 	 � �

 � �

and

� � � � �	� � � �
�
 � � � 	�
 	�

�
 �
�� � 	�
 	�

� � � � �

 �
� � ��� � 	 � 	 � �
� � � � � 	 � 	 � �
�
 � � � � �

Basic properties. In contrast with (3), equations (21) and (22) are easy to reason about,
as the reader may check by proving the following, elementary properties, which hold
for all 	 , � , � of appropriate type:

�
�
� � (32)

(where � denotes the empty relation)

�
�
��� (33)

(where

 �

�
oo denotes the unique, “everywhere ’nothing’ ” function of its type)

�	� �� �	� � 	 is simple (34)

�
�
� ��� 	
 ��� (35)

An immediate consequence of (35) is

� ���� � (36)

7 The role of injectivity

Ordering relations by injectivity. It can be observed that what matters about � and
� in (21) is their “degree of injectivity” as measured by ker � and ker � , in opposite

directions: more injective � and less injective � will strengthen a given FD �
�
� � . An

extreme case is � � �	� and � ��� — functional dependency
�	� ���� will always hold for

any 	 , cf. (33).
In order to measure injectivity in general we define the injectivity preorder on rela-

tions as follows:

	�� ��� ker
�
 ker 	 (37)

that is, 	�� � means 	 is less injective than
� 2. Note that 	 and

�
must have the same

source but don’t need to share the same target datatype. For instance, it is easy to see

2 To be more precise, we should write “less injective or more defined” since ker measures both
properties, recall (14). In case of functions, � �"! unambiguously means that � is less injective
than ! .

10 J.N. Oliveira

that

� � 	 (38)

	�� � (39)

hold, since the kernel of function � is the top relation and that of the empty relation is
empty.

The fact pre-composition respects the injectivity preorder,

	�� �) 	�� � � � � � (40)

is easy to prove:

	 � �
� � (37) and (8) �
�
 � �
 	
 ��	

) � monotonicity of � �
 � � and � � � � �
�
 � �
 � � � �
 �
 ��	
 ��	�� �

� � (10) twice, followed by (8,37) �
	 � � � � � �

(This proof instantiates a more general construction presented in appendix A.)

FD defined via the injectivity ordering. The close relationship between FDs and injec-
tivity of observations is well captured by the following re-statement of (22) in terms of
(37):

�
�
� �

�
� � � ��	
 (41)

For its conciseness, this definition of FD is very amenable to calculation. Such is the
case of the proof that two FDs with matching antecedent / consequent functions yield a
composite FD,

�
� � �
� � � �

�
� � � �

�

� � (42)

which follows:

�
�
� � � �

�

� �
� � (41) twice �

� � � ��	
 � � � � � �

) � � -monotonicity of � � �
 � (40) followed by (10) �

� � �
 ��� � � � � 	 �
 � ��� � � �

First Steps in Pointfree Functional Dependency Theory 11

) � � -transitivity �
��� � � � � ��	 �

� � (41) again �

�
� � �
� �

A category of functions. Note in passing that (42) and (36) suggest that we can build

a category whose objects are functions � , � , etc. and whose arrows �
�

// � are

relations which satisfy �
�
� � .

Simultaneous observations. In the same way � and � in (3) may involve more that one
observable attribute, we would like � and � in (21) to involve more than one observation
function. Multiple observations add more detail and so are likely to be more injective.
The relational split combinator

��� � � � � 	 � � / � � ��	 ��� � � � (43)

captures this effect, and facts

	�� �
	 � � / and

� � �
	 � � / (44)

are easy to check by recalling

ker
�
	 � � / � � ker 	 ����� ker

� � (45)

which stems from
�
	 � � /
 � � 	 ��� / � � 	
 ��	 ����� �
 ��� � (46)

cf. [4]. Moreover, the following Galois connection
�
	 � � / � � � 	�� � � � � �

(47)

stems from the one underlying � , as shown in appendix A. The anti-symmetric closure
of � yields an equivalence relation

	��
���

ker 	�� ker
�

(48)

which is such that, for instance, ����� holds. We also have
� � 	 � � � � 	 / � 	 (49)

The following equivalences will be relevant in the sequel, for suitably typed 	 ,
�

and�
:

	��
�
	 � 	 / (50)�

	 � � / � � � � 	 / (51)� � � � 	 � � /'/ � ��� � � 	 / � � / (52)

12 J.N. Oliveira

Function injectivity. Since attributes in the � -ary relational database model are (pro-
jection) functions, we will be particularly interested in comparing functions for their
injectivity. Note that the kernel of a function is an equivalence relation and thus always
reflexive. So, restricted to functions, the � ordering is such that, for all � ,

� ���"� �	� (53)

and

� � �	� � � is an injection (54)

From (53) and (40) we obtain � � 	�� 	 . From (6) we draw
�	� � �
 and thus� ���
 � � , thanks to (40).

More generally, Galois connection

	�� � � ��� 	 � � � �
 (55)

holds — cf. proof in appendix A — which can be regarded as the “injectivity counter-
part” of “shunting” rules (16,17).

FDs on functions. As special cases of relations, functions may also satisfy functional

dependencies. For instance, it will be easy to show that
� � � � � � ����� �

���
� �	�

holds, where� � � � � � (resp.
�� � � � �) is the function which extracts, from a finite list, the bag (resp.
set) of all its elements. From (55) we draw:

� �0��� � � �
�
� �

�
� ��� � �
 (56)

Thus the equivalence

� ��� � � ���� � (57)

(let � � �	�) and a more general pattern of FD chaining

�
� � �
� � � �

�
� � � � � � � � �

� � (58)

which extends (42) via (57).

On � -equivalence. The discrimination of functions beyond � -equivalence is unnec-
essary in the context of FD reasoning. Since ordering and repetition in “splits” are
� -irrelevant — recall (50), (51) and (52) — we will abbreviate

� � � � / by � � , or by � � ,
wherever this notation shorthand is welcome and makes sense 3. Such is the case of a
fact which will prove particularly useful in the sequel:

�
�
� �%� � �

�
� � � �

�
� � (59)

3 This is inspired by a similar shorthand popular in the standard notation of relational database
theory: attribute set union, eg. 	�
� , is denoted by simple juxtaposition, 	�� .

First Steps in Pointfree Functional Dependency Theory 13

The proof of (59) is as follows:

�
�
� � �

� � (41) ; expansion of shorthand � � �
�
� ��� / � � ��	

� � (47) �
� � � ��	�
 � ����� ��	�

� � (41) twice �

�
�
� � � �

�
� �

FD strengthening. The comment above about the contra-variant behaviour (concerning
injectivity) of the antecedent and consequent functions of an FD is now made precise,

�
�
��� � ����� � �

�
� ��� ����� (60)

and justified:

��� � � �
�
� � � �����

� � (57) twice �

� ���� � � �
�
� � � �

���
�	�

) � (42) twice; identity of composition �

�
�
���

The following are corollaries of (60), since ������� :

���
�
� � � �

�
� � (61)

�
�
� � � �

�
� � � (62)

By � -transitivity, we see that it is always possible in a FD to move observations from
the consequent (“dependent”) side to the antecedent (“independent”) one:

���
�
� � � �

�
� � � (63)

Moving the “very last” one also makes sense, since

��� �
�
��� � ���

�
� �

8 The Armstrong-axioms

In this section we prove the correctness of the Armstrong-axioms [12], which are the
standard inference rules for FDs underlying relational database theory. We show that
FD theory is a natural consequence of the pointfree formalization presented earlier on.

14 J.N. Oliveira

In the standard formulation, these axioms involve sets of attributes of a relational
schema

�
ordered by inclusion, eg. 	
 �
 � . Unions of such attribute sets are

written by juxtaposition, eg. 	 � instead of 	 � � . Since attributes 	 and � “are”
(projection) functions, 	 � will mean the split of such projections. In our setting, we
generalize these to arbitrary functions ordered by injectivity. In fact, it is easy to see
that 	
 � implies 	 � � . (For notation economy, we use the same symbols 	 and
� to denote both the attribute symbol and the associated projection function.)

The whole schema
�

corresponds to a maximal observation. In our setting, this
is captured by the identity function

�	�
, since — by product reflexion — the split of

all projections in a finite product is the identity. (This observation will be made more
precise in section 9.)

As we have seen, � -ary relational database tables are sets of tuples which we model
by coreflexive relations. For instance, a table with three attributes

�
�� � � � �
will be modelled by coreflexive

� � � � � � � � � �
� � ��� �

oo

such that �#" " � $ $ �'� � � �-�'��� � � �
. In this section, we will abbreviate " " � $ $ by

�
.

Proofs of the Armstrong-axioms follow:

– F1. Reflexivity :

�
�
� � (64)

— recall (35). Another way to put it is

� � �)+�
�
� � (65)

which follows from �
�
� � � � � � , recall (60). Another way to express (65) is

���
�
� � (66)

— let � �&��� .
– F2. Augmentation :

�
�
� �) ���

�
� ��� (67)

Proof:

���
�
� ���

� � (59) �

���
�
� ��� ���

�
�	�

� � reflexivity (F1) in version (66) �

���
�
� �

� � (61) �

�
�
� �

First Steps in Pointfree Functional Dependency Theory 15

We observe that Maier’s version of this axiom is the implication step just above
[12].

– F3. Additivity (or Union):

�
�
� ��� �

�
�	�) �

�
� ��� (68)

This is one of the “ping-pong” sides of (59).
– F4. Projectivity:

�
�
� ���) �

�
� � � �

�
�	� (69)

This is the other side of (59).
– F5. Transitivity :

�
�
� � � �

�
�	�) �

�
� � (70)

This stems from (42) for
�

and 	 the same coreflexive
�

, in which case
� � � � �

.
– F6. Pseudo-transitivity :

�
�
� � � � �

�
�	�) � �

�
� � (71)

cf.

�
�
� ��� � �

�
�	�

) � augmentation (F2) �

� �

�
� � � � � �

�
� �

) � transitivity (F5) �

� �

�
�	�

This completes the six inference axioms which are presented and proved in [12]
either directly — using (3) — or indirectly, using tuple counting and properties of two
standard � -ary relation operators: select and project. Our proofs are substantially sim-
pler thanks to the economy of (41) and derived results.

To complete the set, we present below two consequences of the standard axioms
which are adopted for efficiency in FD reasoning:

– Decomposition :

�
�
� � � � � �) �

�
� � (72)

This is (60) for � � � . Alternatively,

�
�
� � � � � �

) � (F1) �

�
�
� � � �

�
� �

) � (F5) �

�
�
� �

16 J.N. Oliveira

– Accumulation :

�
�
� ��� � �

�
� ���)+�

�
� ��� � (73)

In fact:

�
�
� ��� � �

�
� ���

) � (F2) �

�
�
� ��� � ���

�
� � ���

) � (F5) �

�
�
� ��� � �

�
� � ���

� � (59) �

�
�
� ��� ���

) � (62) �

�
�
� ��� �

9 Keys and attributes

Keys. Every � such that �
�
� �	�

— if it exists — is called a superkey for 	 . Keys are
minimal superkeys, that is, they are functions � as above such that, for all � � � such

that � ��&� , ���
�
� �	�

. In other words,

� is a key of 	 � �
�
� �	� � ��� � �

�
� �	� � � ���!� �� � /

From (34) and (53) we draw that
�	�

is always a (maximal) superkey for simple relations.

Attributes. Database (relational) files are coreflexives on � -dimensional Cartesian prod-
ucts ������ � � � ��� . Each projection � � (

� � �) is called an attribute. From � -reflexion� � ������� � � � / � �	� we draw that all attributes together are maximal superkeys: � � � � � � ����
. In fact, any permutation of this split is an isomorphism (eg.
 � � � � � � � , for

� � �) and therefore a maximal superkey. Wherever � is an arbitrary split of attributes
we denote by � the split of the remaining attributes, in any order. The � notation only
makes sense in the context of � -equivalence and obeys the following properties:

� � � ���

� � �

First Steps in Pointfree Functional Dependency Theory 17

10 Lossless decomposition

Arbitrary FDs are, in general, hard to maintain because they constrain the update, insert
and delete operations on database files, and waste space. Therefore, instead of allowing
some relation

�
to satisfy an arbitrary FD, it is preferable to “extract” such a depen-

dency by decomposing
�

in two parts — the FD itself, eg. with schema

� � � FLIGHT � DEPARTS �

— recall FD (2) in our introductory example — and the “rest” of
�

, with schema

� � � � PILOT � FLIGHT � DATE �

Such components are referred to, in the standard terminology, as projections of
�

and
are denoted by � ��� � and � ��� � , respectively. (Read � �

�
as the projection of

�
along

schema
�

.)
In this example, the fact that FLIGHT — the antecedent of the selected FD — is

kept in schema
� � has to do with the principle of lossless decomposition: once

�
is

decomposed in projections � � � � and � � � � , by “joining” them one should be able to
recover the original relation 4:

� � ��� � � � � � � ��� � � � �

Lossless decomposition is a representation technique which is central to relational
database implementation. Of course, not every pair of projections is lossless. A kernel
topic of this theory of database design by decomposition is precisely that of finding con-
ditions for safe decomposition. Such is the case of extracting functional dependencies,
such as illustrated above, thanks to a couple of theorems which will be dealt with in the
sequel.

The first of these — exercise 6.4 in [12] — is as follows: given relation schemes �
and

�
such that � � � � 	 and a relation

�
with schema � � satisfying FD 	 � � ,

then lossless decomposition

� � � �
	 � � � � � �
� � �
holds.

Our proof of this result boils down to almost no-work-at-all thanks to the follow-
ing binary relation extension of the projection operator given by (23). Recall that (23)
expresses the standard semantics of relational projection, the only difference being that
(23) requires two projection functions — antecedent � and consequent � — instead

4 The standard, set-theoretic semantics of the � -ary relation join operator is as follows [12], for
relations ������ with schemes ������ , respectively:

������ �������! #"%$&� ���(')�+* �-, ���.* � �
'��!� �+/ �10 , ���2� � � / �3054�6

18 J.N. Oliveira

of one. This pair leads to a straightforward definition of join: joining two projections
which share the same antecedent function, say � , is nothing but binary relation split:

� � � �
 	 � � � � ��� �
 	 �
�����
� � � � 	��#�
 � ����	�� �
 /

And lossless decomposition can be expressed parametrically with respect to consequent
functions � and � ,

� � � �
 	 � � � � ��� �
 	 � � � � � �
 	
that is,

� � ��	��0�
 � ����	��#�
 / � � � � � / ��	�� �

It is well-known that such unconditioned � -fusion doesn’t hold in relation algebra,
in general. A theorem in [1] (Theorem 12.30) includes the following side-condition for
such a fusion to take place, where 	 � � � � are suitably typed binary relations:

�
	 � � / � � � �

	�� � � � � � / � 	�� � img
� �
 	 � � � � img

� �
 � (74)

For instance, fusion takes place wherever
�

is simple 5 or wherever
�

(or) is a func-
tion and

�
is its converse, eg.

�
	 � � / � �
 � �

	�� �
 � � � �
 / (75)

In our case, from (74) we draw (� � � � � �)

� � � � / � � � � � � � � ��� � / � � � �
 � � � �

— recall (11) and (37) — and, further instantiating

� � 	��#�
 , we obtain

� � � � / � � 	��#�
 � � � � ��	��#�
 � ����	��0�
 / � �
�
� � � �

�
�	�

In summary, we can establish lossless decomposition via FD extraction as follows,
back to the project/join notation:

� � � �
 	 � � � � � � �
 	 � � � � � �
 	 � �
�
� � � �

�
� � (76)

The question arises: are there side-conditions weaker than that of (76) for lossless
decomposition to take place? It turns out that FD existence is a sufficient but not nec-
essary condition for safe decomposition: the more general concept of a multi-valued
dependency, addressed in the sequel, is what is actually required.

5 Cf. also [4].

First Steps in Pointfree Functional Dependency Theory 19

11 Multi-valued dependencies

Definition 3. Given subsets � ���
 � of the relation scheme
�

of an � -ary relation
�

,
this relation is said to satisfy the multi-valued dependency (MVD) � �%��� iff, for any
two tuples � ���'� � �

which “agree” on � there exists a tuple ��� � � �
which “agrees”

with � on �	� and “agrees” with ��� on
� 	 ��� , that is,

� � � ��� � � ��� � � � �#" �%$ � �'��" �%$�
��� � � � � � � � � �#" �	�,$ � � � � " �	�,$ �

�'� ��" � 	 ���,$ �-�'�(" � 	 ��� $
/

/ (77)

cf. the following picture:
� � � 	 �	�

� � � �
�'� � � � ���
�'� � � � ���

1

Our efforts towards writing (77) without variables will be considerably softened by
the rules which follow, one generalizing relational inclusion and the other relational
composition:

– Given two binary relations � �
� � �

oo and two predicates
� �

�
oo and

� �
�

oo

(coreflexively denoted by � and 	 , respectively), then

� � � ��� ��
 � � � �� � � � 	-�) � � � / � 	 ��	����

 � (78)

extends (13), which corresponds to the special case 	���� � �	�
. (In retrospect,

notice this is the rule implicit in the reasoning carried out in section 5.)

– Given two binary relations � �
�

oo and � �
�

oo and predicate
� �

�
oo

we have, for all
� � �
��� �
 � � 	&��� � � � / � � � 	���	 � � ��� (79)

extends relational composition (for 	 � �	� we are back to 	�� �).

In the spirit of the � notation of section 9, we denote
� 	 ��� by �	� in the following

conversion of the existential quantification of (77) into pointfree notation:

��� � � � � � � � � �#" �	�,$ �&� � � " �	�,$�� � � � " ���,$ �&� � " �	� $ /
� � (79) for
 � ��� � � , an so on �
�#� ker ��� � " " � $ $ � ker ��� �'� �

20 J.N. Oliveira

Then we include this in the overall formula and reason:

� � � ��� � � ��� � � � �#" �%$ �-�'�(" �	$�) �#� ker �	� � " " � $ $ � ker �	�	� ��� /
� � rule (78) for
 � � � �'� � � �

" " � $ $ � � ker �*� � " " � $ $

 ker �	� � " " � $ $ � ker �	�
� � kernel of composition �

ker � � �," " � $ $
 �
 ker �	� � " " � $ $ � ker �	�

Thus we reach the following pointfree definition, in which we generalize " " � $ $ to an

arbitrary endo-relation � �
�

oo and introduce notation �
�
� � � (read: � multi-

determines � in) in the spirit of �
�
� � earlier on:

�
�
� � �

�����
� ker � � ��	
 �
 � ker ���%� ��	�� ker �	� (80)

Why does definition (80) require 	 to have the same source and target type? Just expand
the right hand-side of (80) and “shunt” wherever possible,

� �	� ��	��#�
� � � � ��	�
 � �	�
 �
 ��� � 	�� ����
 (81)

to obtain diagram

�

 �

��

))RRRRRRRRRRRRRRRRR �
�

oo

vvmmmmmmmmmmmmmmm

 �

��

	

 � � � �
 �

||yyyyyy
yyyyy

yyyyyy
yyy

	 � � �
 � � � �
 � �oo

 � � � �
 � �
``BB

BBBBB
BBBBB

BBBBB
BB

Therefore, MVD �
�
� � � requires 	 to be an endo-relation. This diagram provides

an alternative meaning for MVDs: �
�
� � � holds iff projection �
 � �
 � 	 “factorizes”

through � . A trivial example of such 	 is � , which satisfies any MVD. In case of
transitive 	 — ie. such that 	���	�
 	 holds — it is easy to see that condition

� ker � � ��	�
�
�	
is sufficient for (81) to hold, since � �	� � 	�� � �	�%� is monotonic. Thus � satisfies any
MVD.

First Steps in Pointfree Functional Dependency Theory 21

As it happens with FDs, the axiomatic theory of MVDs assumes 	 to be “a set of
tuples”. As above, we model such a set by a coreflexive relation as use capital letter

�
to stress this assumption.

MVDs are more general and less intuitive than FDs. It is known from the standard
theory that FDs are just a particular case of MVDs, that is,

�
�
� �) �

�

� � � (82)

holds. Our proof of this fact (often termed the conversion axiom) is as follows:

�
�
� �

) � augmentation (67) for � �&� �
�
�
� �	�

� � FD definition (22) �
ker � � � �
 �
 ker �	�

) � composition is monotone,
� � �
 � � � � for coreflexive

� �
ker � � � �
 �
 ker �	� � �

) � in general, �"� �	� , thus
�
 � � ker � �

ker � � � �
 �
 � ker ��� � � � � ker �	�
� � definition (80) �

�
�

� � �

Lossless decomposition. The conversion axiom is given in [12] as a corollary of the
theorem of lossless decomposition of MVDs. This theorem (number 7.1 in [12]) states

that fact �
�

� � � holds if and only if
�

decomposes losslessly into two relations with
schemata ��� and � �,� , respectively:

�
�

� � � � � � � �
 � � � � � � �
 �
 � � � � � �
 �
 � (83)

A pointwise proof of this result is given in [12] in “implication-first” logic style, in two
parts — the if side followed by the only if side of the equivalence. Being performed
as they are directly over (77), these proofs aren’t easy to follow with their existential
and universal quantifications over no less than six tuple variables � ��� ��� � ���'� ���'�� ��� � . By
contrast, our proof is a sequence of pointfree equivalences:

� � � �
 � � � � � � �
 �
 � � � � � �
 �
 �
� � (23) �

� � � � �#�
 � � � � � � �
 / � � �,� � � � �

22 J.N. Oliveira

� � since
�
	 � � / � �

�
	�� � � � � � / holds by monotonicity �

� � � � �#�
 � � � � � � �
 /
 � �,� � � � �

� � “split twist” rule (97) ; converses �

� � � � �#�
 � �	� / �,� � � �
 � � �
 �
 � � ��� � �
 / � � �

� � � �&� � �
 �0� �

� � � � �#�
 � �	� / �0� � �
 � � � �
 � � �

 � � ��� � �
 / � � �

� � (84) below twice, since bot � � �
 and

�
 are coreflexive �
� � � � �#�
 ��� � �
 / �0� � �
 � � �

 � � ��� / � �
 � � �

� � (75) in which � � � followed by (84) in which 	 � � �
� � � ��� / � � � �
 � �,� � � �
 � � �
 �
 � � ��� / � � � � �

� � (81) �

�
�

� � �
Two steps in the calculation above rely on fact

�
	 � � / ��	 � �

	 � � � 	 / (84)

which is easy to justify:

�
	 � � / � 	 � �

	 � � � 	 /
� � split pointfree definition �

� �
 ��	 � �
� � � � ��	 � �
 ��	 � �
� � � � 	
� � converses and commutativity �

	 �,� �
 � � � � 	
 � � � � � 	 � �
 � � � � � � 	
 � � �
� � fact

� � � � � , 	�� � � � � 	 � � � � � � / � 	�
 �	� in Ex.11.22 of [3] �
	�
 ���

Further MVD reasoning. MVD theory generalizes FD theory. Some results stem di-
rectly from the conversion axiom, as is the case of the MVD reflexivity axiom,

� � �) �
�

� � � (85)

since

�
�

� � �
� � conversion (82) �

First Steps in Pointfree Functional Dependency Theory 23

�
�
� �

� � FD reflexivity (64) �
� � �

Some others are new, for instance the complementation axiom:

�
�
� � �) �

�
� � � (86)

which the reader may wish to prove as an exercise. All other MVD inference axioms
can be found in [12], section 7.4.1. In this paper we don’t go beyond this point.

12 Conclusions

This paper presents a pointfree version of functional dependency theory, the kernel of
relational database design “ à la Codd”. Contrary to the intuition that a binary relation is
just a particular case of � -ary relation, this paper shows the effectiveness of the former
in “explaining” and reasoning about the latter.

It turns out that the theory becomes more general and considerably simpler. The
adoption of the (pointfree) binary relation calculus is beneficial in several respects. First,
the fact that pointfree notation abstracts from “points” or variables makes the reasoning
more compact and effective. Elegant formulæ such as (41) — when compared with
(3) — come in support of this claim. Second, proofs are performed by easy-to-follow
calculations. Third, one is able to generalize the original theory, as happens with our
generalization of attributes to arbitrary (suitably typed) functions in FDs and MVDs.

In retrospect, the use of coreflexive relations to model sets of tuples and predicates in
the binary relation calculus (instead of arbitrarily partitioning attributes in “source ones”
and “target ones”) is perhaps the main ingredient of the simplification and subsequent
generalization. (A similar strategy has been followed in [14] concerning a pointfree
model of hash tables).

13 Future work

While addressing the foundations of FD theory in a pointfree style, no claim is made
in this paper for extending or improving the standard theory. What is gained is a better
starting point for relational database theory [12], a fairly large (and often convoluted)
body of knowledge 6.

The effectiveness of the approach can only be tested once more and more results
are dealt with. In this paper, multivalued dependencies have only been hinted at. Join
dependencies and difunctional dependencies [9] have not been considered at all. The use
of functional dependencies in solving ambiguities in multiple parameter type classes
in the Haskell type system [10] may happen to be another area of application of the
reasoning techniques developed in this paper.

6 FDs account for no more than 20% of pages in Maier’s book [12].

24 J.N. Oliveira

At the level of the pointfree “transform” itself, our notion of kernel of a binary rela-
tion is a conservative one when compared to that of [7], which can be considered as an
alternative (both coincide on functions). Moreover, left and right conditions [8] should
be also exploited as alternatives to coreflexives in � -ary relation modelling. Finally,
the connection between binary relation projection and Reynolds “relation on functions”
expressed by (30) is worth studying in more detail, taking into consideration the corre-
sponding point-free theory developed in [2].

Concerning representation theory and lossless decomposition, some recent results
in [13] and [16] should be taken into account and generalized.

Acknowledgments

The work reported in this paper has been carried out in the context of the PURE Project
(Program Understanding and Re-engineering: Calculi and Applications) funded by
FCT (the Portuguese Science and Technology Foundation) under contractPOSI/ICHS/
44304/2002.

References

1. Chritiene Aarts, Roland Backhouse, Paul Hoogendijk, Ed Voermans, and Jaap van der
Woude. A relational theory of datatypes, December 1992. Available from www. cs.
nott. ac. uk/˜rcb/ papers.

2. K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free, via logical
relations and Galois connections. Science of Computer Programming, 15(1–2):153–196,
2004.

3. R.C. Backhouse. Mathematics of Program Construction. Univ. of Nottingham, 2004. Draft
of book in preparation. 608 pages.

4. R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-
Hall International, 1997. C.A. R. Hoare, series editor.

5. E.F. Codd. A relational model of data for large shared data banks. CACM, 13(6):377–387,
June 1970.

6. Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer D. Widom. Database Systems: The
Complete Book. Prentice Hall, 2002. ISBN: 0-13-031995-3.

7. Jeremy Gibbons. When is a function a fold or an unfold?, 2003. Working document 833
FAV-12 available from the website of IFIP Working Group 2.1 57th meeting, New York City,
USA.

8. Paul Hoogendijk. A Generic Theory of Data Types. PhD thesis, University of Eindhoven,
The Netherlands, 1997.

9. A. Jaoua, S. Elloumi, A. Hasnah, J. Jaam, and I. Nafkha. Discovering Regularities in
Databases Using Canonical Decomposition of Binary Relations. JoRMiCS, 1:217–234,
2004.

10. Mark P. Jones. Type classes with functional dependencies. In Gert Smolka, editor, Program-
ming Languages and Systems, 9th European Symposium on Programming, ESOP 2000, Held
as Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS
2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings, volume 1782 of Lecture
Notes in Computer Science, pages 230–244. Springer, 2000.

First Steps in Pointfree Functional Dependency Theory 25

11. Akihiro Kanamori. The empty set, the singleton, and the ordered pair. The Bulletin of
Symbolic Logic, 9(3):273–298, 2003.

12. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN
0-914894-42-0.

13. J.N. Oliveira. Calculate databases with ‘simplicity’, September 2004. Presentation at the
IFIP WG 2.1 #59 Meeting, Nottingham, UK.

14. J.N. Oliveira and C.J. Rodrigues. Transposing relations: from Maybe functions to hash tables.
In MPC’04 : Seventh International Conference on Mathematics of Program Construction,
12-14 July, 2004, Stirling, Scotland, UK (Organized in conjunction with AMAST’04), volume
3125 of Lecture Notes in Computer Science, pages 334–356. Springer, 2004.

15. V. Pratt. Origins of the calculus of binary relations. In Proc. of the Seventh Annual IEEE
Symposium on Logic in Computer Science, pages 248–254, Santa Cruz, CA, 1992. IEEE
Computer Soc.

16. C.J. Rodrigues. Data refinement by calculation, 2005. Presented at the DI/UM Ph.D. Student
Symposium, Quinta da Torre, Soutelo, 5-7 Jan. 2005.

17. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, 1988.

A A little preorder construction

The concept of a preorder — ie. that of a reflexive and transitive endo-relation — is
central to the mathematics of computing. It paves the way to Galois connections and
other interesting topics (eg. lexicographic orders, etc.). In this annex we concentrate
on a particular preorder construction which is used extensively in this paper. For more
about preorders see eg. [1] and [4].

The construction. Let � �
�

oo be a preorder. Given a function � �
�

oo , the

relation � �
�

oo defined by

� �����
� �
���� � � (87)

is also a preorder: it is reflexive,

�	�
 �
� � (87) and shunting (16) �

�
�� �0�
� �&����� � is monotonic �
�	�
��

� ��� is reflexive �
TRUE

26 J.N. Oliveira

and transitive:

� � �
� � (87) twice; associativity of composition �
�
 � � � ��� � �
0� � � � �

 � � is simple (6) �
�
 � � �����0�

 ��� is transitive �
�
 � � �0�
� � (87) �
�

Example. The injectivity preorder defined earlier on (37) is an example of this construc-
tion for � � ker,

� � �
 and � �
 :

�
 � ker
 �
 � ker (88)

that is,

� � ker
 �

 � ker

(Note the extra converse operator.)

Preorder homomorphism. By construction, (87) establishes � as a preorder homomor-
phism — cf.

� � � � � � � �&� �,�
in pointwise notation — which can be exploited to “lift” results from the � to the

�

order. We present two such results, one concerning monotonicity and the other Galois
connections. For space economy, both will be presented restricted to endo-functions.
(The general formulation is similar.)

Lifting monotone operators. Let � �
�

oo be a � -monotonic endo-function, and � �
be its � -counterpart, that is,

� � � � � � �0� (89)

Then � � is
�

-monotonic:

�
�� �
 � � � � � (90)
� � (87) twice ; (10) �

�
 ��� � �
 ��� � � � �
 � � �� � � �

First Steps in Pointfree Functional Dependency Theory 27

� � (89) twice ; (10) �
�
 ��� � �
&�
 � �
 � � � � ��

� �-�.�
 � � � � is monotonic �
�
��
 � � � �

� � since � is � -monotonic �
TRUE

Examples. From

ker � 	 � � � � �
 �,� ker 	 � � � (91)

we identify, for � � ker, �%� � � � � � and � � � �
 � � � � . Since � is
 -monotonic,
from (90) we draw that �%� is �
 -monotonic, which is equivalent to being � -monotonic.
This justifies equation (40) in the main body of the paper. A similar argument can be
provided to justify � -monotonicity of any relator

�
,

	�� �) � 	�� � �

for � � � � � �
, since

�
is
 -monotonic and

ker � � 	 � � � � ker 	 �
holds.

Lifting Galois connections. Suppose that functions � �
��� �

oo are Galois connected
via preorder � and that �%� � � � are the � -counterparts of lower-adjoint � and upper-adjoint�
, respectively. That is, facts

�
���� � � � � (92)

and

� � � � � � � � (93)

� � � � � � �0� (94)

hold. Then �%� � � � are
�

-Galois connected,

� �
 � � � � � � � (95)

as proved below:

� �
 � �
� � (87) �
� �
 � �
��� ��

28 J.N. Oliveira

� � (93) and converses �
�
 � �
 � � �0�
� � (92) followed by (94) �
�
 � � �0� � � �
� � (87) �
� � � �

Examples. Consider the following instances of
�

in (91) and corresponding instances
of � � � � � � � � � , for some function � of appropriate type:

� � �

� � � � � ���%�� � ���
 � � � �
� � �

�
� � � � � �
 �
� � � � � � �
 �

The fact that � and
�

are Galois connected stems from the composition of shunting rules
(16,17):

� � 	 � �

 �
� 	
 �
 � ��� �

Then, from (95) we draw

� �
 � �
 ���
�� � �

which, taking converses, is the same as

� �
 � � ��� � � �

that is,

� ���%� � � � � � � � �
 �

— ie. (55) — holds.
A similar argument will justify Galois connection (47), stemming from relational

split being ker-homomorphic to relational meet (45), which is the upper-adjoint in its
defining Galois connection:

�
 	 �
��� �
 	 � �
 � (96)

Because of the extra converse in �
 in (88), the fact that meet is the upper-adjoint wrt.

 casts split as the lower-adjoint wrt. � :

�
	 � � / � � � 	�� � � � � �

First Steps in Pointfree Functional Dependency Theory 29

A more explicit argument is as follows:

�
	 � � / � �

� � (37) and (45) �
ker

�
 � ker 	 ����� ker
� �

� � (96) �
ker

�
 ker 	 � ker
�
 ker

�
� � (37) twice �
	�� � � � � �

B The “split twist” rule

A step in the proof of lossless decomposition (83) is based on the following equivalence,

�
	 � � /
 ��� ��� / � 	 � �

	 � �	� / � �
�
 ��� � 	
 / ���
 (97)

itself a consequence of

�
	 � � / � �

��� ��� / ��	 � �
	 � �
 / � �

 ��� � 	
 / ���
 (98)

for
� � ��� . In order to prove (98), we reason using points � ��� and � :

� � � �,� � 	 � � / � � �
� � composition and split �
��� � � 	 ��� �

� � � � � � /
� � converses �
��� � � 	 ��� � �
 � � � �
 � /

� � split and composition �
� � ��� � � 	 � �
 / � �
 �

Similarly,

� � � � � ��� ��� / ��	 � � � � ��� � ��� � 	
0/ ���
 �
and so on.

