Relations among Matrices over a Semiring

Michael Winter

Joint work with: Dylan Killingbeck and Milene Santos Teixeira

Department of Computer Science, Brock University, mwinter@brocku.ca

Content

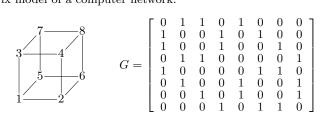
- Motivating Example
- Semirings
 - Idempotent Elements
 - Matrices over Semirings
- Flattening
 - Distributivity
- Sup-Semirings
 - Matrices over Sup-Semirings

Michael Winter

- Biproducts
- Future Work

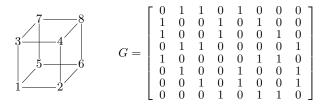
Motivating Example I

A matrix model of a computer network:



Motivating Example I

A matrix model of a computer network:



 \bigcirc G is a Boolean matrix, i.e., a relation.

• G can be used to calculate qualitative properties/algorithms of the network, e.g., a simple message passing algorithm:

 $B \sqsubseteq G$ is a map so the $p; B^* = \square$ for every point p.

A different matrix model:

$$M = \begin{bmatrix} 0 & \frac{9}{10} & \frac{9}{10} & 0 & \frac{9}{10} & 0 & 0 & 0 \\ \frac{9}{10} & 0 & 0 & \frac{9}{10} & 0 & \frac{9}{10} & 0 & 0 \\ \frac{9}{10} & 0 & 0 & \frac{9}{10} & 0 & 0 & \frac{9}{10} & 0 \\ 0 & \frac{9}{10} & \frac{9}{10} & 0 & 0 & 0 & \frac{9}{10} \\ \frac{9}{10} & 0 & 0 & 0 & 0 & \frac{9}{10} & \frac{9}{10} \\ \frac{9}{10} & 0 & 0 & 0 & \frac{9}{10} & \frac{9}{10} & 0 \\ 0 & \frac{9}{10} & 0 & 0 & \frac{9}{10} & 0 & 0 & \frac{9}{10} \\ 0 & 0 & \frac{9}{10} & 0 & \frac{9}{10} & 0 & 0 & \frac{9}{10} \\ 0 & 0 & 0 & \frac{9}{10} & 0 & \frac{9}{10} & 0 \end{bmatrix}$$

- **3** M is a matrix over the Bayesian, possibilistic or Viterbi semiring $S = \langle [0 \dots 1], \max, *, 0, 1 \rangle$.
- M can be used to calculate quantitative properties of the network, e.g., what is the probability that a message can be send successfully from one node to the other:

Motivating Example III

	г	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	729 -	1
		100	$\overline{10}$	$\overline{10}$	100	$\overline{10}$	100	100	$\overline{1000}$	L
		9	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	729	$\frac{81}{100}$	L
		$\overline{10}$		100	10			1000		
		9	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	729	$\frac{9}{10}$	$\frac{81}{100}$	ł
	i	$\frac{9}{10}$ $\frac{9}{10}$	100	100		100	1000		100	L
		$\frac{81}{100}$ $\frac{9}{10}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	729	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{\frac{9}{10}}{\frac{81}{100}}$	
$M^* -$		100	10	10	100	1000	100	100	10	
<i>IVI</i> —		9	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{729}{1000}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	81	ł
		$\overline{10}$	100	100		100			100	
		$\frac{81}{100}$	$\frac{9}{10}$	$\frac{729}{1000}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$ $\frac{9}{10}$	
		100	10		100	10	100	100	10	
		$\frac{81}{100}$	729	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	9	ł
		100	1000	$\overline{10}$	100	$\overline{10}$	100	100	$\overline{10}$	L
		729	$\frac{81}{100}$	81	$\frac{9}{10}$	81	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$ -	
	L	1000	100	100	10	100	10	10	100 -	1

4

◆臣→

- - - E - M-

电

	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{729}{1000}$]
								1000
	9	81	81	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	729	81
	10	$\frac{81}{100}$	$\frac{81}{100}$	10	100	10	1000	$\frac{81}{100}$
	9			9	81	729	9	81
	$\begin{array}{r} \frac{9}{10}\\ \frac{9}{10} \end{array}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\overline{1000}$	$\frac{9}{10}$	$ \begin{array}{c} \frac{81}{100} \\ \frac{9}{10} \end{array} $
	81	9	9	81	729	81	81	9
$M^* =$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	1000	$\frac{81}{100}$	$\frac{81}{100}$	10
	9	81	81	729	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	81
	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	1000	100	$\overline{10}$	$\overline{10}$	$\frac{81}{100}$
	81	9	729	81	9	81	81	9
	$\frac{81}{100}$	$\frac{9}{10}$	1000	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\begin{array}{c} \frac{9}{10} \\ \frac{9}{10} \end{array}$
	$\frac{81}{100}$	729	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	9
	100	1000			$\overline{10}$	100	100	10
	729	81	$\frac{81}{100}$	$\frac{9}{10}$	81	9	9	81
	L 1000	$\frac{81}{100}$	100	10	100	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$

G is a matrix over the multiplicative idempotent elements I(S) of S.
The Hadamard product of matrices over I(S) is the relational meet.

	$\int \frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{729}{1000}$
				$\frac{9}{10}$			729	
	10	$\frac{81}{100}$	$\frac{81}{100}$	$\overline{10}$	$\frac{81}{100}$	$\frac{9}{10}$	1000	$\frac{81}{100}$
	$\begin{array}{r} \frac{9}{10}\\ \frac{9}{10} \end{array}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	729	$\frac{9}{10}$	81
					100	1000		$\frac{81}{100}$
	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	729	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$
$M^* =$	100	10	10		1000			10
	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	729	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$
				1000				100
	$\frac{81}{100}$	$\frac{9}{10}$	729	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	9
	100		1000		10			10
	$\frac{81}{100}$	$\frac{729}{1000}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\begin{array}{c} \frac{9}{10} \\ \frac{9}{10} \end{array}$
	729	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	81	$\frac{9}{10}$	$\frac{9}{10}$	81
	L 1000	100	100	10	100	10	10	$\overline{100}$

- **(a)** G is a matrix over the multiplicative idempotent elements I(S) of S.
- **(3)** The Hadamard product of matrices over I(S) is the relational meet.
- Relational join and composition are normally not covered by any matrix operation over S resp. I(S). The reason is that I(S) is generally only a lower semilattice but not a lattice.

	$\begin{bmatrix} \frac{81}{100} \end{bmatrix}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{729}{1000}$
$M^* =$		$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{729}{1000}$	$\frac{81}{100}$
	$\begin{array}{r} \frac{9}{10} \\ \frac{9}{10} \end{array}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{729}{1000}$	$\frac{9}{10}$	$\frac{81}{100}$
	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{729}{1000}$	$\frac{81}{100}$	$\frac{81}{100}$	$ \begin{array}{c} \frac{81}{100} \\ \frac{9}{10} \end{array} $
	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{729}{1000}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$
	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{729}{1000}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$
	$\frac{81}{100}$	$\frac{729}{1000}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{81}{100}$	$\begin{array}{c} \frac{9}{10} \\ \frac{9}{10} \end{array}$
	$\frac{729}{1000}$	$\frac{81}{100}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{81}{100}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{81}{100}$

- **(a)** G is a matrix over the multiplicative idempotent elements I(S) of S.
- **(3)** The Hadamard product of matrices over I(S) is the relational meet.
- Relational join and composition are normally not covered by any matrix operation over S resp. I(S). The reason is that I(S) is generally only a lower semilattice but not a lattice.

Goal of this paper/presentation is to find suitable structures so that I(S) becomes a distributive lattice, and, hence, the matrices over I(S) form a distributive allegory.

A structure (S, +, *, 0, 1) is called a semiring iff (S, +, 0) is a commutative monoid, i.e., we have $x + (y + z) = (x + y) + z \text{ for all } x, y, z \in S,$ (Associativity) x + 0 = 0 + x = x for all $x \in S$. (Identity Law) x + y = y + x for all $x, y \in S$. (Commutativity) (2) (S, *, 1) is a monoid, i.e., we have $x * (y * z) = (x * y) * z \text{ for all } x, y, z \in S,$ (Associativity) x * 1 = 1 * x = x for all $x \in S$. (Identity Law) Multiplication left- and right-distributes over addition, i.e., we have • x * (y+z) = (x * y) + (x * z) for all $x, y, z \in S$, (Left Distributivity) $(x+y) * z = (x * z) + (y * z) \text{ for all } x, y, z \in S.$ (Right Distributivity) Zero is an annihilator for multiplication, i.e., we have • x * 0 = 0 * x = 0 for all $x \in S$. (Annihilator Law) A semiring is called commutative if * is commutative, i.e., if we have x * y = y * x for all $x, y \in S$.

An element of a semiring $x \in S$ is called (multiplicative) idempotent iff $x * x = x^2 = x$. We will denote the set of all (multiplicative) idempotent elements of S by I(S).

Lemma

Let $\langle S, +, *, 0, 1 \rangle$ be a commutative semiring. Then $\langle I(S), *, 0, 1 \rangle$ is a semilattice with least element 0 and greatest element 1.

If $M = [a_{ij}]_{mn}$ denotes a matrix of size $m \times n$ with coefficients a_{ij} from S, then we define

$$[a_{ij}]_{mn} + [b_{ij}]_{mn} = [a_{ij} + b_{ij}]_{mn}$$

and we have

 $(M+N)+P=M+(N+P), \quad M+N=N+M, \quad M+\amalg=\amalg+M=M,$

where $\perp \perp = [0]_{mn}$ is the matrix with 0's everywhere.

If $M = [a_{ij}]_{mn}$ denotes a matrix of size $m \times n$ with coefficients a_{ij} from S, then we define

$$[a_{ij}]_{mn} + [b_{ij}]_{mn} = [a_{ij} + b_{ij}]_{mn}$$

and we have

 $(M+N) + P = M + (N+P), \quad M+N = N+M, \quad M+\bot\!\!\!\bot = \bot\!\!\!\bot + M = M,$

where $\perp \perp = [0]_{mn}$ is the matrix with 0's everywhere.

Furthermore, if two finite matrices are of appropriate size, i.e., $M = [a_{ij}]_{mn}$ and $N = [b_{jk}]_{np}$, then matrix multiplication can be defined as usual by

$$[a_{ij}]_{mn}[b_{jk}]_{np} = [\sum_{j=1}^{n} a_{ij} * b_{jk}]_{mp}.$$

A B K A B K

1

If $M = [a_{ij}]_{mn}$ denotes a matrix of size $m \times n$ with coefficients a_{ij} from S, then we define

$$[a_{ij}]_{mn} + [b_{ij}]_{mn} = [a_{ij} + b_{ij}]_{mn}$$

and we have

 $(M+N) + P = M + (N+P), \quad M+N = N+M, \quad M+\bot\!\!\!\bot = \bot\!\!\!\bot + M = M,$

where $\perp \perp = [0]_{mn}$ is the matrix with 0's everywhere.

Furthermore, if two finite matrices are of appropriate size, i.e., $M = [a_{ij}]_{mn}$ and $N = [b_{jk}]_{np}$, then matrix multiplication can be defined as usual by

$$[a_{ij}]_{mn}[b_{jk}]_{np} = [\sum_{j=1}^{n} a_{ij} * b_{jk}]_{mp}.$$

Matrix multiplication together with the identity matrix forms a category.

▲御▶ ▲理▶ ▲理▶ 二連

Furthermore, we have $M \perp\!\!\perp = \perp\!\!\perp = \perp\!\!\perp M$ and matrix multiplication is bilinear, i.e., we have

 $M(N+P) = MN + MP, \quad (N+P)Q = NQ + PQ.$

• 3 3 4

Furthermore, we have $M \perp\!\!\perp = \perp\!\!\perp = \perp\!\!\perp M$ and matrix multiplication is bilinear, i.e., we have

$$M(N+P) = MN + MP, \quad (N+P)Q = NQ + PQ.$$

Last but not least, we may also define the converse (or transpose) of a matrix and the Hadamard product of matrices of equal size by

$$[a_{ij}]_{mn}^{\smile} = [a_{ji}]_{nm}, \qquad [a_{ij}]_{mn} \cdot [b_{ij}]_{mn} = [a_{ij} * b_{ij}]_{mn}.$$

Converse distributes over + and we have $(M N)^{\smile} = N^{\smile} M^{\smile}$.

Furthermore, we have $M \perp \perp = \perp \perp = \perp \perp M$ and matrix multiplication is bilinear, i.e., we have

$$M(N+P) = MN + MP, \quad (N+P)Q = NQ + PQ.$$

Last but not least, we may also define the converse (or transpose) of a matrix and the Hadamard product of matrices of equal size by

$$[a_{ij}]_{mn}^{\smile} = [a_{ji}]_{nm}, \qquad [a_{ij}]_{mn} \cdot [b_{ij}]_{mn} = [a_{ij} * b_{ij}]_{mn}.$$

Converse distributes over + and we have $(M \ N)^{\sim} = N^{\sim} \ M^{\sim}$.

If S is a commutative semiring, then so are the matrices of size $m \times n$ with respect to the matrix sum, the Hadamard product, $\perp \perp$ and $\top = [1]_{mn}$.

Furthermore, we have $M \perp \perp = \perp \perp = \perp \perp M$ and matrix multiplication is bilinear, i.e., we have

$$M(N+P) = MN + MP, \quad (N+P)Q = NQ + PQ.$$

Last but not least, we may also define the converse (or transpose) of a matrix and the Hadamard product of matrices of equal size by

$$[a_{ij}]_{mn} = [a_{ji}]_{nm}, \qquad [a_{ij}]_{mn} \cdot [b_{ij}]_{mn} = [a_{ij} * b_{ij}]_{mn}.$$

Converse distributes over + and we have $(M \ N)^{\sim} = N^{\sim} \ M^{\sim}$.

If S is a commutative semiring, then so are the matrices of size $m \times n$ with respect to the matrix sum, the Hadamard product, $\perp \perp$ and $\top = [1]_{mn}$.

A matrix is idempotent iff all coefficients are.

Let $\langle S,+,*,0,1\rangle$ be a commutative semiring. An operation (.)' is called a flattening operation iff

Michael Winter

$$x' * x' = x' \text{ for all } x \in S,$$

2 x * z = x iff x' * z = x' for all $z \in I(S)$.

Let $\langle S,+,*,0,1\rangle$ be a commutative semiring. An operation (.)' is called a flattening operation iff

$$x' * x' = x' \text{ for all } x \in S,$$

2 x * z = x iff x' * z = x' for all $z \in I(S)$.

If $z \in (S)$, then $x' * z = x' \iff x' \le z$, i.e., the operation (.)' assigns to an $x \in S$ the smallest idempotent element z so that x * z = x.

Let $\langle S,+,*,0,1\rangle$ be a commutative semiring. An operation (.)' is called a flattening operation iff

$$x' * x' = x' \text{ for all } x \in S,$$

2
$$x * z = x$$
 iff $x' * z = x'$ for all $z \in I(S)$.

If $z \in (S)$, then $x' * z = x' \iff x' \le z$, i.e., the operation (.)' assigns to an $x \in S$ the smallest idempotent element z so that x * z = x.

Lemma

Let (.)' be a flattening operation. Then we have: • x' = x iff $x \in I(S)$. • x'' = x'.

→

Lemma

• A flattening operation is unique.

2 If $I(S) = \{0, 1\}$, then the canonical flattening operation

$$x' := \begin{cases} 1 & iff \ x \neq 0, \\ 0 & iff \ x = 0, \end{cases}$$

is a flattening operation.

Lemma

Suppose (S, +, *, 0, 1) is a commutative semiring.

- If S is a ring, i.e., a semiring with additive inverses, then I(S) is a distributive lattice with x ∨ y = x + y − x * y.
- If + satisfies the absorption law x + x * y = x for all x, y ∈ S, then I(S) is a distributive lattice with x ∨ y = x + y.
- If S is multiplicative cancelative, i.e., x * y = x * z implies y = z for every x ≠ 0, then I(S) = {0,1} is the Boolean algebra with two elements.

A structure $\langle D, +, *, \sqcup, 0, 1 \rangle$ is called a sup-semiring iff • $\langle D, +, *, 0, 1 \rangle$ is a commutative semigroup, i.e., we have • $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$ for all $x, y, z \in D$, (Associativity) • $x \sqcup y = y \sqcup x$ for all $x, y \in D$, (Commutativity) • $(x \sqcup y) * (x \sqcup y) = x \sqcup y$ for all $x, y \in D$, (Relative Idempotency) • $x * (x \sqcup y) = x$ for all $x, y \in D$, (Relative Absorption) • if x * x = x, then $x \sqcup (x * y) = x$ for all $x, y \in D$, (Relative Absorption) • if x * x = x and y * y = y and z * z = z, then $x * (y \sqcup z) = x * y \sqcup x * z$ for all $x, y, z \in D$. (Relative Distributivity)

Lemma

The following two conditions are equivalent:
x * y = x and y idempotent,
x ⊔ y = y.
x is idempotent iff x ⊔ x = x.
x ⊔ z = z and y ⊔ z = z implies z * (x ⊔ y) = x ⊔ y.
x ⊔ 0 = x ⊔ x.
0 ⊔ 0 = 0 and x ⊔ 1 = 1.
x ⊔ y = (x ⊔ 0) ⊔ (y ⊔ 0).

Let $\langle D, +, *, \sqcup, 0, 1 \rangle$ be a sup-semiring. Then the idempotent elements, i.e., the structure $\langle I(D), *, \sqcup, 0, 1 \rangle$, form a distributive lattice. Furthermore, $x' = x \sqcup 0$ is a flattening operation for $\langle D, +, *, 0, 1 \rangle$.

Michael Winter

Let $\langle D, +, *, \sqcup, 0, 1 \rangle$ be a sup-semiring. Then the idempotent elements, i.e., the structure $\langle I(D), *, \sqcup, 0, 1 \rangle$, form a distributive lattice. Furthermore, $x' = x \sqcup 0$ is a flattening operation for $\langle D, +, *, 0, 1 \rangle$.

Theorem

Let $\langle S, +, *, 0, 1 \rangle$ be a commutative semiring with a flattening operation. Furthermore, assume that $\langle I(S), \lor, *, 0, 1 \rangle$ is a distributive lattice. Then $\langle S, +, *, \sqcup, 0, 1 \rangle$ with $x \sqcup y = x' \lor y'$ is a sup-semiring.

Let $\langle D, +, *, \sqcup, 0, 1 \rangle$ be a sup-semiring. Then the idempotent elements, i.e., the structure $\langle I(D), *, \sqcup, 0, 1 \rangle$, form a distributive lattice. Furthermore, $x' = x \sqcup 0$ is a flattening operation for $\langle D, +, *, 0, 1 \rangle$.

Theorem

Let $\langle S, +, *, 0, 1 \rangle$ be a commutative semiring with a flattening operation. Furthermore, assume that $\langle I(S), \lor, *, 0, 1 \rangle$ is a distributive lattice. Then $\langle S, +, *, \sqcup, 0, 1 \rangle$ with $x \sqcup y = x' \lor y'$ is a sup-semiring.

Lemma

In the context of the other axioms in Def. 5 rel. distributivity is equivalent to

$$x'*(y\sqcup z)=x'*y'\sqcup x'*z'.$$

Lemma

The theory of sup-semirings is not equational, i.e., the class of sup-semirings does not form a variety.

Consider the semiring $\langle \mathbb{N}, +, *, 0, 1 \rangle$ with the operation

$$x \sqcup y := \begin{cases} 0, & \text{iff } x = y = 0, \\ 1, & \text{otherwise.} \end{cases}$$

Lemma

The theory of sup-semirings is not equational, i.e., the class of sup-semirings does not form a variety.

Consider the semiring $\langle \mathbb{N}, +, *, 0, 1 \rangle$ with the operation

$$x \sqcup y := \begin{cases} 0, & \text{iff } x = y = 0\\ 1, & \text{otherwise.} \end{cases}$$

Let \equiv be the equivalence relation that has the three equivalence classes $[0] = \{0\}, [1] = \{1\}$ and $[n] = \{n \in \mathbb{N} \mid n > 1\}$. It is easy to see that \equiv is a congruence and that the induced operations on the equivalence classes are

+	[0]	[1]	[n]	*	[0]	[1]	[n]	\Box			
		[1]				[0]		[0]	[0]	[1]	[1]
[1]	[1]	[n]	[n]	[1]	[0]	[1]	[n]	[1]	[1]	[1]	[1]
[n]	[n]	[n]	[n]	[n]	[0]	[n]	[n]	[n]	[1]	[1]	[1]

Now, [n] is idempotent but $[n] \sqcup [n] * [0] = [n] \sqcup [0] = [1] \neq [n]$, i.e., rel. absorption is not true.

We define

$$[a_{ij}]_{mn} \sqcup [b_{ij}]_{mn} = [a_{ij} \sqcup b_{ij}]_{mn}, \qquad [a_{ij}]_{mn}; [b_{jk}]_{np} = [\bigsqcup_{j=1}^{n} a_{ij} * b_{jk}]_{mp}.$$

ъ

ð

We define

$$[a_{ij}]_{mn} \sqcup [b_{ij}]_{mn} = [a_{ij} \sqcup b_{ij}]_{mn}, \qquad [a_{ij}]_{mn}; [b_{jk}]_{np} = [\bigsqcup_{j=1}^{n} a_{ij} * b_{jk}]_{mp}.$$

With these operations the collection of relations forms a distributive allegory.

We define

$$[a_{ij}]_{mn} \sqcup [b_{ij}]_{mn} = [a_{ij} \sqcup b_{ij}]_{mn}, \qquad [a_{ij}]_{mn}; [b_{jk}]_{np} = [\bigsqcup_{j=1}^{n} a_{ij} * b_{jk}]_{mp}.$$

With these operations the collection of relations forms a distributive allegory.

Lemma

Suppose Q is a matrix over a sup-semiring. Then we have $Q; \mathbb{I} = \mathbb{I}; Q = Q'$ where $Q' = Q \sqcup [0]$.

Suppose A + B together with $\iota : A \to A + B$ and $\kappa : B \to A + B$ is a relational sum of A and B. Then A + B together with $\iota, \kappa, \iota, \kappa$ is a biproduct with respect to + and linear composition.

- Provide an categorical/algebraic structure for matrices over a sup-semiring.
- ② Study the basic theory of these algebraic structures.
- Investigate a pseudo-representation theorem similar to the matrix representation for allegories.
- Apply the theory to real world examples.
- **6** ...

Thank you for your attention!

Questions?

