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Introduction
Contents:

We use Dedekind categories as an algebraic structure for set-theoretic
relations without complements.
We present purely algebraic definitions of “to be bipartite” and “to
possess no odd cycles”.
We prove that both notions coincide.

This generalises D. Kőnig’s well-known theorem (Mathematische Annalen
77, pp. 453-465, 1916)

from undirected graphs to abstract relations,
to models such as L-relations that are different from set-theoretic
relations.

For set-theoretic relations the proof immediately leads to an algorithm.
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Dedekind Categories
Specific categories with typed relations R : X↔Y as morphisms, which
generalise relation algebra by using residuals instead of complements.

Axioms:
Complete distributive lattice for union, intersection, ordering, empty
and universal relation.
Associativity of composition and that identity relations are neutral.
Monotonicity of transposition.
(RT)T = R and (R;S)T = ST;RT.
Modular law Q;R ∩ S ⊆ Q;(R ∩ QT;S).
Q;R ⊆ S if and only if Q ⊆ S/R.

Most of the well-known complement-free relation-algebraic rules already
hold in a Dedekind category. R∗ denotes reflexive-transitive closure and
R+ denotes transitive closure.
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The Main Result
Definition (Bipartition)
Given a (homogeneous) relation R, then (v ,w) is a bipartition of R if

v , w vectors, i.e., v ;L = v and w ;L = w .
v ∩ w = O,
R ⊆ v ;wT ∪ w ;vT.

If there exists a bipartition, then R is called bipartite.

If R, v and w are from a relation algebra (i..e., complements exists), then
each bipartition (v ,w) of R leads to the bipartition (v , v) of R.

Theorem (Kőnig’s theorem on Dedekind categories)
Let R be a relation. Then we have:

R bipartite ⇐⇒ R;(R;R)∗ ∩ I = O
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The First Direction

Lemma 1 (Properties of disjoint vectors)
Let v and w be vectors with v ∩ w = O. Then we have:
(1) vT;w = O and wT;v = O.
(2) v ;vT ∪ w ;wT is transitive.
(3) (v ;wT ∪ w ;vT);(v ;wT ∪ w ;vT) ⊆ v ;vT ∪ w ;wT.

Theorem 2 (Bipartitions consist of stable sets)
Let R be a relation and v ,w be vectors with v ∩ w = O. Then we have:

R ⊆ v ;wT ∪ w ;vT ⇐⇒


R;v ⊆ w ∧
R;w ⊆ v ∧
R ⊆ (v ∪ w);(v ∪ w)T
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Theorem 3 (Bipartite implies no odd cycles)
Let R be a relation and v ,w be vectors. Then we have:

(v ,w) bipartition of R =⇒ R;(R;R)∗ ∩ I = O

Proof: Using the modular law in the first step, we obtain

v ;wT ∩ I ⊆ v ;(wT ∩ vT;I) = v ;(v ∩ w)T = O,

and w ;vT ∩ I = O follows similarly. Now, we get the claim as follows:

R;(R;R)∗ ∩ I ⊆ R;((v ;wT ∪ w ;vT);(v ;wT ∪ w ;vT))∗ ∩ I assumption
⊆ R;(v ;vT ∪ w ;wT)∗ ∩ I Lem. 1 (3)
= R;(I ∪ (v ;vT ∪ w ;wT)+) ∩ I property clos.
= R;(I ∪ v ;vT ∪ w ;wT) ∩ I Lem. 1 (2)
= (R ∪ R;v ;vT ∪ R;w ;wT) ∩ I
⊆ (R ∪ w ;vT ∪ v ;wT) ∩ I Thm. 2 “⇒′′
= (w ;vT ∪ v ;wT) ∩ I assumption
= (w ;vT ∩ I) ∪ (v ;wT ∩ I)
= O aux. results
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The Remaining Direction: Problem Reduction
Theorem 4 (Reduction to symmetric relations)
Let R be a relation and v ,w be vectors. Then we have:

R ⊆ v ;wT ∪ w ;vT ⇐⇒ R ∪ RT ⊆ v ;wT ∪ w ;vT

Hence, for all relations R it suffices to prove:

R = RT ∧ R;(R;R)∗ ∩ I = O =⇒ R bipartite

But symmetry of R implies symmetry of its reflexive-transitive closure R∗.
Hence, for all relations R it suffices to prove:

R∗ = (R∗)T ∧ R;(R;R)∗ ∩ I = O =⇒ R bipartite
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Theorem 5 (Main theorem for the remaining direction)
Let R be a relation, R∗ = (R∗)T and u be a vector such that

(a) R;(R;R)∗;u ∩ u = O (b) R ⊆ R∗;u;uT;R∗.

Then (v ,w) is a bipartition of R if we define v ,w as follows:

v := (R;R)∗;u w := R;v = R;(R;R)∗;u

Graph-theoretic interpretations:
Condition (a): No vertices of the set modeled by u are connected by
an odd path.
Condition (b): If (x , y) is an arc, then both vertices are reachable
from the set modeled by u.
Definition of v : Models the set of vertices which are reachable from
the set modeled by u via an even path.
Definition of w : Models the set of vertices which are reachable from
the set modeled by u via an odd path.
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Hence, for all relations R it suffices to prove:

R∗ = (R∗)T ∧
R;(R;R)∗ ∩ I = O

}
=⇒


∃ u : u = u;L ∧

: R;(R;R)∗;u ∩ u = O ∧
: R ⊆ R∗;u;uT;R∗

It is remarkable that also the converse of Theorem 5 is valid such that, in
general, we have the following characterisation of bipartite relations:

Theorem 6 (Characterisation)
Let R be a relation and R∗ = (R∗)T. Then we have:

R bipartite ⇐⇒


∃ u : u = u;L ∧

: R;(R;R)∗;u ∩ u = O ∧
: R ⊆ R∗;u;uT;R∗
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The Remaining Direction: Solution
The idea in terms of graphs;

Let R : X↔X be the symmetric adjacency relation of an undirected
graph G = (X ,E ) without odd cycles. Then:

R;(R;R)∗ ∩ I = O

From R = RT we get R∗ = (R∗)T such that:

R∗ is an equivalence relation

Consider X/R∗, i.e., the set of connected components of G .
Select from each connected component a single vertex and combine
all these vertices to a subset U of X .
If u is a vector that models U as subset of X , then it fulfills (a) and
(b) of Theorem 5 and we are done.
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Means for the selectipn of the vertices from the connected components:

Axiom 7 (Relational axiom of choice)
For all relations R there exists a relation F such that:

(1) F T;F ⊆ I (univalent) (2) F ⊆ R (3) F ;L = R;L

Theorem 8 (P. Freyd, A. Scedrov, M. Winter)
For each (partial) equivalence relation P there exists a relation S with

(1) S;ST = P (2) ST;S = I

and all relations with these properties are isomorphic.

S is called a splitting of P and if P is a set-theoretic equivalence relation
on X , then the canonical epimorphism π : X → X/P is a splitting.
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Lemma 9
Assume Axiom 7 to be true and let R be a relation such that R∗ = (R∗)T.
Then there exist

a splitting S of R∗,
a relation F with F T;F ⊆ I, I ⊆ F ;F T (total) and F ⊆ ST.

Theorem 10 (Existence of u)
Assume Axiom 7 to be true and let R be a relation such that

R∗ = (R∗)T R;(R;R)∗ ∩ I = O.

If S is a splitting of R∗ and F a mapping such that F ⊆ ST, then we get

(a) R;(R;R)∗;u ∩ u = O (b) R ⊆ R∗;u;uT;R∗

if we define the vector u as u := F T;L.
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Proof: To prove (a) we start with

F ;R;(R;R)∗;F T ⊆ F ;R∗;F T property clos.
= F ;S;ST;F T S splitting of R∗
⊆ ST;S;ST;S F ⊆ ST

= I;I S splitting
⊆ F ;F T F total

Now, (a) can be shown as follows:

R;(R;R)∗;u ∩ u = R;(R;R)∗;F T;L ∩ F T;L definition u
= F T;L ∩ R;(R;R)∗;F T;L
⊆ F T;(L ∩ F ;R;(R;R)∗;F T;L) modular law
= F T;F ;R;(R;R)∗;F T;L
= F T;(F ;R;(R;R)∗;F T ∩ F ;F T);L aux. result
= F T;F ;(R;(R;R)∗ ∩ I);F T;L F univalent
= O assumption
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Verification of (b):

R ⊆ R∗ property clos.
= S;I;ST S splitting of R∗
⊆ S;F ;F T;F ;F T;ST F total
⊆ S;ST;F T;F ;S;ST as F ⊆ ST

= R∗;F T;F ;R∗ S splitting
⊆ R∗;F T;L;F ;R∗

= R∗;F T;L;(F T;L)T
;R∗

= R∗;u;uT;R∗ definition u

Theorem 11 (No odd cycles implies bipartite)
Assume Axiom 7 to be true and let R be a relation. Then we have:

R;(R;R)∗ ∩ I = O =⇒ R is bipartite
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Computing Bipartitions

Assumption:
A set-theoretic relation R : X↔X on a finite set X with symmetric
R∗ and R;(R;R)∗ ∩ I = O.

Goal:
A relational program that computes a vector v : X↔ 11 such that
(v , v) is a bipartition of R.

Idea, following the proof of the “remaining direction”:
Compute a splitting S of R∗.
Compute a mapping F such that F ⊆ ST.
Compute v := (R;R)∗;F T;L.
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Relational program for computing a splitting of an equivalence relation:

{ I ⊆ P ∧ P = PT ∧ P;P ⊆ P }
w := point(P;L);
while P;w 6= P;L do

w := w ∪ point(P;w ∩ P;L) od
{w = w ;L ∧ P ∩ w ;wT ⊆ I ∧ w ;L ⊆ P;L ∧ P;w = P;L }
S := P;inj(w)T

{ S;ST = P ∧ ST;S = I }

Formal assertion-based verification by R.B. and M. Winter (Acta Informa-
tica 47, pp. 77-110, 2010) using that point(v) selects a point from a non-
empty vector, axiomatised by,

point(w);L = point(w) point(w) 6= O point(w);point(w)T ⊆ I,

and inj(w) is the embedding mapping generated by w , axiomatised by

inj(w)T;inj(w) ⊆ I inj(w);inj(w)T = I inj(w)T;L = w .
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The proof outline remains also correct if its relational program and the
assertions are modified as follows:

{ I ⊆ P ∧ P = PT ∧ P;P ⊆ P }
w := point(P;L);
while P;w 6= P;L do

w := w ∪ point(P;w ∩ P;L) od
{ I ⊆ P ∧ w = w ;L ∧ P ∩ w ;wT ⊆ I ∧ w ;L ⊆ P;L ∧ P;w = P;L }
S := P;inj(w)T

{ I ⊆ P ∧ ∃S : S = P;inj(w)T ∧ S;ST = P ∧ ST;S = I }
xxxxxxxxxxxxxxxxxxx
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The new post-condition implies that there exists a splitting S of P with

inj(w) = inj(w);I ⊆ inj(w);PT = (P;inj(w)T)
T
= ST.

The axioms of inj(w) say that inj(w) is a mapping. So, we can take inj(w)
as F and get that F becomes superfluous by an axiom of inj(w):

v := (R;R)∗;inj(w)T;L = (R;R)∗;w

Final program:

{R∗ = (R∗)T ∧ R;(R;R)∗ ∩ I = O }
P := R∗;
w := point(P;L);
while P;w 6= P;L do

w := w ∪ point(P;w ∩ P;L) od
v := (R;R)∗;w
{ (v , v) bipartion of R }
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RelView-function for testing a set-theoretic relation R to be bipartite:

isbipartite(R) =
empty(R * refl(trans(R*R)) & I(R)).

RelView-program for computing for a set-theoretic bipartite relation R a
vector v such that (v , v) is a bipartition of R:

bipartition(R)
DECL P, v, w
BEG P = refl(trans(R));

w = point(dom(P));
WHILE -eq(P*w,dom(P)) DO

w = w | point(-(P*w) & dom(P)) OD;
v = refl(trans(R*R)) * w
RETURN v

END.
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Concluding Remarks
The formality of algebraic proofs and their primary use of rewriting is
a vantage point for the use of tools for theorem proving.
Concerning this work, we startet with the automated theorem prover
Prover9.
Prover9 was not able to verify the more complex results without any
user interaction.
These restrictions became so serious that the change to a proof as-
sistant was virtual essential.
With the proof assistant Coq and the library “Relation algebra and
KAT in Coq” from

http://perso.ens-lyon.fr/damien.pous/ra/

(author: D. Pous) we have verified all proofs of the paper.
The proof scripts for all Coq proofs can be found in the web.

http://media.informatik.uni-kiel.de/Ramics2015/
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