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Abstract
Galois is a domain specific language supported by the Galculator
interactive proof-assistant prototype. Galculator uses an equational
approach based on Galois connections with indirect equality as
an additional inference rule. Galois allows for the specification of
different theories in a point-free style by using fork algebras, an
extension of relation algebras with expressive power of first-order
logic. The language offers sub-languages to derive proof rules from
Galois connections, to express proof tactics, and to organize axioms
and theorems into modular definitions.

In this paper, we describe how the algebraic theory underlying
the proof-method drives the design of the Galois language. We
provide the syntax and semantics of important fragments of Galois
and show how they are hierarchically combined into a complete
language.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods; D.3.2 [Language Classifications]:
Specialized application languages

General Terms Theory, Languages, Design

Keywords Fork algebras, Galois connections, Proof assistant,
DSL

1. Introduction
Domain-specific languages (DSLs) are little languages focussed
on expressing the concepts of a specific domain [van Deursen
et al. 2000]. DSLs have been defined and implemented for do-
mains such as text processing (e.g. LATEX [Lamport 1986]), finan-
cial services (e.g. RISLA [van den Brand et al. 1996]), mark-up
(e.g. HTML [Berners-Lee and Connolly 1995]), and many more.
For mathematicians, DSLs are a standard instrument, in the sense
that new mathematical notations are introduced continuously for
capturing concepts and proofs in various theoretical domains. Usu-
ally, these DSLs are not supported by a compiler or other tools, as
is the case for the DSLs mentioned above.

In this paper we will explore the development of a family of
DSLs (named Galois) for a specific mathematical domain, viz. Ga-
lois connections [Ore 1944] and we will show the role of these
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DSLs in associated tool support for theorem proving and proof
assistance. This tool, called Galculator (= Galois connection +
calculator) [Silva and Oliveira 2008a], takes Galois connections
as primitives and exploits their algebraic properties in proofs. Basi-
cally, a Galois connection is a pair of functions with “good” preser-
vation properties which connect two domains. Often, problems in
one of the domains are easier to solve than problems in the other
domain. Using a Galois connection it is possible to map a “hard”
problem to an equivalent but easier one in the other domain, to
find its solution, and then map it back to the result in the origi-
nal domain (this is known as “shunting”). Galois connections are
pervasive across many domains of application [Erné et al. 1993],
although they are mostly known in computer science because of
their key role in the theory of abstract interpretation [Cousot and
Cousot 1977].

Galculator uses an algebraic approach to theorem proving
based on fork algebras [Frias et al. 2004], an extension of rela-
tion algebras [Tarski and Givant 1987] which has the same expres-
sive and deductive power of first-order logic. Fork algebras require
just one inference rule, namely substitution of equals by equals,
allowing for equational proofs in a calculational style. This means
that essentially there is no difference between verification (theorem
proving) and construction (calculus).

During proofs by symbolic manipulation, sometimes it would
be helpful to have some semantic information about the operators
at hands. Galois connections provide for such a mechanism: in fact,
they establish an implicit (semantic) definition of two functions,
each one in terms of the other. Nevertheless, their “shunting” prop-
erty can be used syntactically in equational proofs for changing
the domain of the problem. We show how Galois connections can
be integrated with fork algebras and effectively used in proofs by
adding the so-called indirect equality principle as an inference rule.

Galois is a strongly typed language: expressions are well-
formed only if they are well-typed. This often allows for error
detection during reasoning while providing deeper insight about
some definitions. This differs from most theorem provers which use
types as propositions, exploiting the Curry-Howard isomorphism.
Moreover, types can be used to ensure that certain hypothesis are
met without having to discharge them explicitly, e.g., in the case of
functions, the type ensures that simplicity and totality conditions
are met.

Structure of the paper. Section 2 introduces a simple example
to help the understanding of the concepts used in this paper. Sec-
tions 3 and 4 describe the theoretical background while the main
contributions are presented in Sections 5 and 6. In Section 3, fork
algebras are described as an extension of relation algebras. It is also
discussed the theoretical foundations of the point-free transform
which allows to express any first-order formula as a fork algebra
expression without variables. Section 4 explains the basic theory
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behind Galois connections and their algebra, as well as how to use
them together with the indirect equality principle. The combination
of Galois connections, indirect equality and fork algebras in proofs
is introduced in Section 5. The syntax and semantics of the Galois
language is presented in Section 6. Section 7 discusses some im-
plementation issues of the language. Section 8 gives an account of
the related work. Finally, Section 9 contains the main conclusions
and a discussion of future work.

2. Motivating example
In this section, we will clarify the objectives of the Galois language
by presenting a simple example of a proof about whole division.
The explanation is introductory and very lightweight; later sections
will provide for deeper understanding of the involved concepts.

Suppose that we want to prove the equality (a ÷ b) ÷ c =
a ÷ (c × b), for b, c "= 0. This proof is trivial when working
with real number division (in a field, in general). However, in the
domain of natural numbers, multiplicative inverses do not always
exist. Looking closer at the properties of whole division we can see
that the general property holding for real division can be weakened
to inequalities,

c× b ! a ⇔ c ! a÷ b (b "= 0) (1)

thus obtaining a property valid in the natural numbers. In fact,
Equation (1) establishes a Galois connection between adjoint func-
tions (×b) and (÷b), for b "= 0. Thus, the proof follows with a
universally quantified variable n over natural numbers:

n ! (a÷ b)÷ c

⇔ { by (1) }

n× c ! a÷ b

⇔ { (1) again }

(n× c)× b ! a

⇔ { multiplication is associative }

n× (c× b) ! a

⇔ { (1) again }

n ! a÷ (c× b)

That is, every natural number n at most (a÷ b)÷ c is also at most
a ÷ (c × b), and vice versa. By the indirect equality principle, the
two expressions are equal. The reader unaware of this way of indi-
rectly establishing algebraic equalities will recognize that the same
pattern of indirection is used when establishing set equality via the
membership relation, cf. A = B ⇔ 〈∀ x :: x ∈ A⇔ x ∈ B〉1 as
opposed to, e.g. circular inclusion: A = B ⇔ A⊆B ∧B ⊆A.

This proof illustrates the essence of the use of Galois connec-
tions: a problem about whole division is transformed into a problem
about multiplication. The fundamental step is the use of the asso-
ciativity property of multiplication.

Galculator and Galois DSL can be used to conduct this proof
using fork algebraic terms instead of point-wise operations. We can
define a module with the operations and the axioms (and possibly
additional theorems) of natural numbers arithmetics. However, here
we just present the fragment useful for this proof.

We start by declaring (using Galois syntax) multiplication Mul
and division Div as binary functions on natural numbers and Leq
as a partial order on natural numbers.

1 We use notation 〈∀ x : R : T 〉meaning for all x in the range R such that
T holds. This notation is naturally generalized to other quantifiers.

Mul : Nat <- Nat >< Nat;
Div : Nat <- Nat >< Nat;
Leq : Ord Nat;

In this proof, the only axiom we need about the declared opera-
tors is the associativity of multiplication:
Axiom Mul_assoc :=

Fun [Mul<a> . Mul<b>] = Fun [Mul<Mul<a,b>>];

By now, this definition may seem awkward but it will be explained
latter on. Notation Mul<a> means that the right argument of the
multiplication is fixed with value a (this is called the right section).
In the case Mul<a,b> both arguments of multiplication are fixed.
The Fun [...] notation is used to embedded functions on rela-
tions as required by the type system.

The proof further requires two additional axioms of fork al-
gebras: the associativity of composition and the contravariance of
converse and composition:
Axiom Comp_assoc := (r . s) . t = r . (s . t);
Axiom Contravariance := (r . s)* = s* . r*;

Finally, the Galois connection given by Eq. (1) is declared by
stating the two adjoint functions and the two associated partial
orders:
Galois Whole_division := (Mul<b>) (Div<b>) Leq Leq;

where Mul<b> represents the (×b) adjoint, Div<b> represents the
(÷b) adjoint and Leq represents the ! order.

After declaring the theory, we can use the interactive proof
assistant to build the proof. Another alternative is to declare the
statement to prove as a theorem so that it can be used later on. For
this purpose, a sequence of proof steps must be provided so that
Galculator can verify its validity:

Theorem Div_mult :=
Fun [Div<c> . Div<b>] = Fun [Div<Mul<c,b>>] {
indirect_left Leq > left >
inv Comp_assoc > once inv shunt Whole_division >
Comp_assoc > once inv shunt Whole_division >
inv Comp_assoc > once inv Contravariance >
once Mul_assoc > once shunt Whole_division >
indirect_end > qed };

Details about the meaning of scripts of this kind will be given
in due time. For the moment, it suffices to tally the script’s step
with the calculation provided earlier on. Some individual steps
(indirect_left, indirect_end, left) are related to the use of
indirect equality; qed completes the proof script. The other steps
are either the application of the axioms, or the properties of the
Galois connection (1) using a proof strategy labelled by keyword
once. Individual steps are combined with sequential composition
and follow the same structure as the calculational version.

3. Relations
In this section, we start by presenting binary relations in a set-
theoretical perspective. This is useful for giving a natural interpre-
tation of fork algebras in terms of concrete relations. Then, we de-
scribe fork algebras as an extension of relation algebras and discuss
their interpretation and expressiveness. Finally, the foundations of
the point-free transform are presented.

3.1 Binary relations
The concepts introduced in this section are quite standard and can
be found, e.g., in [Backhouse and Backhouse 2004, Oliveira and
Rodrigues 2004].

Given two sets, A and B, a binary relation R is a subset of their
Cartesian product B × A def

= {∀ b, a : b ∈ B ∧ a ∈ A : (b, a)}.
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We will write B R←−− A to denote such a relation. When A and B
coincide, the relation is said to be an endorelation.

We shall distinguish three special relations: the empty relation
⊥ which does not relate any elements at all (corresponds to the
empty subset of a Cartesian product); the universal relation -
which relates every pair of elements (coincides with the Cartesian
product B ×A); and the identity relation id which relates equal to
equal elements (consequently, an endorelation).

The operations on relations are standard extensions of the re-
spective operations on the underlying set of pairs. Thus, the con-
verse of a relation B R←−− A, denoted by A R∪←−−− B, is defined
as (a, b) ∈ R∪ def⇔ (b, a) ∈ R. The meet (intersection) and join
(union) of two relations B R←−− A and B S←−− A, are defined, re-
spectively, as (b, a) ∈ R ∩ S

def⇔ (b, a) ∈ R ∧ (b, a) ∈ S , and
(b, a) ∈ R ∪ S

def⇔ (b, a) ∈ R ∨ (b, a) ∈ S . When intermediate
elements exist, relations can be composed. Thus, the composition
of relations C S←−− B and B R←−− A, denoted by C S◦R←−−− A, is
defined as (c, a) ∈ S ◦ R

def⇔ 〈∃ b ∈ B :: cSb ∧ bRa〉.
An ordering can be defined on relations, reflecting the subset

ordering on sets of pairs. Thus, relation R is a sub-relation of S ,
denoted as R⊆S , if and only if, all elements related by R and also
related by S , i.e., R ⊆ S

def⇔ 〈∀ b, a :: bRa⇒ bSa〉.
Following the convention, we will sometimes write bRa to

denote that the pair (b, a) belongs to the relation R, i.e. (b, a) ∈ R.

Functions. Functions are simple and total relations. A relation f
is simple if and only if f∪◦f⊆id and total if and only if id⊆f∪◦f .
We use uppercase identifiers for general relations and lower case
identifiers for the specific case of functions.

Orders. A preorder 3 is a reflexive (id⊆ 3) and transitive (3
◦ 3 ⊆ 3) relation. A partial order is an antisymmetric (3 ∩ 3∪

⊆id ) preorder. Due to their non-symmetric behavior, the standard
notation for orderings includes symbols such as 3, 4 and !.

3.2 Relation and fork algebras
Relation algebras. The formalization of relation algebras pre-
sented below follows Tarski and Givant [1987]. However, our nota-
tion is different and follows the traditional notation used for binary
relations. Moreover, like Priss [2006], we include all operators in
the Boolean algebra reduct, while Tarski and Givant [1987] use a
minimal signature.

A relation algebra is a tuple (R,∪,∩,¬,⊥,-, ◦,∪ , id) such
that, for any r, s, t ∈ R, the following axioms hold:

(R,∪,∩,¬,⊥,-) is a Boolean algebra (2)
r ◦ (s ◦ t) = (r ◦ s) ◦ t (3)

r ◦ id = r (4)
(r∪)∪ = r (5)

(r ∪ s) ◦ t = r ◦ t ∪ s ◦ t (6)
(r ∪ s)∪ = r∪ ∪ s∪ (7)
(r ◦ s)∪ = s∪ ◦ r∪ (8)

r∪ ◦ ¬(r ◦ s) ⊆ ¬s (9)

where r⊆ s is defined as r ∩ s = r (or, equivalently, r ∪ s = s).
We should notice that although points are omitted from definitions,
relation variables (such as r, s and t above) are used in definitions
as placeholders for particular relations.

Fork algebras. Several axiomatizations of fork algebra exist; the
following is adapted from Frias et al. [2004]. A fork algebra ex-
tends a relation algebra by adding a binary operator called fork,

denoted by∇, and the following axioms, for any r, s, t, u ∈ R:

r∇ s = (π∪1 ◦ r) ∩ (π∪2 ◦ s) (10)
(r∇ s)∪ ◦ (t∇ u) = (r∪ ◦ t) ∩ (s∪ ◦ u) (11)

π1 ∇ π2 ⊆ id (12)

where π1
def
= (id∇-)∪ and π2

def
= (-∇id)∪ are quasi-projections.

Using the fork operator, it is possible to define a binary product
operator in relations × as

r × s
def
= (r ◦ π1)∇ (s ◦ π2) (13)

Interpretation. Relation and fork algebras can be interpreted in
terms of proper relation algebras and proper fork algebras, respec-
tively [Tarski and Givant 1987, Frias et al. 2004]. These are alge-
bras where the elements are binary relations and operations coin-
cide with their set-theoretical counterparts. By establishing an iso-
morphism between a relation (corresp. fork) algebra and a proper
relation (corresp. fork) algebra, a natural interpretation of the ab-
stract symbols in terms of binary relation is established [Tarski and
Givant 1987].

A completeness result [Frias et al. 2004] yields that any property
that holds for binary relations can be derived syntactically using
the abstract operations and respective axioms of fork algebra. The
converse is also true, syntactically valid derivations correspond to
true properties of binary relations.

Expressiveness. Tarski and Givant [1987] show that relation al-
gebras are equivalent to a three variable fragment of first-order
logic. The addition of the fork operator allows fork algebras to over-
come lack of expressiveness of relation algebras. Therefore, every
first-order formula can be expressed as a point-free fork algebra
term and every first-order sentence can be translated to an equa-
tion on point-free fork algebra terms. Moreover, for each deriva-
tion in first-order logic, there is a correspondent derivation from ax-
ioms of fork algebra using equational reasoning. Frias et al. [2004]
show that this result can be extended to other logics as well (non-
classical), by using some extensions of the basic fork algebra.

3.3 Point-free transform
The idea of abstracting variables from terms has led to the so-
called point-free style and the point-free transform (PF-transform
for short) [Tarski and Givant 1987, Bird and de Moor 1997, Backus
1978, Oliveira and Rodrigues 2004]. The basic principle is to estab-
lish an equivalence between a relation operator and its definition in
set theory. Thus, we have

〈∀ x, y :: x(A ∪ B)y⇔ xAy ∨ xBy〉 (14)
〈∀ x, y :: x(A ∩ B)y⇔ xAy ∧ xBy〉 (15)
〈∀ x, y :: x(¬A)y⇔ ¬(xAy)〉 (16)
〈∀ x, y :: x(A∪)y⇔ yAx〉 (17)
〈∀ x, y :: x(A ◦ B)y⇔ 〈∃ z :: xAz ∧ zBy〉〉 (18)
〈∀ x, y :: xidy⇔ x = y〉 (19)
〈∀ x, y :: x-y⇔ true〉 (20)
〈∀ x, y :: x⊥y⇔ false〉 (21)
〈∀ x, y, z :: (x, y)(A∇ B)z⇔ xAz ∧ yBz〉 (22)
〈∀ x, y, z, w :: (x, y)(A× B)(w, z)⇔ xAw ∧ yBz〉 (23)

Additionally, extensional equality and inequality of relation is also
defined

A = B ⇔ 〈∀ x, y :: xAy⇔ xBy〉 (24)
A⊆ B ⇔ 〈∀ x, y :: xAy⇒ xBy〉 (25)

Frias et al. [2004] discuss that one can perform the PF-transform
by manipulating a first-order formula until reaching the definitional
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form and then replacing it by the corresponding relation operator.
In alternative, a mapping can be used to algorithmically perform
the translation; however, the result terms may not be amenable to
use in further derivations [Frias et al. 2004].

Using the definitions, more complex translation rules that en-
compass recurring patterns can be derived. One particular rule
which is specially helpful in removing variables from expressions
involving functions is

〈∀ b, a :: (f b) R (g a) ⇔ b(f∪ ◦ R ◦ g)a〉 (26)

where f and g are functions. In fact, 〈∀ b, a :: (f b) R (g a)〉 is just
a shorthand for 〈∀ b, a :: 〈∃ b′, a′ :: b′fa ∧ b′Ra′ ∧ a′ga〉〉 from
which the above definition arises immediately by the application of
the converse to f and the definition of composition twice. In fact,
the point-free style is mostly based on composition which becomes
the main “glue” among terms.

4. Galois connections and indirect equality
Galois connections’ properties are useful for proofs. Nevertheless,
they are mostly used for changing the domain of a problem by
means of a “shunting” rule. This style is well-suited for proofs by
indirect equality.

This section begins with an overview of Galois connections
and their algebraic properties. Then, Section 4.2 introduces indirect
equality and how it can be used with Galois connections in proofs.

4.1 Galois connections
Recall the concept of a preorder (reflexive and transitive relation).
Given two preordered sets (A,3A) and (B,3B) and two functions
B f←−− A and A g←− B, the pair (f, g) is a Galois connection if
and only if, for all a ∈ A and b ∈ B:

f a 3B b ⇔ a 3A g b . (27)

Function f (resp. g) is referred to as the lower adjoint (resp. upper
adjoint) of the connection.

We can display Galois connections using the graphical notation
introduced in [Silva and Oliveira 2008a]

A
f

!!

#A
""

B
g

##

#B
$$

which we in-line in text by writing (A,3A)
(f,g)←−−− (B,3B). Both

notations represent the source domain of the lower adjoint on the
left.

Partial orders. In the above definition, Galois connections are re-
quired to be defined between preordered sets. However, partial or-
ders (anti-symmetric preorders) are usually needed, since preorders
are too “weak” for most applications such as indirect equality.

Sections and families of Galois connections. Although Galois
connections’ adjoints are unary functions, many important exam-
ples of Galois connections arise from binary operators. Therefore,
in order to form Galois connections, one of their arguments must be
fixed so that they become unary functions on the other argument.

In general, given binary operator θ, one defines two unary sec-
tions2, (aθ) and (θb), for every suitably typed a and b, such that
(aθ)x = a θ x and (θb)y = y θ b, respectively. If Eq. (27) holds
when we replace (θc) for f then (A,3A)

(θc,φc)←−−−− (B,3B) is a

2 This terminology is taken from functional programming, where sections
are a very popular programming device [Peyton Jones 2003]. It is also used
by Backhouse et al. [2000]

Galois connection. Thus, instead of having just one Galois connec-
tion, we build a family of Galois connections indexed by the frozen
argument. The definition for the case of right section is analogous.
Building new connections. A most useful ingredient of Galois
connections lies in the fact that they build up on top of themselves
thanks to a number of combinators which enable one to construct
new connections out of existing ones.

The simplest of all Galois connections is the identity,
(A,3A)

(id,id)←−−−− (A,3A), where adjoints are instances of the
polymorphic identity function id . Moreover, two Galois connec-
tions (A,3)

(f,g)←−−− (B,4) and (B,4)
(h,k)←−−− (C, !) with match-

ing preorders can be composed, forming Galois connection
(A,3)

(h◦f,g◦k)←−−−−−− (C, !). (Note how adjoints compose in reverse
order.) Composition is an associative operation and the identity Ga-
lois connection is its unit.

The particular case in which both orders are equalities boils
down to both adjoints being isomorphisms (bijections). The con-
verse combinator on Galois connections switches adjoints while
inverting the orders, i.e., from (A,3)

(f,g)←−−− (B,4) one builds the
converse connection (B,6)

(g,f)←−−− (A,7).
Moreover, every relator F 3 preserves Galois connections.

Therefore, from (A,3)
(f,g)←−−− (B,4) one infers, for every such re-

lator, (FA,F 3)
(Ff,Fg)←−−−−− (FB,F 4). When (A,3) and (B,4)

are partial orders, the relatorF must distribute through binary inter-
sections for this property to hold [Backhouse and Backhouse 2004].
This construction extends to binary relators such as, for instance,
the product A × B which pairs elements of A with elements of B
ordered by the pairwise orderings.
Algebra of Galois connections. Using the above operations, we
can define an algebra of Galois connections as a tuple (G, ◦, id ,∪ )
satisfying the following axioms, for any g, h, j ∈ G:

g ◦ (h ◦ j) = (g ◦ h) ◦ j (28)
g ◦ id = g = id ◦ g (29)

(g ◦ h)∪ = h∪ ◦ g∪ (30)
(g∪)∪ = g (31)

This structure is just a composition monoid (G, ◦, id) with a
converse operation. Clearly, Galois connections are models for
algebras of Galois connections, where the validity of these axioms
when the elements of G are interpreted as Galois connections can
be easily verified using the definitions.
Applications. Abstract interpretation [Cousot and Cousot 1977,
Cousot 2001, Backhouse and Backhouse 2004] is perhaps the most
well-known application of Galois connections, in which they are
used to build analysis. Their algebra allows for combining analysis
while ensuring, by construction, the preservation of certain proper-
ties. Another relevant area where Galois connections play a central
role is that of formal concept analysis [Ganter and Wille 1999].

However, Galois connections are pervasive: references [Back-
house et al. 2002, Backhouse 2004, Erné et al. 1993, Denecke
et al. 2004, Melton et al. 1986, Wang et al. 2008] give an extensive
account of examples arising from several domains. Among such
examples, applications can be found, e.g., in arithmetics, data re-
finement, temporal algebra, separation logic, weakest liberal pre-
condition calculus and residuation theory. The later includes, for
instance, residuated semigroups, formal languages, residuated lat-
tices, Heyting algebras, Boolean algebras, regular algebras and re-
lation algebras.

3 Relators are the relational counterpart of functors. See e.g. [Aarts et al.
1992, Bird and de Moor 1997] for details.
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4.2 Indirect equality
The principle of indirect equality [Aarts et al. 1992] allows for
establishing equality between elements of a partial order by proving
that each one is the maximum (or minimum) of the same set.
Formally, for a poset (A,3) and a, b ∈ A

a = b ⇔ 〈∀ x ∈ A :: x 3 a⇔ x 3 b〉 (32)

The anti-symmetry of a partial order is fundamental to establish
the equality. For an insightful discussion of the application of this
principle to preorders see [Dijkstra 1991].

Indirect equality is the proof technique used in the example pro-
vided in Section 2. That simple (non inductive) proof shows the cal-
culational power of Galois connections operated via indirect equal-
ity, which are applicable to arbitrarily complex problem domains.
Note that we could use the composition of Galois connections to
fuse the first two shunting steps (without the need of using the as-
sociativity steps in the point-free proof).

References [Aarts et al. 1992, Backhouse and Backhouse 2004,
Backhouse 2004] provide an expressive account of such applica-
tions, ranging over the predicate calculus, number theory, paramet-
ric polymorphism, strictness analysis and so on. For a more elab-
orated description of proofs about whole division using indirect
equality and Galois connection see [Silva and Oliveira 2008a,b].

5. Putting Galois connections and fork algebras
together

In this section, all the ingredients will be put together to form a
coherent theory where proofs can be conducted. The main idea
is to take orders and functions as particular cases of relations and
accommodate them in the point-free fork algebra calculus.

As presented in Section 3.1, functions and orders are binary re-
lations with certain properties. Moreover, from the enunciated com-
pleteness result we know that an equivalence between the prop-
erties of binary relations and abstract fork algebra operations ex-
ists. Thus, functions and orders can be represented as fork algebra
terms provided that their specific properties are taken as hypothe-
sis. Then, the point-free transform is used to express Galois con-
nections and indirect equality without variables using fork algebra
formulæ.

Functions. When presenting theorems or statements to prove it
is usual to just say that some relation f is a function. However,
this implicitly adds both conditions about simplicity and totality
of f to the hypothesis. Using the natural interpretation of binary
relations as fork algebra terms presented in Section 3.1, simplicity
and totality are expressed, respectively, as f∪◦f⊆id and id⊆f∪◦f .

The identity relation is also a function, as can be easily verified.
Moreover, functions are closed under (relation) composition with
the identity as unit, forming a monoid [Bird and de Moor 1997].
The other fork algebra operations are not, in general, closed for
functions.

Orders. Indirect equality holds when working at least with partial
orders. Like in the case of functions, we are implicitly adding the
conditions about the reflexivity (id⊆ 3), transitivity (3 ◦ 3 ⊆ 3)
and antisymmetry (3 ∩ 3∪ ⊆id ) of an order 3 to the hypothesis
of a statement.

The identity relation is also a partial order. It corresponds to the
equality ordering which relates objects when they are equal. More-
over, partial orders are closed under converse (this corresponds to
the dual partial order).

Galois connections. Having established how functions and or-
ders related with fork algebras, let us express Galois connections
as point-free equalities. It is easy to see that the application of (26)

to both sides of (27) yields, for all suitably typed a, b

a(f∪ ◦3B ◦ id)b ⇔ a(id∪ ◦3A ◦ g)b

which leads to PF relational equality

f∪ ◦3B = 3A ◦ g (33)

once variables are removed (and also because the identity function
id is its own converse and the unit of composition). So we can deal
with logical expressions involving adjoints of Galois connections
by equating the corresponding PF-terms without variables.

Indirect equality. The indirect equality rule can also be formu-
lated without variables thanks to the PF-transform. Consider two
functions B f←−− A and B g←− A, where (B,4) is a partial order.
That

f = g ⇔ 4 ◦ f = 4 ◦ g (34)

(or, equivalently, f = g ⇔ f∪ ◦4 = g∪◦ 4) instantiates indirect
equality can be easily checked by putting variables back via (26).

However, Eq. (34) is not a point-free equality but an equivalence
between two point-free equalities. Like the substitution rule, it is a
meta-level result and should be used as an inference rule of the
system.

The usual application of indirect equality makes use of the
transitivity of equality. For instance, when trying to establish an
equality f = g, a partial order is composed with one of the
functions, e.g., 3 ◦ f . Then, the derivation follows by applying
other laws using the substitution rule until the expression 3 ◦ g
is obtained. By transitivity of equality,3 ◦ f = 3 ◦ g, and thus, by
indirect equality, we conclude that f = g.

Sections. The absence of variables in point-free representation
greatly simplifies the calculus and the implementation of a proof
engine. However, as it was introduced in Section 4.1 most inter-
esting examples of Galois connections arise as sections of binary
functions. This leads to a question: how to introduce sections of
functions in fork algebras?

Our solution is a trade-off between simplicity and the purity
of the point-free style. We introduce two sectioning operators, one
for left sections and another for right sections, that take binary
functions and turn them into unary functions by fixing one of
the arguments. We denote the left and right sections of a binary
function f by af and fb, respectively. Sometimes, such as in the
case of some associativity laws, both arguments must be fixed and
the function becomes a constant: we introduce another operator to
handle this case and denote it by afb.

The frozen arguments are constants and should be regarded
as indexes. Thus, functions fa and fb are different because they
have a different index, while functions with the same index are
equal. This introduces some kind of name semantics for indexes
that makes the implementation slightly more complicated but it is
a fair compromise between power and simplicity. Moreover, since
afb is a constant, it can only appear where constants can, i.e., as a
section of a binary function.

Point-free proofs. Using these principles, let us recall the proof
of Section 2 The fundamental step of that proof is the use of the
multiplication associative property which is expressed in point-free
as :

(×b) ◦ (×c) = × (c× b) (35)

The reader can verify that this is in fact the case by applying the PF-
transform defined in Section 3.3. We deviate from the convention
of using subscripts to denote sections of functions since, in this
example, it improves readability.
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The proof would be performed by Galculator as

! ◦ ((÷c) ◦ (÷b))

= { Associativity of composition (3). }

(! ◦ (÷c)) ◦ (÷b)

= { Galois connection (1) }

((×c)∪ ◦ !) ◦ (÷b)

= { Associativity of composition (3). }

(×c)∪ ◦ (! ◦ (÷b))

= { Galois connection (1). }

(×c)∪ ◦ ((×b)∪ ◦ !)

= { Associativity of composition (3). }

((×c)∪ ◦ (×b)∪) ◦ !
= { Contravariance of converse and composition (8). }

((×b) ◦ (×c))∪ ◦ !
= { Associativity of multiplication (35). }

(×(c× b))∪ ◦ !
= { Galois connection (1). }

! ◦ (÷(c× b))

∴ { Indirect equality (34). }

(÷c) ◦ (÷b) = ÷(c× b)

This proof in point-free style is equivalent to the previous one,
although a little bit longer because the explicit use of the associa-
tivity steps. It also illustrates the proof format of Galculator: sim-
ple equational steps provided with clear justifications. In fact, this
proof, tallies the example proof script given in Section 2.

6. The Galois language
In this section, the Galois DSL which underlies the design of the
Galculator is presented. We only describe the subset of the lan-
guage related with fork algebras, functions, orders and Galois con-
nections introduced in the previous sections. The complete lan-
guage has more modules in order to deal with definitions, rewriting
and derivations of rules but they lay outside the scope of this paper.

We start by introducing the language design principles that
have guided the development of Galois. The following sections
introduce the syntax, semantics and typing rules of its several sub-
languages.

6.1 Language design
Galois aims at taking advantage of the algebraic nature of the con-
cepts being represented, maintaining the combinatory style of fork
algebras and Galois connections. The notation tries to resemble the
mathematical symbols, being as intuitive as possible. Some trade-
offs were needed because it is hard to write symbols like - or ⊥
in text; meaningful keywords are used instead. However, we will
present just the abstract syntax and not the concrete language.

The complete language comprehends several modules or sub-
languages concerning the different aspects of the Galculator. Its
hierarchical structure is described in Fig. 1 where the shaded boxes
correspond to the fragments of the language described in this paper.
We start by giving a brief description of the other sub-languages:

Fork

Formula

Term

Module

Theorem
GC 

Definition
Definition Axiom Strategy

Type

 Galois 
connection

Rewriting 
Combinator

Derivation

Proof Step

FunctionOrder

Figure 1. Structure of the sub-languages of the Galois DSLs. The
arrows represent inclusion between languages; the shaded boxes
are the fragments described in this paper.

Module. Allows for organizing each theory in its own module by
grouping definitions of operations and Galois connections, ax-
ioms, theorems and proof strategies. Currently, modules are just
namespaces, not allowing any kind of parametrization. Defini-
tions are added to an environment mapping identifiers to defini-
tions. A theorem must provide its proof which is verified when
the module is loaded.

Type. A simple language for type declarations. The type system of
Galculator is presented by Silva and Oliveira [2008a].

Proof Step. Command language for handling proof steps, namely
sequencing of single steps, finalization of proofs and the intro-
duction of proofs by indirect equality.

Rewriting Combinator. The language of rewriting combinators
allowing for the application of proof steps (rewriting rules)
during proofs. Galculator uses a strategic term rewriting sys-
tem [Silva and Oliveira 2008a] which allows for building more
complex strategies from a small set of basic ones. The defined
strategies are similar to the ones proposed by Stratego [Luttik
and Visser 1997].

Derivation. Allows for the automatic derivation of equational
properties from Galois connections and free-theorems from
polymorphic functions. Once derived, these properties can be
used as rewriting rules in proofs.

Semantics. We specify the semantics of Galois by defining a se-
mantic function from the abstract syntax to the denoted mathemati-
cal objects. Each semantic function takes an environment (Σ, Γ, Θ)
where
• Σ is a mapping from identifiers into their respective definitions.

In the next sections, we will abuse notation and use Σ in dif-
ferent contexts with different meanings: it can be a mapping
from identifiers to fork terms, functions, orders or Galois con-
nections. We could define a product of mappings, one for each
concept, instead. However, it is always clear from the context
which mapping is being used and this improves readability.
Σ is a partial function that is it is not defined for all identifiers.
Thus, before applying it to an identifier i , we must verify if
it belongs to the domain of Σ: i ∈ dom(Σ). If this fails, the
expression is meaningless.

• Γ is an injective total function from variable names to variables.
Like Σ we also use Γ in different contexts with different mean-
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Formula e ::= Equal t t | Less t t

Term t ::= Ident i | Var v | Id | Top | Bot | Pi1 | Pi2

| Neg t | Conv t | Meet t t | Join t t | Comp t t

| Fork t t | Prod t t | Ord o | Fun f

Function f ::= FunctionIdent i | FunctionVar v | FunctionId

| FunctionComp f f

| RightSection f s | LeftSection s f

Section s ::= Const c | FunctConst f c c

Order o ::= OrderIdent i | OrderVar v | OrderId

| OrderConv o

GC g ::= GCIdent i | GCVar v | GCId | GCConv g

| GCComp g g

Variable v Identifier i Constant c

Figure 2. Abstract syntax of selected fragments of the Galois
DSL.

ings. Thus, it can map variable names into type, relation, func-
tion, orders or Galois connection variables.
Being total means that it is defined for all variable names and
that equal variable names are assigned to the same variable. In-
jectivity ensures that the same variable is not shared by different
variable names.

• Θ is an injective function from constant names to a set of in-
dex constants. Thus, each constant name is associated with an
index constant and an index constant cannot be shared by differ-
ent constant names. The index constants are used to introduce
sections of binary operations as introduced in Section 5.

Typing. We follow the traditional approach of presenting typing
rules for each abstract syntax constructor based on the types of its
components. An environment (Σ, Γ, Θ) is used: Σ is a mapping
from identifiers to their types; Γ is an injective function from
variable names to type variables; and Θ is an injective function
from constant names to their types. In fact, we can take (Σ, Γ, Θ)
as the same environment used before for semantics, by considering
that Σ, Γ and Θ return a value and its respective type. For instance,
Σ maps an identifier into a definition and its respective type, i.e.,
for an identifier i its definition is given by Σ(i) = expr and its
type is given by Σ(i) = t, meaning that expr : t (notation a : t
means that “a has type t”). Thus, Σ(i) : Σ(i), which we simply
write as i : Σ(i). When evaluating semantics, we only take the
definition, while in typing rules we only take the typing informa-
tion. Using this overloading, we define the following as axioms:

Σ, Γ, Θ $ i : Σ(i) Σ, Γ, Θ $ v : Γ(v) Σ, Γ, Θ $ c : Θ(c)

Σ and Γ are used in different contexts with different meanings, in
the same way as semantic functions. For types t1 and t2, we write
t1 × t2 to denote their product type; t1 ∼ t2 to denote a relation
between elements of types t1 and t2; t1 ← t2 to denote a function
between elements of types t1 and t2; and (t1,3t1) to denote a
partial order set t1.

6.2 Syntax
The abstract syntax of Galois is presented in Fig. 2. Orders and
functions are embedded in the fork language by Ord and Fun, re-
spectively. Although lacking in elegance, this decision is a trade-off
between the usual practice in mathematics of using an overloaded
notation, and the ease of implementation. In fact, this makes the

disambiguation of the concrete grammar much simpler. Otherwise,
a possible solution would be to extend the type system of Galcu-
lator to support some kind of type overloading Silva and Oliveira
[2008a].

6.3 Semantics
The selected fragment of the Galois DSL has no operational mean-
ing. The semantics of the language is almost straightforward for
most of the constructors: they denote the corresponding operation
in fork algebra.

We define a semantic function from the abstract syntax to fork
algebras formulæ, taking an environment (Σ, Γ, Θ).

CForm[[Equal r1 r2 ]](Σ, Γ, Θ)
.
=

CT [[r1 ]](Σ, Γ, Θ) = CT [[r2 ]](Σ, Γ, Θ)

CForm[[Less r1 r2 ]](Σ, Γ, Θ)
.
= CT [[r1 ]](Σ, Γ, Θ)⊆ CT [[r2 ]]

CT [[Ident i]](Σ, Γ, Θ)
.
= Σ(i) if i ∈ dom(Σ)

CT [[Var v ]](Σ, Γ, Θ)
.
= Γ(v)

CT [[Id]](Σ, Γ, Θ)
.
= id

CT [[Top]](Σ, Γ, Θ)
.
= '

CT [[Bot]](Σ, Γ, Θ)
.
= ⊥

CT [[Pi1 ]](Σ, Γ, Θ)
.
= π1

CT [[Pi2 ]](Σ, Γ, Θ)
.
= π2

CT [[Neg r ]](Σ, Γ, Θ)
.
= ¬CT [[r ]](Σ, Γ, Θ)

CT [[Conv r ]](Σ, Γ, Θ)
.
= CT [[r ]](Σ, Γ, Θ)∪

CT [[Meet r1 r2 ]](Σ, Γ, Θ)
.
= CT [[r1 ]](Σ, Γ, Θ) ∩ CT [[r2 ]](Σ, Γ, Θ)

CT [[Join r1 r2 ]](Σ, Γ, Θ)
.
= CT [[r1 ]](Σ, Γ, Θ) ∪ CT [[r2 ]](Σ, Γ, Θ)

CT [[Comp r1 r2 ]](Σ, Γ, Θ)
.
= CT [[r1 ]](Σ, Γ, Θ) ◦ CT [[r2 ]](Σ, Γ, Θ)

CT [[Fork r1 r2 ]] .
= CT [[r1 ]](Σ, Γ, Θ)∇ CT [[r2 ]](Σ, Γ, Θ)

CT [[Prod r1 r2 ]](Σ, Γ, Θ)
.
= CT [[r1 ]](Σ, Γ, Θ)× CT [[r2 ]](Σ, Γ, Θ)

CT [[Ord o]](Σ, Γ, Θ)
.
= CO[[o]](Σ, Γ, Θ)

CT [[Fun f ]](Σ, Γ, Θ)
.
= CF [[f ]](Σ, Γ, Θ)

We should notice that Ord and Fun have no semantics. They are
only used for typing purposes.

The function language corresponds to the fragment of relation
algebra closed for functions, i.e., when operators are applied to a
function the result is still a function. The semantics of sections
follows the principles of Section 5.
CF [[FunctionIdent i]](Σ, Γ, Θ)

.
= Σ(i) if i ∈ dom(Σ)

CF [[FunctionVar v ]](Σ, Γ, Θ)
.
= Γ(v)

CF [[FunctionId]](Σ, Γ, Θ)
.
= id

CF [[FunctionComp f1 f2 ]](Σ, Γ, Θ)
.
=

CF [[f1 ]](Σ, Γ, Θ) ◦ CF [[f2 ]](Σ, Γ, Θ)

CF [[RightSection f s]](Σ, Γ, Θ)
.
= CF [[f ]](Σ, Γ, Θ)

(CS [[s]](Σ,Γ,Θ))

CF [[LeftSection s f ]](Σ, Γ, Θ)
.
=

(CS [[s]](Σ,Γ,Θ))
CF [[f ]](Σ, Γ, Θ)

CS [[Const c]](Σ, Γ, Θ)
.
= Θ(c)

CS [[FunctConst f s1 s2 ]] .
=(Σ,Γ,Θ)CF [[f ]](Σ, Γ, Θ)(Θ(s2))

The semantics of orders is also defined for relation operators
closed for partial orders (cf. Section 5).

CO[[OrderIdent i]](Σ, Γ, Θ)
.
= Σ(i) if i ∈ dom(Σ)

CO[[OrderVar v ]](Σ, Γ, Θ)
.
= Γ(v)

CO[[OrderId]](Σ, Γ, Θ)
.
= id

CO[[OrderConv o]](Σ, Γ, Θ)
.
= CO[[o]](Σ, Γ, Θ)∪
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Finally, the semantic function for Galois connections maps the
abstract syntax into the algebraic operations defined in Section 4.1.

CG[[GCIdent i]](Σ, Γ, Θ)
.
= Σ(i) if i ∈ dom(Σ)

CG[[GCVar v ]](Σ, Γ, Θ)
.
= Γ(v)

CG[[GCId]](Σ, Γ, Θ)
.
= id

CG[[GCConv g]](Σ, Γ, Θ)
.
= CG[[g]](Σ, Γ, Θ)∪

CG[[GCComp g1 g2 ]](Σ, Γ, Θ)
.
=

CG[[g1 ]](Σ, Γ, Θ) ◦ CG[[g2 ]](Σ, Γ, Θ)

6.4 Typing
Figure 3 provides the typing rules for the fork algebra fragment of
Galois. The typing rules for the other fragments of the language are
omitted since they are easy to deduce from this example.

Types are important, not only to ensure that expressions are
well-formed, but also to automatically discharge certain assump-
tions. For instance, suppose we have the following rule

f ◦ . . . = . . . (36)

which is valid only when f is a function. The
corresponding expression in abstract syntax is
Equal (Comp (Fun (FunctionVar f )) (. . .)) (. . .). The
typing rules ensure that the function variable f has a functional
type, i.e., FunctionVar f : t1 ← t2 . This means that any term t
whose type is an instance of t1 ← t2 can instantiate the variable f .
Otherwise, we would have to verify if t satisfied the simplicity and
totality assumptions in order to use (36).

The type system of Galculator supports parametric polymor-
phism, meaning that universally quantified type variables can range
through the universe of types. This means that if R is a relation
and its type is ∀t1, t2.R : t1 ∼ t2, then it is defined between ev-
ery possible types allowed by the system. However, if its type is
R : N ∼ N, then R defines a relation on natural numbers.

Moreover, Galculator provides a type inference mechanism
[Silva and Oliveira 2008a] that infers the most general type of an
expression. Therefore, the user does not have to explicitly provide
the types of all expressions. This makes the type system non-
intrusive and easier to work with: the user should only notice it
when errors are detected.

7. Implementation notes
A detailed description of the implementation of Galculator can be
found in [Silva and Oliveira 2008a]. Here, we will just briefly ex-
plain the general principles concerning the representation of the
language using the Haskell functional programing language [Pey-
ton Jones 2003]. Although we use Galois as the example language,
the approach can be easily generalized to other typed language.
Representation using ADTs. Traditional approaches to the im-
plementation of languages in Haskell resort to algebraic data types
(ADTs) to represent abstract syntax. In our example, this means
an almost direct transcription of the abstract syntax presented in
Fig. 2:

data Expr = Equal Term Term
| Less Term Term

data Term = Id
| Top
| Conv Term
| Meet Term Term

. . .

where Equal , Less , Id , etc. are data constructors, i.e., the only
functions capable of building values of the associated data type.

Thus, Equal is a function that takes two values of type Term and
returns a value of type Expr , i.e., Term → Term → Expr . Since
constructor Id has no arguments it can be seen as a value of type
Term . Note that the type of the returned value is always implicit in
the declaration.

The above definition closely follows the abstract syntax but it
does not include any type information. The type correctness of our
language has to be verified using additional functions. Moreover,
functions that manipulate the structure can introduce undetected
typing errors. For instance, the typing rules for Meet r1 r2 require
that argument relations r1 and r2 have the same type. However, if
their types are different, the Haskell compiler does not complain
because it knows nothing about the typing rules of Galois: r1 and
r2 are of type Term and all seems correct.

Representation using GADTs. Generalized algebraic data types
(GADTs) expand ADTs by allowing the explicit declaration of the
signature of each data constructor. In our example, this means the
translation not only of the abstract syntax, but also of the typing
information presented in Fig. 3:

data R r where
Equal :: R (b ↔ a) → R (b ↔ a) → R (Expr (b ↔ a))
Less :: R (b ↔ a) → R (b ↔ a) → R (Expr (b ↔ a))

Id :: R (a ↔ a)
Top :: R (b ↔ a)
Conv :: R (b ↔ a) → R (a ↔ b)
Meet :: R (b ↔ a) → R (b ↔ a) → R (b ↔ a)
. . .

where b ↔ a is the type of a relation between types b and a .
Without entering into technical details, argument r is an index and
not a parameter of data type R, i.e., it reflects the type of the term.
For instance, for expression Equal Top Top, r assumes the type
Expr (b ↔ a). Since Conv requires an argument whose index is
b ↔ a , it is not possible to build the term Conv (Equal Top Top)
(because Expr (b ↔ a) does not unify with b ↔ a).

Thus, using GADTs it is no longer possible to define
Meet r1 r2 when r1 and r2 have different types because now
the Haskell compiler can verify statically the types of both rela-
tions. Moreover, the compiler enforces that rewriting functions do
not introduce type errors. This guarantee is quite important in the
construction of a proof assistant.

Reflection mechanism. Besides type safe behavior, another ad-
vantage of using GADTs in the implementation of the language is
the possibility of building a reflection mechanism. This allows for
accessing the type of each term during run-time, making it possi-
ble to have type-dependent behavior. This mechanism uses a type
representation at the term level which is based on the possibility
of defining singleton types (basically a bijection between terms
and their respective types) using GADTs. Using regular ADTs, the
type-safeness of this mechanism would not be possible to ensure
statically by the type-checker.

The details about the implementation of the type representation
mechanism are outside the scope of this paper but can be found in
[Silva and Oliveira 2008a].

Front-end. Initially, Galois was an embedded DSL. However, the
use of the type representation mechanism described above required
the explicit declaration of the type of every expression. The ad-
dition of parametric polymorphism to the language increased this
problem, since the correct type variables had to be supplied “by-
hand”. Thus, a front-end with a parser and a type inference mech-
anism was developed. In this case, the difficulty of building the
front-end was greatly increased by the use of GADTs in the rep-
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Σ, Γ, Θ $ r1 : t1 ∼ t2 Σ, Γ, Θ $ r2 : t1 ∼ t2
Σ, Γ, Θ $ Equal r1 r2 : t1 ∼ t2

Σ, Γ, Θ $ r1 : t1 ∼ t2 Σ, Γ, Θ $ r2 : t1 ∼ t2
Σ, Γ $ Less r1 r2 : t1 ∼ t2

Σ, Γ, Θ $ Σ(i) : t

Σ, Γ, Θ $ Ident i : t

Σ, Γ, Θ $ Γ(v) : t1 ∼ t2

Σ, Γ, Θ $Var v : t1 ∼ t2
Σ, Γ, Θ $ Id : t ∼ t

Σ, Γ, Θ $ Top : t1 ∼ t2 Σ, Γ, Θ $ Bot : t1 ∼ t2 Σ, Γ, Θ $ Pi1 : t1 ← t1 × t2 Σ, Γ, Θ $ Pi2 : t2 ← t1 × t2

Σ, Γ, Θ $ r : t1 ∼ t2
Σ, Γ, Θ $Neg r : t1 ∼ t2

Σ, Γ, Θ $ r1 : t1 ∼ t2 Σ, Γ, Θ $ r2 : t1 ∼ t2
Σ, Γ, Θ $Meet r1 r2 : t1 ∼ t2

Σ, Γ, Θ $ r1 : t1 ∼ t2 Σ, Γ, Θ $ r2 : t1 ∼ t2
Σ, Γ, Θ $ Join r1 r2 : t1 ∼ t2

Σ, Γ, Θ $ r : t1 ∼ t2
Σ, Γ, Θ $ Conv r : t2 ∼ t1

Σ, Γ, Θ $ r1 : t1 ∼ t2 Σ, Γ, Θ $ r2 : t2 ∼ t3
Σ, Γ, Θ $ Comp r1 r2 : t1 ∼ t3

Σ, Γ, Θ $ r1 : t1 ∼ t2 Σ, Γ, Θ $ r2 : t3 ∼ t2

Σ, Γ, Θ $ Fork r1 r2 : (t1 × t3) ∼ t2

Σ, Γ, Θ $ r1 : t1 ∼ t2 Σ, Γ, Θ $ r2 : t3 ∼ t4

Σ, Γ, Θ $ Prod r1 r2 : (t1 × t3) ∼ (t2 × t4)

Σ, Γ, Θ $ o : (t,/t)

Σ, Γ, Θ $Ord o : t ∼ t

Σ, Γ, Θ $ f : t1 ← t2
Σ, Γ, Θ $ Fun f : t1 ∼ t2

Figure 3. Typing rules for the fork algebra fragment of the Galois DSL.

resentation. The details can also be found in [Silva and Oliveira
2008a].

Since the front-end is independent of the rest of the system, it
can be integrated with other tools in the future. For this purpose,
the concrete syntax tries to resemble the theoretical notation for
fork algebras.

Summary. Algebraic types of functional languages seem nat-
urally suited to implement algebraic DSLs given their syntacti-
cal similarity. Beside representing the abstract syntax of an alge-
braic DSL, GADTs can also encompass typing information. Thus,
GADTs ensure that if a term can be built it is syntactically correct
and well-typed.

The implementation could be done without resorting to GADTs,
using the traditional ADTs. However, the statical type-safeness
would be lost and we would have to built our own type verification
mechanism.

8. Related work
aRa. aRa [Sinz 2000] is an automatic theorem prover for relation
algebras. It has a front-end to translate relation algebraic formulæto
Gordeev’s Reduction Predicate Calculi logic. aRa implements a set
of simplification rules and reduction strategies for this calculi in
order to automatically derive proofs.

Like in our approach, formalization and translation fol-
low Tarski and Givant [1987]. However, aRa takes an alternative
(in fact opposite) direction: relation algebraic formulæare trans-
lated to logical sentences and proved using logic, while we conduct
our proofs in the algebraic setting. Moreover, the approach of aRa
not including the fork algebra extension makes it less expressive
than the language of Galculator. The integration of Galois connec-
tions is also absent.

RALL. RALL [von Oheimb and Gritzner 1997] takes a similar
approach to aRa although no translation is actually performed.
Relation operators are formalized directly in Isabelle/HOL offering
interactive and automatic proving facilities. Unlike aRa, RALL
checks for type-correctness of all formulæ. This is also performed
in the Galculator system although it is not described in this paper
(see [Silva and Oliveira 2008a] for a description of how the internal
representation enforces type-safety).

RELVIEW. RELVIEW [Behnke et al. 1998] is a system for ma-
nipulation of relation algebras. All data are represented as binary
relations using an efficient internal representation and optimized al-
gorithms perform relational operations. However, RELVIEW only
works with finite cases because relations have to be explicitly de-

fined while Galculator can be used with infinite relations because
they are defined abstractly.

RELVIEW is the concrete counterpart of the abstract algebraic
perspective of Galculator. An interesting study would be to see
how the two approaches relate and complement each other.

“Off-the-shelf” automated theorem provers. Höfner and Struth
[2008] propose the use of “off-the-shelf” automated theorem
provers in order to prove theorems of relation algebras instead of
special purpose approaches. According with the authors, more than
one hundred theorems, many of them non-trivial, have been proved
from an axiomatization of relation algebra using Prover9. Prover9
is the successor of the Otter Prover and is described as “a resolu-
tion/paramodulation automated theorem prover for first-order and
equational logic” [McCune 2009]. The approach includes also the
use of Mace4 [McCune 2009] to find counterexamples and avoid
unnecessary search of proofs of invalid propositions.

Since this work only uses relation algebra, it is restricted to a
three-variable fragment of first-order logic, unlike our approach
which uses fork algebras. Höfner and Struth [2008] mention that
some relation operations are adjoints of Galois connections but
this fact is not exploited in proofs. Moreover, their approach is not
always equational because some proofs require the use of mutual
inclusion, since indirect equality is not used.

The application of a similar approach to automatization of
proofs in the Galculator is still open.

9. Concluding remarks
The approach taken in Galculator is innovative: it is the first time
that fork algebras and Galois connections are used together to per-
form formal proofs. Fork algebras allow for equational reason-
ing based on a very simple inference rule and without the prob-
lems usually associated with the manipulation of variables. Galois
connections provide structure with nice algebraic properties and a
mechanism of changing the domain of proofs. Fork algebras and
Galois connections, together with the introduction of the indirect
equality principle provide a powerful framework to tackle the com-
plexity of proofs about software correctness.

In this paper, we have shown a DSL for a proof assistant.
We started from the theoretical definitions and derived the syntax
and semantics of the language as a natural consequence of the
associated algebras. In fact, Galois is family of DSLs composed
in a hierarchical structure that mirrors the relation between the
theoretical concepts.

We aimed to provide some evidence of the importance of a
mechanism such as Galois connections in the design of a language
for formal reasoning. The connections between concepts at a se-
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mantic level can be operated syntactically in an equational ap-
proach, with the help of the introduction of indirect equality. More-
over, Galois connections and indirect equality can be accommo-
dated in fork algebras to form a complete framework for equational
point-free calculus. We also showed the usefulness of a strongly
typed environment at several levels, even when not using an ap-
proach based on the Howard-Curry isomorphism.

Two remarks should be made about the use of Galois connec-
tions in Galculator. First, although fork algebra operators appear
as adjoints in several Galois connections, these cannot be used to
describe the properties of those operators. Fork algebras are the
primitive theory of Galculator, and adjoints of Galois connections
are defined as fork algebra terms. Thus, Galois connections can-
not describe properties of the theory in which they are themselves
defined. These properties can only be derived from the fork alge-
bra axiomatization. Second, Galculator takes Galois connections
as axioms. The user has the obligation to prove if the specification
really defines a Galois connection.

Application. Galois is a formal language for mathematical rea-
soning which, instead of using logic, is based on fork algebras.
In fact, as it was discussed, first-order logic and fork algebras are
equivalent in terms of expressive and deductive power. However,
substitution of equals by equals is the only inference rule needed to
reason with fork algebras. Another advantage is that nested quan-
tifications are eliminated, making some expressions simpler and
proofs easier, since a single point-free step can encompass several
logical steps. Bird and de Moor [1997] show that point-free rea-
soning based on relations can be very effective in solving several
complex problems, although their approach is based in allegories
[Freyd and Ščedrov 1990], a close but a bit different relation the-
ory.

What distinguishes Galculator from other relational languages
is the addition of Galois connections. These bring the ability of han-
dling with situations where equivalent proofs about connected con-
cepts have different difficulties. Moreover, this change of domain
can be accommodated with fork algebras and easily expressed syn-
tactically. The extra power introduced by Galois connections only
requires the addition of indirect equality as an inference rule.

The Galculator can be used with any first-order theory, since
these are expressible using fork algebras. However, this tool is not
aimed directly at fork algebras: the Galculator should be mostly
useful when the involved concepts are instances of Galois connec-
tions. Among several domains discussed in Sec. 4.1, possible tar-
gets of Galculator are abstract interpretation and formal concept
analysis. For instance, Cousot [1999] shows how to design abstract
semantics for abstract interpretations satisfying soundness require-
ments. This approach caters for correctness of the design by calcu-
lus and uses Galois connections as fundamental concept. His style
of calculus resembles the one of Galculator, although it uses vari-
ables. Thus, the calculus of abstract semantics would be a natural
application of Galculator. However, some work must be done in
order to accommodate the calculus of Cousot [1999] in a relational
setting.

The Galculator is still a prototype under development. More
experiments are needed in order to assess its effectiveness as a
proof assistant.

9.1 Future work
Mechanization of point-free transform. In Section 3.3, the
equivalence between fork algebra formulæand first-order sentences
is described. It would be interesting to automate such point-free
transformation, like [Cunha et al. 2005] for functional programs,
and incorporate it as a front-end for Galculator. Moreover, the
point-free transform is not restricted to first-order classical logic;

it can be extended to several non-classical logics as described
in [Frias et al. 2004].

Automated proofs. Currently, the Galculator is used as a proof
assistant where proofs are guided by the user. Some efforts have
been made in order to automate proofs which exhibit recurrent
patterns. However, the developed strategies can only deal with
some of these patterns. More general strategies applicable to a
wider range of problems are needed.

A possible approach is the one followed by Höfner and Struth
[2008] which resorts to an automated theorem prover, namely
Prover9.

Extension of the type system. The type system of Galculator is
limited although it supports parametric polymorphism. The set of
basic types and type constructors is fixed and cannot be extended,
i.e., the user cannot declare new types. This restricts the types of
relations that can be declared.

Besides an extension mechanism with user declared types, it
would be also interesting to explore more sophisticated type system
features, such as overloading, type classes or even dependent types.

Free-theorems. Exploiting free-theorems with Galois connec-
tions has been one of our objectives since the beginning of the Gal-
culator project, specially because from Backhouse and Backhouse
[2004] we know how to calculate free-theorems [Wadler 1989]
about Galois connections based on their types. We have introduced
some basic support of free-theorems in Galculator. However, since
the general theory of free-theorem regards types as relators, some
work needs to be done to assess if it is possible to accommodate
relators in the fork algebra framework. Otherwise, instead of fork
algebras we must use tabular allegories [Bird and de Moor 1997]
as the theoretical foundation of Galculator.

Evaluation of the language. The Galois language is very close
to the corresponding mathematical language. Intuitively, its useful-
ness and usability should mirror the theoretical version. However,
our experience with it does not allow us to take definite conclu-
sions, yet. Further experimentation is needed to assess the strengths
and weaknesses of the language. Moreover, it should be also com-
pared with other approaches.
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