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|
N-ARY RELATIONS AND ALLEGORIES

o Allegories are a categorical generalisation of relation algebras where
arrows are like binary relations.

@ Ability to represent n-ary relations (for finite n > 2) is useful, e.g. for
database applications.

@ Given relational products, n-ary relations can be represented in allegory
as binary relations between product objects.

o There are many ways of dividing the “legs” of an n-ary relation between
source and target, vectorization (or its dual) seems the least arbitrary but,
e.g., joins and intersections require different choices

@ We develop a formalism for allegorical generalisations of n-ary relations
based on (the dual of) vectorization and n-ary relational products, filling
some technical details, particularly about properties of n-ary relational
products.
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AXIOMS OF ALLEGORIES

o Intersection operators make each hom-set a meet semi-lattice.
e We denote the associated partial order by =, i.e., RE S := RS =R, for
all R,S € Arr/ (A, B).

e In addition - 1 - and (-)° have to satisfy the following formulas, for all
R,S,T € Arr[¢/] such that the formulas are well defined:

R =R, (RS)°=SR°, (RnS)°=R°nS°,
R(SMT)= RSMRT, RSHTC (RMTS)S.

EXAMPLES OF ALLEGORIES
Z (resp. Z|A]) where objects are sets and arrows are binary relations (resp.
A-valued binary relations).
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|
RELATIONAL PRODUCTS

DEFINITION
A pair of arrows e <—— C —— e is called a relational product iff
T =id=, M =id=
1 T’ 2 w’
mr] MM, =ide,

o
T = Tffﬁﬁ

@ The relational product is the categorical product in the subcategory of
maps.

o It is determined only up to an isomorphism

@ We will name the common source of 7;’s as T} X

o In % and Z[A] relational product is isomorphic with the cartesian
product.
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EXAMPLE: UNARY PRODUCTS AND UNITS

DEFINITION

An object 1 in allegory o7 is called a unit whenever id; = T and for any
A € Obj[«7] there exists some uy € Arrg/ (A, 1) which is total. An allegory
where a unit exists is called unitary. Units generalize singleton sets.

LEMMA

For any A € Obj|.</| an arrow uy is a map and uy = T 41. Moreover, for any
A, B € Obj[.o7] we have ua; (ug)°® = T ap.

LEMMA
Suppose that < is a unitary allegory. Then for any A € Obj[</] the pair

id . .
A< A"+ 1 isarelational product.

The unit in a unitary allegory can be viewed as a 0-ary relational product.
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n-ARY RELATIONAL PRODUCTS

To get n-ary products for n > 2 one can iterate binary ones. Sometimes, a
direct algebraic characterization of n-ary relational products becomes handy.

DEFINITION

A finite family of arrows {7;};c; S Arr[./] with a common source C, t is
called an n-ary relational product iff it satisfies the following conditions:

. ° .
Viel.mm=idz,

|—| mim =idc,
i

Vkel. ( |_| niﬂf>7rk:'|’<ﬂ—k7k>

iel\{k}

Binary relational products are 2-ary relational products and vice versa.
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|
n-ARY RELATIONAL PRODUCTS AND FACTORIZATION

n-ary relational products are categorical products in the subcategory of maps.

LEMMA

if {n'i} ie1 is an n-ary relational product with a common source C and

{A L T }Yier is a family of maps then the unique map A . C such
that fm; = f; for all i € I is given by the formula

f=] Vfim.

iel

LEMMA

Let{ C T }ier be an n-ary relational product. For any & #J < I and a

. R; .
family of total arrows { A—— T, }iej the arrow Ry :=[|,c, Ri7; is total.
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N
SHARPNESS

Suppose that {7;} e/ is an n-ary relational product, where I = {1,...,n}. Let
{R;}ic; and {S;}ic; be two families of arrows such that

T
e

We would like the factorisation through the relational product to commute
with the composition of R;’s with S;’s, i.e., to satisfy the sharpness condition:

<|_|Ri7rf> <|_|7rJS°> []R:S;-

i€l

.
T

.%.H.

Unfortunately sharpness condition is not satisfied in general allegories.
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GENERALIZATION OF SHARPNESS
The sharpness condition does not seem sufficient to prove the results we need.
Therefore we introduce a more general condition:

DEFINITION

Let {7;};c; be a n-ary relational product and let {R;};c; and {S;}c; be families
of arrows as in the definition of sharpness. We say that {m; },c; satisfies the
generalised sharpness condition for families {R;},c; and {S;}c; iff, for all
non-empty /1,1l < I we have

([e)([350) - 1.)

i€l jeh ieljnly

An intersection of an empty family of arrows is a top arrow.

The generalised sharpness cannot be satisfied for arbitrary families of arrows
(e.g., take disjoint /; and I, and consider R;’s and S;’s to be bottom arrows).
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APPLICABILITY OF THE GENERALIZATION

Note that in general
() ()= (129
i€l jEIz el nl
Indeed, the inequality obviously holds when I} NI, = . If I} n I, # & then
for any k € I) n I, we have (|_|ie11 Rin'io) (ﬂjelz @Sf) = RiS;, and thus
(|—|ie11 Rim; ) (I_ljelz 79'5;> = |_|kel| ~1, RS However,
PROPOSITION

In Z[A], for any locale A, the generalised sharpness condition is satisfied for
arbitrary families of total arrows.

Unfortunately, the author does not know if the sharpness condition for total
arrows implies generalised sharpness for total arrows.
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ITERATING RELATIONAL PRODUCTS

ST,

Is {m1pi}1<i<m U {Tj}2<j<n an (m+ n— 1)-ary relational product if m;’s and
pi’s are, respectively, n-ary and m-ary relational products?

LEMMA

Suppose that { C s Yier is an |I|-ary relational product, let k € I and let

{ m LA }ies be a |J|-ary relational product. Suppose that m;’s and p;’s
satisfy the generalised sharpness condition for total arrows. Then
{mpj}jer 9T ien qry is an (|I| + [J| — 1)-ary relational product also
satisfying the generalised sharpness condition for total arrows.

v
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DE-ITERATING RELATIONAL PRODUCTS

! o
n Tn
rcﬁl
'Y
AN
Y

Assuming that 7;’s and p;’s are relational products and 1) is the unique map
such that m; = np;, forall 1 <i<m,is {n,Ty+1,...,7,} arelational product?

LEMMA

Let {A—"+ e}, cyand { B LN T }jes, where J < 1, be relational products.
If m;’s and p;’s satisfy the generalised sharpness condition for maps, then

{[ ey mip; Y v {Titieny is an (|I| — [J| + 1)-ary relational product which
satisfies the generalised sharpness condition for maps.

v
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MOVING LEGS AROUND

o In allegory, n-ary relations can be represented as arrows (binary
relations) between products. This representation requires non-canonical
division of the n “legs” of the relation into two groups.

o Different representations of the same n-ary relation are required so that
some relational operations are applicable.

o For instance, let R be a ternary relation with legs typed as A, B and C. Let
S e Arr(A,D) and T € Arr(E, B) be binary relations. In order for S to be
composable with R the latter should be represented as R € Arr(B x C,A).
On the other hand, joinability of T with R requires R € Arr(B,A x C).

@ Reciprocation allows to flip the legs of a binary relation.

@ We still need, however, an operation which allows to move a leg of the
n-ary relation from a source of representation to the target and vice-versa.
@ We want to generalize to allegories the operation in &% which relates
Re Arr4(A x B,C) to R € Arr4(A,B x C) where aR’'(b,c) = (a,b)Rc.
@ Iteration and de-teration allows then manipulating more then 3 legs
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|
LEG MOVING OPERATION

AXB,C
Oy BxC

We define the pair of maps Arr,/ (A x B,C) Arr/(A,Bx C) as

ABxC
OB

Ao (R) = (> B)%s Ry (m2€)° By (mF€)°),
Aiop e (8) == (m P s mal B (X €)°) s ms €

C
% YC
n,,[AxB

AxB BxC
R ‘x ;/fxc

1
Note that aﬁfl;g(S) (agz,lif\‘(So)) One proves aﬁ;lig (aﬁf;g> .
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RELATIONAL SCHEMAS

In relational algebra ¢ la Codd “legs” (columns) of an n-ary relation are not
ordered (not identified by position). Instead, they are identified by name. A
set of column names of a given relation together with the assignement of a
type to a column is called a schema of this relation. We mimic those ideas.

DEFINITION

Let T be a fixed set of basic types (e.g., integer, varchar, etc.). A
relation schema (X, o) over T consists of a finite set X of column names
together with a mapping « : X — T assigning types to column names.

DEFINITION

A category .| T] of relation schemas over T has as objects relation schemas
over T. Morphisms f : (X,a) — (Y, B) between relation schemas are injective
maps f : X — Y between sets such that S of = «.

v

Note that [ T] is a subcategory of a slice category Set/T.
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CANONICAL PRESENTATION OF n-ARY RELATIONS

DEFINITION (CF. VECTORIZATION OF BINARY RELATIONS)
Let (X, o) be a relation schema over T. Let ./ be a unitary allegory and let

[]:T — Obj[«/]. A pair (R,{ R L [a(i)] }iex) is called an instance of
(X, a) iff R =1and {m;}iex is an |X|-ary relational product.

@ The representation depends on the choice of relational product.

o The set of column names is a part of the definition of an instance.

@ Any bijection f k (X,) — (Y,B) gives rise to the renaming
transformation f of instances (which corresponds to the renaming
operation in the Codd’s relational algebra):

FRA T 2 [a)] Yien)) i= (RA B =L [BO)] Jyer).
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BINARY RELATIONS REPRESENTED
AS 2-ARY RELATIONS

e Assume for simplicity that T = Obj[.<7] and that [-] : T — Obj[.</] is
given by identity.

@ Suppose that A " AxB--B isarelational product of A and B.

@ Observe that any arrow R € Arr,/ (A, B) gives rise to an instance
A,B
(al,AxB(R)7 {ni}ie{l,Z}) of a schema ({1’2}a {1 — A2 B})
o This assignement is invertible and thus we loose no information when we
change into this representation.
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|
INTERSECTIONS OF n-ARY RELATIONS

One can intersect only the instances of the same schemas with common

product components. Let (R, {;};cx) and (S, {7;}icx) be instances of the same
relation schema (X, ). Then

(R {mi}iex) M (S, {Ti}iex) := (R S, {Ti}iex).
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|
JOINS OF n-ARY RELATIONS

Suppose now that (X, a) and (Y, 3) are relation schemas over T such that
X n'Y is non-empty and oc] vy=DB ’ y~y- Moreover, let

B

(AL 0] exrs (B2 [aG)] Yexar: 1 €2 [BO] heerx

be relational products that satisfy the generalised sharpness property for maps.
Consider instances (R, {7;}icx) of (X, @) and (S,{0;}iey) of (Y, ) such that
7;’s and o;’s satisfy the generalised sharpness condition for maps. Define

at B =[] m(pf)e, mF= [ mpf),

ieX\Y ieXnY
BxC .__ Byo BxC .__ Cyo
o= |_| oi(p;)°, mT = |_| oi(pi)°,
i€XnY ieY\X

De-iterations {7} *® ) *#} and {nP*¢ 22>} are relational products.
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Using the deiterations we can now view R and S as 2-ary relations
Re Arry/(1,A x B) and S € Arr/(1,B x C). When joining those two relations
we need to preserve all the legs, thus we consider the following diagram:

1AXB
aA;BX (R) aBxe

BxC

N

An obvious map to construct is

oy (R): (g3 S 1 (7F€)° ) € Arry (A,B % C).

Moving the legs of this map around, deiterating and taking care of column
names we obtain ...

B. ZIELINSKI (UNIVERSITY OF £.ODZ) N-ARY RELATIONS ... RAMICS 2015 20/22



|
AN EXPLICIT FORMULA FOR NATURAL JOIN

Assume that A <2 D 2.5 is also a relational product. Then we define

a natural join of (R, {m;};cx) and (S,{0;}icy) as an instance (R > S, {V;}iexoy)
of a schema (X U Y,7y) where

Y(i) = a(i) ifieX Ve wpd ifieX\Y
"\ BG) ifiey’ ' oy ifiey ]
RS := aff;(gxc) (a5 P (R) (upS m (m7€)°)) : 1 - D.

It is easy to verify that in Z this definition corresponds to the usual definition
of a natural join of two relations in Codd’s relational algebra.
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N
CONCLUSION

@ We presented a new approach to n-ary relations in allegories, proving on
the way some interesting results on n-ary relational products.

@ Our approach to n-ary relatiosn can be useful for database modeling.

o Considering n-ary relations in allegories allows us to transparently use
Codd’s relational algebra operations with various generalised
relation-like constructs, (e.g., locale-valued relations).

@ We would like to check if it is possible to develop similar results while
working with weakened definitions of relational products.
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