L-Fuzzy Databases in Arrow Categories

Evans Adjei Abdul Wazed Chowdhury Michael Winter

Department of Computer Science Brock University St. Catharines, Ontario, Canada

{ea12gq wc12ss mwinter}@brocku.ca

September 30, 2015

Overview

- Introduction.
 - Structured Query Language and Relational Databases.
 - FSQL and Fuzzy Relational Databases.
 - The Elements of FSQL.
 - An Example of a Fuzzy SQL Statement.
- 2 \mathcal{L} -Fuzziness.
 - *L*-Fuzziness.
 - Matrix Representation of *L*-Fuzzy Relations.
- 3 \mathcal{L} -Fuzzy Databases and \mathcal{L} -Fuzzy Data.
 - *L*-Fuzzy Database and *L*-Fuzzy Data.
 - The Elements of *L*FSQL.
 - An Abstract Algebraic Theory for \mathcal{L} -Fuzzy Relations
- 5 Semantics of LFSQL in an Arrow Category
 - Arrow Category and Interpretations
 - Semantics of *L*-Fuzzy Sets
 - Semantics of Tables
 - Semantics of INSERT Statement

Structured Query Language and Relational Databases.

	School Table										
	ID	Name									
	S001	Univer	sity of Techn	ology							
	S002	Univer	sity of Applie	d Science							
	Student Table										
L	School	ID	ID	DOD							
		10	10	Manne	DOB						
	S001	10	UT-1000	Tommy	05/06/1995						
	S001 S001		UT-1000 UT-1000	Tommy Better	05/06/1995 16/04/1995						
	S001 S001 S002	10	UT-1000 UT-1000 UAS-1000	Tommy Better Linda	05/06/1995 16/04/1995 02/09/1995						

Fig. 1: An example of a database table.

- A database consists of relations (tables) with attributes (columns) and unique instances with values for each attribute (rows).
- SQL is the standard language used to interact with a relational database.
- Relational databases are based on the classical set theory.

FSQL and Fuzzy Relational Databases

Crisp relational databases and SQL can not handle imprecise or vague information.

A fuzzy set maps elements to the fixed unit interval [0,1].

Fuzzy databases and FSQL are based on the properties and operations of fuzzy theory.

Figure: 3 Age distribution in terms of linguistic labels

Elements of FSQL

Select Statement

SELECT Name, Age, Ability, CDEG(*) FROM Student WHERE Age NFEQ \$Young THOLD 0.6 AND Ability FGEQ \$Skilled THOLD 0.6

- Linguistic Labels: Names of fuzzy sets already stored in the Meta-knowledge base. E.g. **\$Young**, **\$Long**.
- **Fulfillment Threshold:** It represents an *α* cut i.e., the condition is true if its degree is greater than the threshold.
- Logical Connectors: They combine two or more conditions. E.g. AND, OR.

Fuzzy Comparators: They are used to compare two attributes of the same type or an attribute and a constant.

- **Possibility Comparators:** They select tuples which generally comply to a given condition.
- In other words, the condition is true for all or some of the possible instances.
 - E.g. Possibly Fuzzy Greater Than (FGT or F>).
- **Necessity Comparators:** They select tuples which strictly comply to a given condition.
- In other words, the condition is true for all possible instances.
 Eg. Necessarily Fuzzy Less Or Equal To (NFLEQ or NF≤).

An Example of a Fuzzy SQL Statement.

Std_Id	Name	Age (yrs)	Height (ft)	Courses
104	Tom Benson	32	5.5	4
108	Peter Yankey	38	6.8	5
102	Eric Boadu	26	5.9	3
106	John Smith	41	6.9	4

Table 2: Students' Records.

SELECT Std_Id, Name, Course, CDEG(*) FROM Students WHERE Age FEQ \$Young 0.8 AND Height FGEQ \$Tall 0.6

Fig. 5: Distribution of Height.

CDEG	St_ID	Name	Course
0.9	102	Eric Boadu	3

Table 3: Resulting table.

7 / 30

- It is a generalization of the fuzziness.
- An *L*-fuzzy set maps elements to arbitrary lattice *L* of membership degrees.
- \mathcal{L} can be $\{0,1\}$ modeling crisp sets or [0,1] modeling the ordinary fuzzy set developed by Zadeh.
- It allows a more flexible selection of membership degrees than the unit interval [0,1].
- It gives variety of degrees of membership.
- It also comes with essential properties and operations.

The Matrix Representation of *L*-Fuzzy Relation

 $\begin{array}{cccccccc} P.Sci & Comp & Geog & Maths \\ S1 & 1 & TI^+ & NI^+ & TI^- \\ S4 & 0 & 1 & I & TI^+ \\ S3 & S1 & NI^+ & TI^- & 1 & 0 \\ S2 & 0 & NI^+ & NT^- & 1 \\ S5 & TI^+ & 1 & 0 & I \end{array}$

Fig. 8: Lattice structure of students' responses.

Fig. 9: Representation of the students' records in \mathcal{L} -fuzzy relation.

Every entry into the $\mathcal L\text{-}\mathsf{fuzzy}$ database is an $\mathcal L\text{-}\mathsf{fuzzy}$ set.

- We can explicitly list an \mathcal{L} -fuzzy set in the database. E.g. { α /5.5ft,.., α /5.9ft}, {1/25yrs, γ /29yrs}.
- We can obtain *L*-fuzzy set through a pre-implemented characteristic function. E.g.

$$\$Young(x) = \begin{cases} 1 & \text{iff } x \leq 25 \text{yrs}, \\ \gamma & \text{iff } 25 \text{yrs} < x \leq 29 \text{yrs}, \\ \alpha & \text{iff } 29 \text{yrs} < x \leq 39 \text{yrs}, \\ 0 & \text{otherwise} \end{cases}$$

• We can obtain new fuzzy set through computation of upper bounds or lower bounds if the domain is ordered. E.g.

lbd(**\$Old**) =**\$Young**.

ubd(**\$Old**) =**\$Very_Old**.

We can also achieve new set through approximate equality.
 extremely(≡, s) and very(≡, s) are strengthening modifiers.
 more_or_less(≡, s) and roughly(≡, s) are loosening modifiers.

 $\mathcal{L}\text{-}\mathsf{Fuzzy}\ \mathsf{Comparators}:$ They compare an attribute and an $\mathcal{L}\text{-}\mathsf{Fuzzy}\ \mathsf{value}$ or attributes of the same kind.

- Possibility Comparators are based on general criteria.
 \$Heavy = {...,0/64,β/65,..., β/70, δ/71, ...,δ/80, 1/81,...}. Tina's Weight could be 69kg, 70kg or 71. Is Tina's Weight F= \$Heavy with degree δ? Yes.
- Necessity Comparator are based on all the specified criteria.
 Is Tina's weight NF= \$Heavy with degree δ? No.

 $\mathcal{L}\text{-}\mathsf{Fuzzy}$ Threshold puts additional restriction on the condition in the WHERE clause.

- It has the word **THOLD** and comes with a degree.
- The *L*-fuzzy threshold is optional.
 Weight F≤ \$Heavy THOLD α

 $\mathcal{L}\text{-}\textbf{Fuzzy}$ Logical Connectors combine two or more conditions.

• The **OR** Logical Connector is basically the join operator of the given lattice *L*.

Weight $F \leq$ **\$Heavy THOLD** α **OR** Height $NF \geq$ **\$Tall**

- The AND Logical Connector is basically the meet operator of the given lattice *L*.
 Weight F≤ \$Heavy THOLD α AND Height NF≥ \$Tall
- We can obtain additional logical connectors through lattice-ordered semigroups.
- Such connectors could be **AND(***) or **OR(***).
- The user can specify the operation he/she wants to use.
 Weight F≤ \$Heavy THOLD α AND(*) Height NF≥ \$Tall.

- The **CREATE** statement creates an empty table.
- It contains the table's name, attributes' names and the domains of the attributes.
- The table's name and the attributes' names must be unique in the database and the table respectively.

CREATE TABLE Players (Player_Id String, Name String, Height Float, Weight Float, Contract Int);

- The **INSERT** statement adds new record to an existing table.
- The values to be inserted should be \mathcal{L} -fuzzy sets.
- Each value must belong to the domain of their corresponding attribute.

INSERT INTO Players (Player_Id, Name, Height, Weight, Contract) **VALUES** (P10, Kelly, **\$Tall**, 75, 5);

• The values P10 and Kelly are crisp value i.e., *L*-fuzzy set with one element.

- The **SELECT** statement retrieves records which satisfy a given condition.
- It has the **SELECT** clause indicating which attribute(s) to retrieve the record(s) from.
- The **FROM** clause contains the table(s) from which we can compare and retrieve values from.
- The WHERE clause contains the condition(s) to be satisfied.

17 / 30

- The **DELETE** statement acts like the **SELECT** statement.
- It drops the selected records from the table.
- It states the name of table from which the records are to be deleted and the condition(s) to be satisfied.
- The WHERE clause in the DELETE statement is the same as the one in the SELECT statement.

DELETE FROM Player **WHERE** Weight $F \ge$ **\$Heavy THOLD** δ ;

Example of an $\mathcal{L}FSQL$ Statement

\$Tall ={0/5.0,.., 0/5.4, α /5.5,.., α /5.9, γ /6.0,.., γ /6.4, 1/6.5,..} **\$**Heavy = {0/45,..,0/64, β /65,.., β /70, δ /71, .., δ /80, 1/81,..}

Player_Id	Name	Height (ft.)	Weight				
P10	Kelly	\$Tall	75				
P08	Thomas	5.2	\$Heavy				
P02	John	{5.4,5.5,6}	79				
Table 4: Players' records							

Table 4: Players' records.

Figure: Lattice

SELECT Player_Id, Name, Height, Weight **FROM** Players **WHERE** Height $F \ge$ **\$Tall** γ **AND** Weight **NF** \le **\$Heavy** δ ;

Player Id	Name	Height (ft.)	Weight
P10	Kelly	\$Tall	75
P02	John	{5.4,5.5,6}	79

Table 5: Resulting table.

A Suitable Categorical Framework of *L*-Fuzzy Relations

- $\mathcal{L}\text{-}Rel$ defines the basic operations on $\mathcal{L}\text{-}fuzzy$ relations
- Freyd and Scedrov introduced and then extended **allegories** as a categorical relational calculus
- Olivier and Sarrato introduced **Dedekind categories** which are equivalent to locally complete distributive allegories
- It can be shown that the class of *L*-fuzzy relations form a Dedekind category, but it is too weak to express 0-1 crispness
- Arrow categories extend Dedekind categories by the addition of two arrow operations: the up-arrow (↑) and the down-arrow (↓)

20 / 30

$$\begin{pmatrix} 0.5 & 0 & 0.9 \\ 0.4 & 1 & 0 \\ 1 & 0.2 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

The Arrow Category \mathcal{A} and the Interpretations

- We require that the **relational products**, **relational sums**, splittings, unit, zero object, injections, projections in \mathcal{A} to be crisp.
- In A the complete **Heyting algebra** of **scalar elements** is isomorphic to \mathcal{L} . For every $I \in \mathcal{L}$ we have a scalar I(I) in \mathcal{A} .

• A domain D is interpreted by an object I(D) in A and an element $d \in D$, by a crisp point $I(d) : \mathbf{1} \to I(D)$

John Kevin Linda Richy Tijo

$$I(Richy) = * \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

• For a natural number *n*, $I(n)$ denotes the object $\underbrace{1 + \dots + 1}_{n-\text{times}}$

21 / 30

Semantics of \mathcal{L} -Fuzzy Sets

- σ_{s} is the metadatabase that stores \mathcal{L} sets, i.e., $\sigma_{s}(\$m): 1 \rightarrow I(D)$
- For explicitly given sets: $[[{I_1/d_1, \ldots, I_n/d_n}]](\sigma_s) = \bigsqcup_{i=1}^n I(I_i); I(d_i)$

$$[[\$Close]](\sigma_s) = \sigma_s(\$Close) = * (1 1 1 1 1 c a 0)$$

۵

In the non-fuzzy case a table R can be seen as a finite subset of $D_1 \times \cdots \times D_n$. Relation algebraically this can be modelled by

- a point $[\![R]\!]: 1 \to \mathcal{P}(I(D_1) \times \cdots \times I(D_n))$, where $\mathcal{P}(X)$ is an abstract version of a power set construction
- a vector $[\![R]\!]: 1 \to I(D_1) \times \cdots \times I(D_n)$
- a function $[\![R]\!]: I(r) \to I(D_1) \times \cdots \times I(D_n)$ since we deal with finite sets.

In fuzzy database, the target object within last option becomes $\mathcal{P}(I(D_1)) \times \cdots \times \mathcal{P}(I(D_n))$ which isomorphic to $\mathcal{P}(I(D_1) + \cdots + I(D_n))$

Having a function of the form $[\![R]\!]: I(r) \to \mathcal{P}(I(D_1) + \cdots + I(D_n))$ is equivalent to having a relation of the form $\llbracket R \rrbracket : I(\mathbf{r}) \to I(\mathbf{D}_1) + \cdots + I(\mathbf{D}_n).$

Semantics of Tables (cont.)

	Α	B			A	1		B			$\mathcal{L}^A imes \mathcal{L}^B$
	а	d			{	m/a	,1/b}	} {()/c,m	n/d}	$\int \{m/a, \{0/c, \}\}$
	b	с]		{	0/a,i	m/b}	} {1	l/c,0/	/d}	$\left(\begin{array}{cc} 1/b \end{array} \right)$, $m/d \right)$
(a) A	classi	cal d	ataba	ise	(в) Ar	n L-f	uzzy	data	base	(c) $A \times B \mathcal{L}$ -subset
											\mathcal{L}^{A+B}
											$\begin{pmatrix} m/a \end{pmatrix}$
	S_1	S_2	S_3	S_4	S_5	S_6		S_{80}	S_{81}		0/c
1	(0	0	1	0	0	0	0	0	0		1/b
2	0	0	0	0	1	0	0	0	0)	$\left[m/d \right]$
(1	D) The	table	e as a	cris	o rela	ation	(to .	$\mathcal{L}^A \times$	\mathcal{L}^{B}		(E) $A + B \mathcal{L}$ -subset
1	$T_1 T_2$	T_3	T_4	T_5	T_6		T_{80}	T_{81}			a b c d
1 (0 0	0	0	0	1	0	0	0			1 (m 1 0 m)
2	0 1	0	0	0	0	0	0	0)		$2 \left(\begin{array}{ccc} 0 & m & 1 & 0 \end{array} \right)$
(F) The table as a crisp relation (to \mathcal{L}^{A+B})							(G) The table as an \mathcal{L} -relation				

Figure: Semantics of *L*-fuzzy tables

▲ □ ▷ ▲ @ ▷ ▲ 클 ▷ ▲ 클 ▷
 September 30, 2015

æ

Semantics of Tables (cont.)

- σ_t maps a table name to its semantics, i.e., a relation of the form $\llbracket R \rrbracket : I(r) \to I(D_1) + \cdots + I(D_n)$
- Also, $\sigma_t[Q/R]$ denotes the update of the database at table R by the relation Q. Mathematically,

$$\sigma_t[Q/R](X) = egin{cases} Q, \ ext{if } X = R, \ \sigma_t(X), \ ext{otherwise} \end{cases}$$

• Selecting an attribute: $\llbracket R.A_i \rrbracket (\sigma_s, \sigma_t) = \llbracket R.A_i \rrbracket (\sigma_t) = \sigma_t(R); \iota_i^{\smile}$

$$= \frac{a}{2} \begin{pmatrix} a & b & c & d \\ m & 1 & 0 & m \\ 0 & m & 1 & 0 \end{pmatrix}; \frac{a}{b} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}^{\smile}$$
$$= \frac{a}{2} \begin{pmatrix} a & b & c & d & a \\ m & 1 & 0 & m \\ 0 & m & 1 & 0 \end{pmatrix}; \frac{b}{c} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} m & 1 \\ 0 & m \end{pmatrix}.$$

30

Semantics of INSERT Statement

Let us say $\{m_1, \ldots, m_n\}$ are \mathcal{L} -fuzzy subsets of the domains (D_1, \ldots, D_n) . We define the semantics for a tuple of that table by

$$\llbracket (m_1,\ldots,m_n) \rrbracket (\sigma_s) = \bigsqcup_{i=1}^n \llbracket m_i \rrbracket (\sigma_s); \iota_i.$$

Example:

$$\begin{split} \llbracket (\{1/a, m/b\}, \{0/c, 1/d\}) \rrbracket (\sigma_s) &= \llbracket \{1/a, m/b\} \rrbracket (\sigma_s); \iota_1 \sqcup \llbracket \{0/c, 1/d\} \rrbracket (\sigma_s); \iota_2 \\ &= * \begin{pmatrix} a & b & c & d \\ 1 & m \end{pmatrix}; \begin{matrix} a & b & c & d \\ b & c & d \\ 0 & 1 & 0 & 0 \end{pmatrix} \sqcup * \begin{pmatrix} c & d & c & d \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= * \begin{pmatrix} 1 & m & 0 & 0 \\ 1 & m & 0 & 0 \end{pmatrix} \sqcup * \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= * \begin{pmatrix} 1 & m & 0 & 0 \\ 1 & m & 0 & 1 \end{pmatrix} \end{split}$$

Semantics of INSERT Statement (cont.)

In order to deduce the semantics for the final table where this tuple has been added, we refer to the following figure.

- The table has r rows: $I(r) \rightarrow I(D_1) + \cdots + I(D_n)$
- A vector $1 \rightarrow I(D_1) + \cdots + I(D_n)$ represents the tuple to be inserted
- The resultant table has r + 1 tuple and maps from the object r + 1 to $I(D_1) + \cdots + I(D_n)$ in \mathcal{A} .

$$\llbracket R(m_1,\ldots,m_n) \rrbracket (\sigma_s,\sigma_t) = \iota^{\checkmark}; \sigma_t(R) \sqcup \kappa^{\checkmark}; \llbracket (m_1,\ldots,m_n) \rrbracket (\sigma_s)$$

Semantics of INSERT Statement: An Example

$$\llbracket R(m_1,\ldots,m_n) \rrbracket (\sigma_s,\sigma_t) = \iota^{\sim}; \sigma_t(R) \sqcup \kappa^{\sim}; \llbracket (m_1,\ldots,m_n) \rrbracket (\sigma_s)$$
$$\llbracket R(\{1/a,m/b\},\{0/c,1/d\}) \rrbracket (\sigma_s,\sigma_t)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\smile}; \frac{1}{2} \begin{pmatrix} m & 1 & 0 & m \\ 0 & m & 1 & 0 \end{pmatrix} \sqcup \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}; * \begin{pmatrix} a & b & c & d \\ 1 & m & 0 & 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}; \frac{1}{2} \begin{pmatrix} a & b & c & d \\ m & 1 & 0 & m \\ 0 & m & 1 & 0 \end{pmatrix} \sqcup \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}; * \begin{pmatrix} a & b & c & d \\ 1 & m & 0 & 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} m & 1 & 0 & m \\ 0 & m & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sqcup \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} m & 1 & 0 & m \\ 0 & m & 0 & 1 \\ 1 & m & 0 & 1 \end{pmatrix}$$

э

28 / 30

*

Note that the first injection ι maps from the *r*-ary relational sum of the unit object to the (r + 1)-ary relational sum. In our example, as the table already contains 2 tuples and so the final table would have 3 tuples, ι injects to the object I(3).

Finally, we define the semantics of an INSERT statement as follows:

 $[[INSERT INTO R VALUES (m_1, ..., m_n);]](\sigma_s, \sigma_t) = \sigma_t[[[R(m_1, ..., m_n)]](\sigma_s, \sigma_t)/R].$

From the definition of update function it is clear that the new relation replaces the existing one for the particular table.

Thank You

< 🗇 🕨

2