RLE-based Algorithm for Testing Biorders

Oliver Lanzerath

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

28. September 2015

< 17 ▶

-

B b

Content

2 Run Length Encoding

イロト イポト イヨト イヨト

Biorder

Definition

Let $R \subseteq X \times X$ be a homogeneous binary relation. R is called **biorder**, iff

$$aRb \wedge cRd \wedge \neg aRd \rightarrow cRb$$

holds $\forall a, b, c, d \in X$.

R	а	b	с	d
а	0	1	0	0
b	1	1	0	0
с	1	1	0	1
d	0	0	0	0

(日) (同) (日) (日) (日)

Biorder

Definition

Let $R \subseteq X \times X$ be a homogeneous binary relation. R is called **biorder**, iff

$$aRb \wedge cRd \wedge \neg aRd \rightarrow cRb$$

holds $\forall a, b, c, d \in X$.

æ

< ∃⇒

∃ ►

Biorder

Definition

Let $R \subseteq X \times X$ be a homogeneous binary relation. R is called **biorder**, iff

 $aRb \wedge cRd \wedge \neg aRd \rightarrow cRb$

holds $\forall a, b, c, d \in X$.

글 > - < 글 >

э

Echelon Block Form

Definition

Let $M \subseteq A \times B$, $A = \{a_1, ..., a_n\}$, $B = \{b_1, ..., b_m\}$ be a binary matrix. The linear arrangement of the elements corresponds with their indices. The matrix M is in **echelon block form**, iff $\exists k_i, 0 \leq k_i \leq m$ for each row $\vec{a_i}$ with

- $(\{a_i\}, \{b_1, ..., b_{k_i}\})$ built a 1-block
- $(\{a_i\}, \{b_{k_i+1}, ..., b_m\})$ built a 0-block

and $k_i \geq k_{i+1}$.

・ロン ・ 一 ・ ・ ヨン ・ ・ ・ ・

э

Echelon Block Form - Example

	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8
a_1	1	1	1	1	1	1	0	0
a_2	1	1	1	1	0	0	0	0
a_3	1	1	1	1	0	0	0	0
a_4	1	0	0	0	0	0	0	0
a_5	0	0	0	0	0	0	0	0

Oliver Lanzerath RLE-based Algorithm for Testing Biorders

◆ロ > ◆圖 > ◆臣 > ◆臣 >

Biorder ⇔ Echelon Block Form

Lemma

Run Length Encoding

Definition

Let $seq_i \in \{\mathbf{0}^j | j \in \mathbb{N}\} \cup \{\mathbf{1}^j | j \in \mathbb{N}\}$, $i \in \mathbb{N}$, be a sequence with

$$extsf{value(seq_i)} = egin{cases} 0 & extsf{seq_i} \in \{\mathbf{0}^j | j \in \mathbb{N}\} \ 1 & extsf{seq_i} \in \{\mathbf{1}^j | j \in \mathbb{N}\} \end{cases}$$

Then, a bitvector $\vec{x} = x_0...x_{n-1} \in \{0,1\}^n$ can be represented as $\vec{x} = seq_1...seq_k$, $1 \le k \le n$, $value(seq_i) \ne value(seq_{i+1})$, $\sum_{i=1}^k |seq_i| = n$. The RLE-coding of a vector \vec{x} is given by the vector

$$\vec{x}^{rle} = x_0 \left[|seq_1|, ..., |seq_k| \right]$$

◆ロ > ◆圖 > ◆臣 > ◆臣 >

RLE-Coding - Example

Μ	а	b	С	d	M	
а	1	0	0	1	a ^{rle}	1[1,2,1]
b	1	0	1	0	\vec{b}^{rle}	1[1,1,1,1]
С	1	1	1	1	<i>č</i> ^{rle}	1[4]
d	0	0	0	1	\vec{d}^{rle}	0[3,1]

◆ロ > ◆圖 > ◆臣 > ◆臣 >

If a given relation is a biorder, the echelon block form can be achieved in two steps:

- Sort the rows by their Hamming weight in descending order.
- Sort the columns by their Hamming weight in descending order.

With respect to biorder tests the second step is not needed because...

周 ト イ ヨ ト イ ヨ ト

...after sorting the rows only three types of column vectors can occur if the relation is a biorder.

- 4 同 6 4 日 6 4 日 6

...after sorting the rows only three types of column vectors can occur if the relation is a biorder.

0	0	0	1	0	1
	0		1		1
	0		1		÷
	0		1		1
	0		1		1
	:		:	j	1
	0		1		0
	0		1		0
	0		1		÷
	0		1		0
n	0	п	1	n	0
	1		1		

- 4 同 6 4 日 6 4 日 6

...after sorting the rows only three types of column vectors can occur if the relation is a biorder.

э

Analysis

- Row vectors and column vectors must be RLE-coded.
- Sorting: $\mathcal{O}(n \log n)$
- Checking against the three types
 - ightarrow binary: $\mathcal{O}(n^2)$
 - \rightarrow RLE-coded: $\mathcal{O}(n)$

R	а	b	с	d	, <i>x^{rle}</i>
а	0	0	0	0	0 [4]
Ь	1	0	1	1	1[1, 1, 2]
С	0	1	0	1	0[1, 1, 1, 1]
d	1	1	1	1	1 [4]
<i>ÿrle</i>	0[1,1,1,1]	0[2,2]	0[1,1,1,1]	0[1,3]	

▲ 同 ▶ → ● 三

э

< ∃⇒

Analysis

- Row vectors and column vectors must be RLE-coded.
- Sorting: $\mathcal{O}(n \log n)$
- Checking against the three types
 - \rightarrow binary: $\mathcal{O}(n^2)$
 - \rightarrow RLE-coded: $\mathcal{O}(n)$
- BUT: each change operation for rows can have effects on all RLE-coded column vectors.

R	а	Ь	с	d	\vec{x}^{rle}
d	1	1	1	1	1 [4]
b	1	0	1	1	1[1, 1, 2]
с	0	1	0	1	0[1, 1, 1, 1]
а	0	0	0	0	0 [4]
ÿrle	1 [2, 2]	1[1,1,1,1]	1 [2, 2]	1 [3, 1]	

 \rightarrow RLE-coded: $\mathcal{O}(n^3)$

Test by Rearranging only Rows

R	а	b	с	d	$ \vec{x} $	\vec{x}^{rle}
а	0	0	0	0	0	0 [4]
b	1	0	1	1	3	1[1, 1, 2]
с	0	1	0	1	2	0[1,1,1,1]
d	1	1	1	1	4	1 [4]

◆ロ > ◆圖 > ◆臣 > ◆臣 >

Test by Rearranging only Rows

• Sorting the rows.

R	а	b	с	d	$ \vec{x} $	\vec{x}^{rle}
d	1	1	1	1	4	1 [4]
b	1	0	1	1	3	1[1, 1, 2]
с	0	1	0	1	2	0[1, 1, 1, 1]
а	0	0	0	0	0	0 [4]

◆ロ > ◆圖 > ◆臣 > ◆臣 >

Test by Rearranging only Rows

• Sorting the rows.

•
$$\vec{d} \vee \vec{b} = \vec{d}$$
?

R	а	b	с	d	$ \vec{x} $	\vec{x}^{rle}
d	1	1	1	1	4	1 [4]
Ь	1	0	1	1	3	1 [1, 1, 2]
с	0	1	0	1	2	0[1, 1, 1, 1]
а	0	0	0	0	0	0 [4]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test by Rearranging only Rows

• Sorting the rows.

•
$$\vec{d} \lor \vec{b} = \vec{d}$$
?
 $\rightarrow \checkmark$
• $\vec{b} \lor \vec{c} = \vec{b}$?

R	а	b	С	d	$ \vec{x} $	\vec{x}^{rle}
d	1	1	1	1	4	1 [4]
b	1	0	1	1	3	1[1, 1, 2]
С	0	1	0	1	2	0[1, 1, 1, 1]
а	0	0	0	0	0	0 [4]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test by Rearranging only Rows

• Sorting the rows.

•
$$\vec{d} \lor \vec{b} = \vec{d}$$
?
 $\rightarrow \checkmark$
• $\vec{b} \lor \vec{c} = \vec{b}$?
 $\rightarrow \frac{1}{2}$

 \rightarrow The relation is no biorder.

R	а	b	с	d	$ \vec{x} $	\vec{x}^{rle}
d	1	1	1	1	4	1 [4]
Ь	1	0	1	1	3	1 [1, 1, 2]
С	0	1	0	1	2	0[1, 1, 1, 1]
а	0	0	0	0	0	0 [4]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

< 47 ▶

- A - E - M

- ∢ ≣ →

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

B b

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

э

- 4 同 ト 4 日 ト

- Only a line-by-line RLE-coding of the matrix is required.
- Sorting: $\mathcal{O}(n \log n)$
- A logical OR-operation for RLE-coded vectors is needed.
 - \rightarrow Runtime depends on the size of the array!

Image: A image: A

- ∢ ≣ →

Time Measurement

注入 く注入

References

- R. M. Haralick, The Diclique Representation and Decomposition of Binary Relations, Journal of the ACM, vol. 21, pp. 356-366, 1974.
- D. Salomon, *Data compression The Complete Reference*, 4th Edition, London, UK: Springer, 2007.
- G. Schmidt, *Relational Mathematics, Encyclopedia of Mathematics and its Applications*, vol. 132, Cambridge, UK: Cambridge University Press, 2011.

Thank you for your attention!

æ

< ∃⇒

< 一 →