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B That is the destination ... but what matters is the journey ...
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The journey: coalgebraic completeness-via-canonicity.
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Languages, Logics and free L-algebras
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Languages, Logics and free L-algebras

B Syntax definedby L: ¢ — €
B ForIL, Ly, : BDL — BDL given by

LmA=Fa—blabeA/{(aVvb) —c=(a—c)/\(b— c),
a— (bAc)=(a— b)N(a—c)}

—

B For DLC, Lpy,c : DL — DL given by

Lp,cA=F{l.,axb,a\b,a/b| a,bc A}/
{laVb)xc=(axc)V(bxc),ax(bVc)=(axb)V (axc),
(aVb)\c=(a—c)/\(b\c),a\(bAc)=(a\b)/\(a\c),
(a/\b)/c=(a/c)/N\(b/c),a/(bV c)=(a/b) \(a/c)}
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Languages, Logics and free L-algebras

B ‘Languages’ are free L-algebras over FV
B Ly, is the colimit of

22— Ig24+FV— L (L2 +FV)+FV —— ...
B Lpic is the colimit of
) — Lprcl + FV— Lprc(lpucd + FV) + FV —— ...

B Enforcing additional axioms on L1, or Lp1,c = taking a (regular)
quotient of L1, or Lpr,c = Lindenbaum-Tarski construction.
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Canonical Extensions

B UPfA is the Canonical Extension A° of A (as a distributive lattice).
W 1951: Jonsson, Tarski define Canonical Extensions of BAOs

B 1994-2004: Gehrke, Jénsson, Harding define Canonical Extensions
of DLEs

W For any f: (UA)" — UA, they define f° : (UA°)" — UA°
£ (x) :\/{/\f[d,u] IK"sd<x<uc o"}

where f[d,u] ={f(a) |ae A", d <a< u}
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Canonical Extensions

If f preserve binary joins in its ith argument, then f° preserves all
non-empty joins in its ith argument.

If f preserve binary meets in its ith argument, then f° preserves all
non-empty meets in its ith argument.

If f anti-preserve binary joins in its ith argument, then f°
anti-preserves all non-empty joins in its ith argument.

If f anti-preserve binary meets in its ith argument, then f°
anti-preserves all non-empty meets in its ith argument.

Corollary

The canonical extension of an Lpy,c-algebra is an Lpy,c-algebra.
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Why are canonical extensions interesting?

B Theory of canonicity: establish when A= s = t implies A° = s = t.
B Gehrke et al.: topological techniques for proving canonicity.

The ‘missing’ axioms for 1L

a—a=1T a/Na—b)=a/\b (a—b)Ab=b>b

and for DLC
axl=Ixa=a I<a\al<a/a
ax*(b\c) < (axb)\c (c/b)xa<c/(axb)
(a/b)xb< a ax(b/a) < a

are canonical.
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Jonsson-Tarski Extensions
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Coalgebraic logic
B The fundamental set-up of coalgebraic logic

Q"0
DL il Pos°?
\ﬁ/
B Interpret a free L-coalgebras £ in a T-coalgebras y : X — TX by
initiality:
Lo+ Fy- TN xRy
léXJrIdFV
UTX +FV
luwv
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Semantics of L1, and Lpi¢
B Coalgebras for L11,: Tir, : Pos — Pos

TiLX = P (X x X)
WO L UX — UTiLX
(U= V)= {WeP(XPxX)|V(x,y) e W,xelU=yecV}
B Coalgebras for Lprc: Tprc : Pos — Pos
ToLcX =2 x Po(X x X) x Po(X x X) x Po(X x X°P)
B SR LppcUX — UTpreX

(Ux V)= {te TprcX | 3(x,y) e mo(t),xe U,y € V}
(U\V) = {te TpLcX|V(x,y) emz(t),x e U=y e V}
(V/U)—={te TpLcX | V(x,y) e mu(t), xe U= ye V]
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A worked out example

axbi [a] = [b]
L —
LprcLprc ELE[ULDLCUX ]
-
{(wq, wa, w, wy) |
UTpLeX (x,y) € wy
luy x € [a],y € [b]}
L - — - —>UX
DLC ~ ~[ 7
[axb] ={we X|
axbi A(x,y) € ma(y(w))

x € [a]. y < [b]}
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Jonsson-Tarski Extensions

Theorem (Coalgebraic Jonsson-Tarski theorem)

If the adjoint transpose & = PfLn o F&F o e7¢ has right inverses then the
embeddingna : A — UPTA lifts to an L-algebra morphism as follows:

LA = A

o I

LUPfA —— UTPfA —— UPfLA—— UPfA
usy,' UPT ot

Spia

The adjoint transpose of 8~ (resp. 5PYC) has right-inverses, and L1,
(resp. Lprc) is strongly complete w.r.t. T, (resp. Tprc-) coalgebras.
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Jonsson-Tarski Extensions
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An Isomorphism
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An Isomorphism

B Using topological methods and distribution laws show that «? is the
unique continuous extension for a certain choice of topologies.

For Ly, T, and 8™ (resp. Lprc, Torc and 8PC) the canonical
extension and the Jonsson-Tarski extension are isomorphic.
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An Isomorphism

B Using topological methods and distribution laws show that «? is the
unique continuous extension for a certain choice of topologies.

B Show that the structure map of the Jonsson-Tarski extension is also
continuous for this choice of topologies.

For Ly, T, and 8™ (resp. Lprc, Torc and 8PC) the canonical
extension and the Jonsson-Tarski extension are isomorphic.
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Strong completeness of IL.

LetAx={a—a=T,aN(a—b)=a/\b,(a—b)ANb=>b} ILis
strongly complete w.r.t. Ti,-coalgebras on which Ax is valid.

e /ax

LUPfL 1, /Ax —— LUPfLyr,/Ax

|
UTPfLr,/Ax

'
UPFT L1, /Ax

\
UPFLr,/Ax

L, Ly, — LLy,/Ax

L1,

LIL/AX W quLILAX

~

PiL/Ax = A
O+ Ax i/ ¥ oY Fo NV =10 I/ Ax = Ax

Fo b @
Lo /Ax = Ax  UPELy/Ax = Ax o ’;\y
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Conclusion

B We have shown strong completeness of IL and DLC using
coalgebraic completeness-via-canonicity.

B The technique applies much more widely, in particular it covers
most logics with relational semantics.

B The method is fully modular: strong completeness for intuitionistic
Bl, intuitionistic ML, etc.

B We believe the technique can be applied almost unchanged to
graded versions of IL, DLC, etc.
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Obrigado.
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