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The results

The results in plain English

A binary relation R on a poset (X ,6) is convex if wRx , wRz and
x 6 y 6 z implies wRy .

A ternary relation R on a poset (X ,6) is convex if wR(x1, x2),
wR(z1, z2) and (x1, x2) 6 (y1, y2) 6 (z1, z2) implies wR(y1, y2).

Result 1: Intuitionsitic Logic is strongly complete w.r.t. posets with
reflexive, transitive convex relations and persistent valuations.

Result 2: Distributive Lambek Calculus is strongly complete w.r.t.
posets with convex ternary relations.

That is the destination ... but what matters is the journey ...
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Outline of the technique

The journey: coalgebraic completeness-via-canonicity.
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α
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L q
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// UPfLax '
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Languages, Logics and free L-algebras

Syntax defined by L : C → C

For IL, LIL : BDL→ BDL given by

LILA = F{a→ b | a, b ∈ A}/{(a ∨ b)→ c = (a→ c)∧ (b → c),

a→ (b ∧ c) = (a→ b)∧ (a→ c)}

For DLC, LDLC : DL→ DL given by

LDLCA = F{I, a ∗ b, a\b, a/b | a, b ∈ A}/

{(a ∨ b) ∗ c = (a ∗ c)∨ (b ∗ c), a ∗ (b ∨ c) = (a ∗ b)∨ (a ∗ c),

(a ∨ b)\c = (a→ c)∧ (b\c), a\(b ∧ c) = (a\b)∧ (a\c),

(a ∧ b)/c = (a/c)∧ (b/c), a/(b ∨ c) = (a/b)∧ (a/c)}
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Languages, Logics and free L-algebras

‘Languages’ are free L-algebras over FV

LIL is the colimit of

2 // LIL2+ FV // LIL(LIL2+ FV ) + FV // . . .

LDLC is the colimit of

∅ // LDLC∅+ FV // LDLC(LDLC∅+ FV ) + FV // . . .

Enforcing additional axioms on LIL or LDLC = taking a (regular)
quotient of LIL or LDLC = Lindenbaum-Tarski construction.
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Canonical Extensions
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Canonical Extensions

UPfA is the Canonical Extension Aσ of A (as a distributive lattice).

1951: Jónsson, Tarski define Canonical Extensions of BAOs

1994-2004: Gehrke, Jónsson, Harding define Canonical Extensions
of DLEs

For any f : (UA)n → UA, they define fσ : (UAσ)n → UAσ

fσ(x) =
∨{∧

f [d , u] | K n 3 d 6 x 6 u ∈ On
}

where f [d , u] = {f (a) | a ∈ An, d 6 a 6 u}
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Outline of the technique / Canonical Extensions

Canonical Extensions

Theorem

1 If f preserve binary joins in its ith argument, then fσ preserves all
non-empty joins in its ith argument.

2 If f preserve binary meets in its ith argument, then fσ preserves all
non-empty meets in its ith argument.

3 If f anti-preserve binary joins in its ith argument, then fσ

anti-preserves all non-empty joins in its ith argument.

4 If f anti-preserve binary meets in its ith argument, then fσ

anti-preserves all non-empty meets in its ith argument.

Corollary

The canonical extension of an LDLC-algebra is an LDLC-algebra.



Outline of the technique / Canonical Extensions

Why are canonical extensions interesting?

Theory of canonicity: establish when A |= s = t implies Aσ |= s = t .

Gehrke et al.: topological techniques for proving canonicity.

Theorem

The ‘missing’ axioms for IL

a→ a = > a ∧ (a→ b) = a ∧ b (a→ b)∧ b = b

and for DLC

a ∗ I = I ∗ a = a I 6 a\a, I 6 a/a
a ∗ (b\c) 6 (a ∗ b)\c (c/b) ∗ a 6 c/(a ∗ b)
(a/b) ∗ b 6 a a ∗ (b/a) 6 a

are canonical.
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Outline of the technique / Jónsson-Tarski Extensions

Jónsson-Tarski Extensions
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Outline of the technique / Jónsson-Tarski Extensions

Coalgebraic logic
The fundamental set-up of coalgebraic logic

DL

Pf
**

L
��

⊥ Posop

U

hh

Top

��

Interpret a free L-coalgebras L in a T -coalgebras γ : X → TX by
initiality:

LL+ FV

��

LJ−K+IdFV // LUX + FV

δX+IdFV
��

UTX + FV

Uγ+v
��

L
J−K

// UX
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Outline of the technique / Jónsson-Tarski Extensions

Semantics of LIL and LDLC

Coalgebras for LIL: TIL : Pos→ Pos

TILX = Pc(X op × X )

δILX : LILUX → UTILX

(U → V ) 7→ {W ∈ Pc(X op × X ) | ∀(x , y) ∈ W , x ∈ U ⇒ y ∈ V }

Coalgebras for LDLC: TDLC : Pos→ Pos

TDLCX = 2× Pc(X × X )× Pc(X op × X )× Pc(X × X op)

δDLC
X : LDLCUX → UTDLCX

(U ∗ V ) 7→ {t ∈ TDLCX | ∃(x , y) ∈ π2(t), x ∈ U, y ∈ V }

(U\V ) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π3(t), x ∈ U ⇒ y ∈ V }

(V/U) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π4(t), x ∈ U ⇒ y ∈ V }



Outline of the technique / Jónsson-Tarski Extensions

Semantics of LIL and LDLC

Coalgebras for LIL: TIL : Pos→ Pos

TILX = Pc(X op × X )

δILX : LILUX → UTILX

(U → V ) 7→ {W ∈ Pc(X op × X ) | ∀(x , y) ∈ W , x ∈ U ⇒ y ∈ V }

Coalgebras for LDLC: TDLC : Pos→ Pos

TDLCX = 2× Pc(X × X )× Pc(X op × X )× Pc(X × X op)

δDLC
X : LDLCUX → UTDLCX

(U ∗ V ) 7→ {t ∈ TDLCX | ∃(x , y) ∈ π2(t), x ∈ U, y ∈ V }

(U\V ) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π3(t), x ∈ U ⇒ y ∈ V }

(V/U) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π4(t), x ∈ U ⇒ y ∈ V }



Outline of the technique / Jónsson-Tarski Extensions

Semantics of LIL and LDLC

Coalgebras for LIL: TIL : Pos→ Pos

TILX = Pc(X op × X )

δILX : LILUX → UTILX

(U → V ) 7→ {W ∈ Pc(X op × X ) | ∀(x , y) ∈ W , x ∈ U ⇒ y ∈ V }

Coalgebras for LDLC: TDLC : Pos→ Pos

TDLCX = 2× Pc(X × X )× Pc(X op × X )× Pc(X × X op)

δDLC
X : LDLCUX → UTDLCX

(U ∗ V ) 7→ {t ∈ TDLCX | ∃(x , y) ∈ π2(t), x ∈ U, y ∈ V }

(U\V ) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π3(t), x ∈ U ⇒ y ∈ V }

(V/U) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π4(t), x ∈ U ⇒ y ∈ V }



Outline of the technique / Jónsson-Tarski Extensions

Semantics of LIL and LDLC

Coalgebras for LIL: TIL : Pos→ Pos

TILX = Pc(X op × X )

δILX : LILUX → UTILX

(U → V ) 7→ {W ∈ Pc(X op × X ) | ∀(x , y) ∈ W , x ∈ U ⇒ y ∈ V }

Coalgebras for LDLC: TDLC : Pos→ Pos

TDLCX = 2× Pc(X × X )× Pc(X op × X )× Pc(X × X op)

δDLC
X : LDLCUX → UTDLCX

(U ∗ V ) 7→ {t ∈ TDLCX | ∃(x , y) ∈ π2(t), x ∈ U, y ∈ V }

(U\V ) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π3(t), x ∈ U ⇒ y ∈ V }

(V/U) 7→ {t ∈ TDLCX | ∀(x , y) ∈ π4(t), x ∈ U ⇒ y ∈ V }



Outline of the technique / Jónsson-Tarski Extensions

A worked out example

a ∗ b � //
_

��

JaK ∗ JbK
_

��

LDLCLDLC

��

LDLCJ−K// LDLCUX

δX
��

UTDLCX

Uγ

��

{(w1,w2,w3,w4) |
∃(x , y) ∈ w2

x ∈ JaK, y ∈ JbK}
_

��

LDLC J−K
// UX

a ∗ b � //
Ja ∗ bK = {w ∈ X |

∃(x , y) ∈ π2(γ(w))
x ∈ JaK, y ∈ JbK}
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Jónsson-Tarski Extensions

Theorem (Coalgebraic Jónsson-Tarski theorem)

If the adjoint transpose δ̂ = PfLη ◦ FδF ◦ εTF has right inverses then the
embedding ηA : A→ UPfA lifts to an L-algebra morphism as follows:

LA α //

LηA
��

A

ηA
��

LUPfA
δPfA

// UTPfA
Uδ̂−1

A

// UPfLA
UPfαax

// UPfA

Theorem

The adjoint transpose of δIL (resp. δDLC) has right-inverses, and LIL

(resp. LDLC) is strongly complete w.r.t. TIL- (resp. TDLC-) coalgebras.
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Jónsson-Tarski Extensions
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An Isomorphism
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Outline of the technique / An Isomorphism

An Isomorphism

Using topological methods and distribution laws show that ασ is the
unique continuous extension for a certain choice of topologies.

Show that the structure map of the Jónsson-Tarski extension is also
continuous for this choice of topologies.

Theorem

For LIL,TIL and δIL (resp. LDLC,TDLC and δDLC) the canonical
extension and the Jónsson-Tarski extension are isomorphic.
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A worked out example

Strong completeness of IL.

Let Ax = {a→ a = >, a ∧ (a→ b) = a ∧ b, (a→ b)∧ b = b}. IL is
strongly complete w.r.t. TIL-coalgebras on which Ax is valid.

LILLIL
// //

��

LLIL/Ax
LηLIL/Ax//

��

LUPfLIL/Ax
' //

��

LUPfLIL/Ax

��
UT PfLIL/Ax

��
UPfTLIL/Ax

��
LIL

// // LIL/Ax
ηLIL/Ax

// UPfLILAx '
// UPfLIL/Ax

Φ+Ax 6` Ψ Φ 6` Ψ
LIL/Ax |= Ax

FΦ ∩ Ψ = ∅
UPfLIL/Ax |= Ax

PfLIL/Ax |= Ax
FΦ |= Φ
FΦ 6|= Ψ
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Conclusion

Conclusion

We have shown strong completeness of IL and DLC using
coalgebraic completeness-via-canonicity.

The technique applies much more widely, in particular it covers
most logics with relational semantics.

The method is fully modular: strong completeness for intuitionistic
BI, intuitionistic ML, etc.

We believe the technique can be applied almost unchanged to
graded versions of IL, DLC, etc.
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