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Abstract

In the context of Joost Visser’s Spreadsheets under Scrutiny talk, I have been
looking at refinement laws for spreadsheet normalization. Back to good-old
‘functional dependency theory’, D. Maier’s book etc, I ended up by rephras-
ing of the standard theory using the binary relation pointfree calculus. It turns
out that the theory becomes simpler and more general, thanks to the calculus of
’simplicity’ and coreflexivity. This research also shows the effectiveness of the
binary relation calculus in “explaining” and reasoning about the � -ary relation
calculus “à la Codd”.



1 What is a functional dependency?

In the standard relational database technology, objects are recorded by assigning
values to their observable properties or attributes. A database file is a collection
of attribute assignments, one per object. Displayed in a bi-dimensional tabular
format, each object corresponds to a tuple of values, or row — eg. row 10 in a
Excel spreadsheet — and each column lists the values of a particular attribute
in all tuples (eg. row ”A” in a Excel spreadsheet). All values of a particular
attribute (say

�
) are of the same type (say ��� ). For � such attributes, a relational

database file � can be regarded as a set of � -tuples, that is, �����	��

������
���� .
Attribute names normally replace natural numbers in the identification of

attributes. The enumeration of all attribute names in a database relation, for
instance

�����
PILOT � FLIGHT � DATE � DEPARTS � (1)

concerning an airline scheduling system 1, is a set called the relation’s scheme.
This scheme captures the syntax of the data. What about semantics?

Even non-experts in airline scheduling will accept the following “business”
rule: A single pilot is assigned to a given flight, on a given date.

This restriction is an example of a so-called functional dependency (FD)
among attributes, which can be stated more formally as follows: attribute PILOT

is functionally dependent on FLIGHT � DATE. In the standard practice, this will
be abbreviated by

FLIGHT DATE � PILOT

which people also read as follows: FLIGHT DATE functionally determines PILOT.
The addition of functional dependencies to a relational schema is compa-

rable to the addition of axioms to an algebraic signature (eg. axioms such as����� �!�#"%$'&(�*) � $,+ � $ adding semantics to the syntax of a stack datatype involving
operators �#"%$'& and �%�-� ). How do we reason about such functional dependen-
cies? Can we simplify a set of dependencies by removing the redundant ones, if
any? How do we design a concrete database implementation from a relational
schema and its dependencies?

The information system community is indebted to Codd for his pioneer-
ing work on the very foundations of the relational data model theory [Cod70].
Since then, relational database theory has been thoroughly studied, and several
textbooks are available on the topic, namely [Mai83], [Ull88] and [GUW02].

1 This example is taken from [Mai83].
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At the heart of relational database theory we find functional dependency
(FD) theory, which is axiomatic in nature and stems from the definition of FD-
satisfiability which follows.

Definition 1. Given subsets �(��� � �
of the relation scheme

�
of a relation � ,

this relation is said to satisfy functional dependency �
��� iff all pairs of tuples� � ����� � which “agree” on � also “agree” on � , that is,

	�
 � � � �
� � � � � � � � ��� ��� � ����� ����� ��� ��� � ����� ����� (2)

(Notation
��� ��� meaning “the values in

�
of the attributes in � ” will be scrutinized

in the sequel.) �
The closure of a set of FDs is based on the so-called Armstrong axioms [Mai83]
which can be used as inference rules for FDs. An “equivalent” set of axioms has
been found which turns FD checking more efficient.

Why has this theory “gone this way”? I don’t know; but, perhaps one rea-
son lays in the fact that formula (2), with its logical implication inside a “two-
dimensional” universal quantification, is not particularly agile. Designs involv-
ing several FDs at the same time can be hard to reason about.

This calls for a simplification of this very basis of FD-theory. The main
purpose of this report is to present an alternative, more general setting for FD-
theory based on the pointfree binary relation calculus. It turns out that the the-
ory becomes more general and considerably simpler, thanks to the calculus of
simplicity and coreflexivity. (Details about this terminology will be presented
shortly.)

We will start by reviewing some basic principles. Note that — of course —
the qualifier “functional” in “functional dependency” stems from “function”. So
our first efforts go into making sure we have a clear idea of “what a function is”.

2 What is a function? — the Leibniz view

Functions are special cases of binary relations satisfying two main properties:

– “Left” Uniqueness

��� )�� � � � ) � � � � �
(3)

– Leibniz principle

) � ) � � � ) � � ) � (4)
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It can be shown (see an exercise later on) that this is the same as saying that
functions are simple and entire relations, respectively:

–
�

is simple:

img
� � ���

(5)

–
�

is entire:
��� � ker

�
(6)

Formulæ (5) and (6) are examples of pointfree notation in which points (eg.) � ) � � � � � � ) disappear. (For instance, instead of writing ) � ) � , we identify the
identity relation

���
which relates ) and ) � when they are the same.) In order to

parse such compressed formulæ we need to understand the meaning of expres-
sions ker

�
(read “the kernel of

�
”) and img

�
(read “the image of

�
),

ker � � ����� � (7)

img � � ��� � � (8)

whose definitions involve two basic relational combinators: converse ( � � ) and
composition ( ��� � ). The former converts a relation � into � � such that )%� � � + �
holds iff

� � ) holds. (We write
� � ) to mean that pair

	 � � ) � is in � .) The latter
(composition) is defined in the usual way:

� � ��� � +
	 holds wherever there exist

one or more mediating ) � � such that
� � ) � ) � 	 , where � �

�
oo and


 �
�

oo are two binary relations on datatypes � (source) and � (target) and
� (source) and



(target), respectively. As in (5) and (6), the underlying partial

order on relations is written ��� �
, meaning

��� ��� 	�
 � � ) � � � � ) � � � ) � (9)

for all ) and
�

suitably typed.
As a matter of fact, what we have just presented is part of a wider binary

relation taxonomy,

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)
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whose four top-level classification criteria are captured by the following table,

Reflexive Coreflexive

ker � entire � injective �
img � surjective � simple �

where � is said to be reflexive iff it is at least the identity (
��� � � ) and it is

said to be coreflexive (or a partial identity) iff it is at most the identity, that is, if
��� ���

holds.
Coreflexive relations are fragments of the identity relation which can be

used to model predicates or sets. The meaning of a predicate � is the coreflexive� � � � � such that
� � � � � � ) � � � � ) + � �!� ) + . This is the relation that maps every )

which satisfies � (and only such ) ) onto itself. The meaning of a set
� � � is� ��� ) � ) � � � � , that is,

� � � � � � ) � � � � ) +
� ) � � (10)

Wherever clear from the context, we will drop brackets
� � � � .

Before we embark on converting (2) into pointfree notation, let us see an
alternative view of functions better suited for calculations.

3 What is a function? — the “Galois view”

Shunting rules. To say that
�

is a function is equivalent to stating any of the
Galois connections

� � ��� � � ��� � � � � (11)

��� � � � � � ��� � � � (12)

Let us check one of these, say (11). (More about this can be found in eg.
[Hoo97,BdM97,Bac04] etc.)

That
�

entire and simple implies equivalence (11) can be proved by mutual
implication:

� � � � �
� �

monotonicity of composition �
� � � � � � � � � � �

� � �
is entire (6) �

� � �
� �
�

� �
monotonicity of composition �
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� � � � � � � � � �
� � �

is simple (5) �
� � � � �

That (11) implies that
�

is entire and simple is easy to see: let � � � � � ��� � � � �
(left-cancellation) or

� � � � � � � � � � � � (right-cancellation), respectively.
Function converses enjoy a number of properties of which the following is

singled out because of its rôle in pointwise-pointfree conversion [BB03] :

� � � � � ����� + ) � � � � + � � � ) + (13)

The use of (13) to convert (3, 4) into (5, 6), respectively, is left as an exercise.

4 FD-satisfiability in pointfree style

Attributes are functions. Let � be a relation with schema
�

,
�

a tuple in � and) be an attribute in
�

. Notation
��� ) � was adopted in (2) to mean “the value of

attribute ) in
�
”. This indicates that ) can be identified with the projection func-

tion which extracts the value which
�

exhibits as property ) . Since this extends
to a collection � of attributes, we can convert (2) into

	�
 � � � � � � � � � � � � � � � + � � � � � + � � � � + � � � � � + �
Assuming the universal quantification implicit, we reason:

� � � � � � � � � � � � + � � � � � + � � � � + � � � � � +
� �

(13) twice, for � � � ��� �
� � � � ����� � � � � � � ��� + ��� � � � � � ��� + ���

� �
(10) twice �

� � � � � � " � � � " � � � � � � � � " � � � � � " � � � � � � � � + � � � � � � � ��� + � �
� � � is commutative; substitution of equals for equals; converse �
� � � � � � " � " � � � ��� + " � � " ��� � � � � � ��� � � � � � ��� + ���

� �
relation inclusion (9) �

� � � � � � � � � ��� + � � � � � � � � � � � � (14)
� �

shunting rules (11) and (12) �
� � � � � � � ��� � ��� � � � � � � � ��� � � ���
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� �
converse versus composition, � ��� � + � ���

� � � � , followed by (8) �
img � � � � � � � � ��� � + � ���

In summary: a relation � as in definition 1 satisfies functional dependency � �
� iff the binary relation

� � � � � � � ��� � (15)

is simple, cf. (5).

5 Functional dependencies in general

Our definition of FD starts from the observation that relation � and projection
functions � and � in (15) can be generalized to arbitrary binary relations and
functions. This leads to the more general definition which follows. (The use of
“ � ” instead of “ � ” is intentional — it stresses the move from the restricted to
the generic notion.)

Definition 2. We say that relation � �
�

oo satisfies the “
�
� � ” functional

dependency — written
� �
� � — iff � � ��� � � in

�
�

��

�
�

oo

�

��
 �
��� � � ���oo

is simple. Equivalent definitions are

� �
� �

� ��� � ker
� + � � � � ker � (16)

— cf. (14) and (7) — and

� �
� �

�
ker � � � � � + � ker � (17)

since converse commutes with composition,

� � � � + � ��� � � � � (18)

Function
�

(resp. � ) will be mentioned as the left side or antecedent (resp. right

side or consequent) of FD
� �
� � . �
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Examples. The reader may wish to check that
� �

� � holds for � any of the
relations tabulated by the ) and

�
columns of

) � �
� � ���
� ) ������� )	�


 �
� � 

� �
� � 

��� � � 

��� ��
 � �
� ��
 � �
� 
 � �

and

) � � � ���
�
��� �� � � 
 + �
� �
� �

� � � ��� + �
� �
� �
� � � � + � � �
� � ��� + ��
 ��
 �
� � � � + ��
 ��
 �
� � � 
 + 
 
 �

Basic properties. In contrast with (2), equations (16) and (17) are easy to reason
about, as the reader may check by proving the following, elementary properties,
which hold for all � ,

�
, � of appropriate type:

���
� � (19)

( � denotes the empty relation)

� �
��� (20)

(where
� �

�
oo denotes the unique, “everywhere ’nothing’ ” function of its

type)

��� �
�
��� � � is simple (21)

� �
�

� � ��� ���
(22)

An immediate consequence of (22) is

� �"!
�

�
(23)

6 The role of injectivity

Ordering relations by injectivity. It can be observed that what matters about
�

and � in (16) is their “degree of injectivity” as measured by ker
�

and ker � , in
opposite directions: more injective

�
and less injective � will strengthen a given

FD
� �

� � . An extreme case is
� � ���

and & � � — functional dependency��� �
�#� will always hold, for any � , as cf. (20).
In order to measure injectivity in general we define the injectivity preorder

on relations as follows:

�%$ ��� ker
� � ker � (24)
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that is, � $ �
means � is less injective than

�
. Note that � and

�
must have

the same source but don’t need to share the same target datatype. For instance,
it is easy to see that

� $ � (25)

� $ � (26)

hold, since the kernel of � is the top relation and that of the empty relation is
empty.

Which relational operators respect the injectivity preorder? It is easy to see
that pre-composition does,

�%$ � � ��� � $ � � � (27)

as can be easily proved:

�%$ �
� �

(24) and (7) �
� � � � � � � � �

� �
monotonicity of � � � � + and � � � + �

� � � � � � � � � � � � � � � � ��� �
� � � � � � + � � � � � � � (twice), followed by (7 and (24) ) �
��� � $ � � �

Relators exhibit the same monotonic behaviour:

�%$ � ��� �%$�� � (28)

cf.

� �%$�� �
� �

definition (24) �
ker � � � + � ker � � � +

� �
ker � � � + � � � ker � + �

� � ker
� + ��� � ker � +

� �
relators are monotonic �

ker
� � ker �

� �
(24) again �

�%$ �
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FD defined via the injectivity ordering. The close relationship between FDs and
injectivity of observations is well captured by the following re-statement of (17)
in terms of (24):

� �
� �

�
� $ � � � � (29)

For its conciseness, this definition of FD is very amenable to calculation. Such
is the case of the proof that two FDs with matching antecedent / consequent
functions yield a composite FD,

��� � �
� & � � �

� � � �
�
� & (30)

which follows:

� �
� � � �

�
� &

� �
(29) twice �

� $ � � � � � & $ � � � �
� � $ -monotonicity of � � � � + (27) followed by � � � � + � � � � � � � �

� � � � $ � � � � � � + � � & $ � � � �
� � $ -transitivity �

& $ � � � � � � + �
� �

(29) again �
� � � �

� &

A category of functions. Note in passing that (30) and (23) suggest that we
can build a category whose objects are functions

�
, � , etc. and whose arrows� �

// � are relations which satisfy
� �
� � .

Simultaneous observations. In the same way � and � in (2) may involve more
that one observable attribute, we would like

�
and � in (16) to involve more than

one observation function. More observations add more detail and so are likely
to be more injective. The relational split combinator

�*) � � + 	 � � � � 	 � ) � 	 � � � 	 (31)

captures this effect, and facts

�%$ 	 � � � � and
� $ 	 � � � �
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are easy to check by recalling

ker
	 � � � � � � ker � +�� � ker

� + (32)

which stems from

	 � � � � � � 	�� ��� � � � � � � � +�� � � � ��� + (33)

Moreover, the following Galois connection

	 � � � � $ � � �%$ � � � $ � (34)

stems from the one underlying � :

	 � � � � $ �
� �

(24) and (32) �
ker
� � � ker � +�� � ker

� +
� � � -universal property (GC) �

ker
� � ker � � ker

� � ker
�

� �
(24) twice �

�%$ � � � $ �

The anti-symmetric closure of $ yields an equivalence relation

�	� � �
ker � �

ker
�

(35)

which is such that, for instance, �
��� holds. The following equivalences will
be relevant in the sequel, for suitably typed � ,

�
and
�

:

�
�
	 � � � � (36)	 � � � ��� 	 � � � � (37)	 � � 	 � � � ����� 	�	 � � � ��� � � (38)

Function injectivity. Since attributes in the relational database model are func-
tions, we will be particularly interested in comparing functions for their injectiv-
ity. Note that the kernel of a function is an equivalence relation and thus always
reflexive. So, restricted to functions, the $ ordering is such that, for all

�
,

� $ � $ ��� (39)
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and

� � ��� � �
is an injection (40)

Also note the equivalence

� $ �
�

�
�"!
�

�
(41)

From (39) and (27) we obtain
� � � $ � . From (5) we draw

��� $ �
� and then

�%$ � � � � . Putting these together:

� � � $ � $ � � � � (42)

FDs on functions. As special cases of relations, functions may also satisfy func-

tional dependencies. For instance, it will be easy to show that
� ) � � � � ����� � ���

�
���

holds, where
� ) � � � � (resp. $ � � � � � ) is the function which extracts, from a finite

list, the bag (resp. set) of all its elements.
More generally, the following Galois connection

��� & $ � � �%$ � � & � (43)

holds, which can be regarded as an “injectivity variant” of “shunting” rules
(11,12). From (43) we draw:

� � & $ � � ���
� �

�
� $ � � & � (44)

On � -equivalence. The discrimination of functions beyond � -equivalence is
unnecessary in the context of FD reasoning. The reader will observe this by
checking (30) once the second occurrence of � is replaced by some

	
such that

� � 	
: the proof is essentially the same, since ker �

�
ker

	
. Thus the more

general pattern of FD chaining which follows:

� � � �
� & � � �

� � � � � 	 � 	 �
� & (45)

Since ordering and repetition in “splits” are � -irrelevant — recall (36), (37)
and (38) — we will abbreviate

	 � � � � by
�
� , or by �

�
, wherever this notation

shorthand is welcome and makes sense 2. Such is the case of a fact which will
prove particularly useful in the sequel:

� �
� � & � � �

� � � � �
� & (46)

2 This is inspired by a similar shorthand popular in the standard notation of relational database
theory: attribute set union is denoted by simple juxtaposition.
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The proof of (46) is as follows:

� �
� � &

� �
(29) ; expansion of shorthand � & �

	
��� & � $ � � ���

� �
(34) �

� $ � � ��� � & $ � � ���
� �

(29) twice �
� �
� � � � �

� &
FD strengthening. The comment above about the contra-variant behaviour (con-
cerning injectivity) of the antecedent and consequent functions of an FD is now
made precise,

& ���� � &�� � � � �
� � � � � � (47)

whose proof s immediate:

&�� � � � �
� � � � � �

� �
(41) twice �

& � !� � � � �
� � � �

�"!
���

� �
(30) twice; identity of composition �

& �� �
The following are corollaries of (47), since

� &�� �
:

� & �� �
��� �

� � (48)
� �
� �

��� �
� � & (49)

By
�

-transitivity, we see that it is always possible in a FD to move observations
from the consequent (“dependent”) side to the antecedent (“independent”) one:

� & �� �
��� �

� � & (50)

Moving the “very last” one also makes sense, since

� & �
�
�#� ��� & �� �
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7 Keys

Every � such that �
�
�
���

— if it exists — is called a superkey for � . Keys are
minimal superkeys, that is, they are functions � as above such that, for all � $ � ,

�
��
�
� �

. In other words,

� is a key of � � �
�
�
� � � 	 
 � � �

�
�
���
� ���$ � �

From (22) and (39) we draw that
� �

is always a (maximal) superkey.

8 The Armstrong-axioms

In this section we prove the correctness of the Armstrong-axioms [Mai83],
which are the standard inference rules for FDs underlying relational database
theory. We show that FD theory is a natural consequence of the pointfree for-
malization presented earlier on.

In the standard formulation, these axioms involve subsets of attributes of a
relational schema

�
ordered by inclusion, eg.

� � � � �
. Unions of such

attribute subsets are written by juxtaposition, eg.
�
� instead of

���
� . Since

attributes
�

and � “are” (projection) functions,
�
� will mean the split of such

projections. In our setting, we generalize these to arbitrary functions ordered by
injectivity. In fact, it is easy to see that

� � � implies
� $ � . (For notation

economy, we use the same symbols
�

and � to denote both the attribute symbol
and the associated projection.) The whole schema

�
corresponds to a maximal

observation. In our setting, this is captured by the identity
���

, since — by product
reflexion — the split of all projections in a finite product is the identity. (This
observation will be made more precise in section 8.2.)

As we have seen, � -ary relational database tables are sets of tuples which
we model by coreflexive relations. For instance, a table with three attributes� � � 
 � 
 
 will be modelled by coreflexive

� 
 � 
 
 � 
 � 
 

� � ��� �

oo

such that
��� � � � � � � � � � � � � � � �

. In this section, we will abbreviate
� � � � � by�

.
Proofs of the Armstrong-axioms follow:

– (A1) Reflexivity :

� $ �
� �
�
� � (51)
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This follows from �
�
� � � � � � , recall (22) and (47). Another way to put

it is (let � � � ��� )
���
�
� � (52)

– (A2) Augmentation :

�
�
� � � ���

�
� ��� (53)

Proof:

���
�
� ���

� �
(46) �

���
�
� � � ���

�
���

� �
Reflexivity (A1) in version (52) �

���
�
� �

� �
(48) �

�
�
� �

(The implication just above is Maier’s version of this axiom [Mai83].)
– (A3) Transitivity :

�
�
� � � �

�
��� � �

�
��� (54)

This stems from (30) for
�

and � the same coreflexive
�

, in which case� � � � � .

8.1 The Armstrong-axioms — alternative version

– (A4) Additivity (or Union):

�
�
� � � �

�
��� � �

�
� ��� (55)

This is one of the “ping-pong” sides of (46).
– (A4’) Projectivity:

�
�
� ��� � �

�
� � � �

�
��� (56)

This is the other side of (46).
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– (A5) Pseudo-transitivity :

�
�
� � ��� �

�
��� � � �

�
��� (57)

This stems from the first version of the axioms alone:

�
�
� � ��� �

�
���

� �
augmentation (A2) �

� �
�
� � ����� �

�
���

� �
transitivity (A3) �

� �
�
���

– (A6) Decomposition :

�
�
� � � � $ � � �

�
��� (58)

This is (47) for
� � � . Alternatively,

�
�
� � � � $ �

� �
(A1) �

�
�
� � � �

�
���

� �
(A3) �

�
�
���

– (A7) Reflexivity :

�
�
� � (59)

This is (22) or (A1) for � � � .
– (A8) Accumulation :

�
�
� ��� � �

�
� ��� � �

�
� ��� � (60)

In fact:

�
�
� ��� � �

�
� ���

� �
(A2) �
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�
�
� ��� � ���

�
� � ���

� �
(A3) �

�
�
� ��� � �

�
� � ���

� �
(46) �

�
�
� ��� ���

� �
(49) �

�
�
� ��� �

8.2 Attributes

Database (relational) files are coreflexives on � -dimensional Cartesian products
� � 
 � � � 
 � � . Each projection

� � (
� � � ) is called an attribute. From 
 -reflexion	 � � ������� � � � � � � �

we draw that all attributes together are maximal superkeys:� � � � � � � � ���
. In fact, any permutation of this split is an isomorphism (eg.$ � ) � for �

� 

) and therefore a maximal superkey. Wherever

�
is an arbitrary

split of attributes we denote by
�

the split of the remaining attributes, in any
order. The

�
notation only makes sense in the context of � -equivalence and

obeys the following properties:

� � � ���
� � �

9 Multi-valued dependencies

Definition 3. Given subsets �(��� � �
of the relation scheme

�
of a relation � ,

this relation is said to satisfy the multi-valued dependency (MVD) � � � � iff,
for any two tuples

� � � � � � which “agree” on � there exists a tuple
� � � � �

which “agrees” with
�

on ��� and “agrees” with
� �

on
� � � � , that is,

	�
 � � � � � � � � � � � � � � � � � ��� � � �
�

	�� ��� � � ��� ��� � � ��� � � � � ��� ��� � � � ���� � � � � � � � � ����� � � � � �
�
� (61)
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cf. the following picture: � � � � � �� � � �
� � � � � � �
��� ��� � � �

�
Our efforts towards writing (61) without variables will be considerably softened
by following the rules which follow, one generalizing relational inclusion and
the other relational composition:

– Given � �
��� �

oo and two predicates

 �

�
oo and


 �
�

oo (core-
flexively denoted by � and � , respectively), then	�
 � � ) � �
	 � +
� ��� ) + � � � ) � � � ) � �	�
 � � ) � � � � � � ���
� � � � + ) � (62)

extends (9), which corresponds to the special case � � � � ���
. (In retro-

spect, notice this is the rule implicit in the reasoning carried out in section
4.)

– Moreover, for � �
�

oo and � 
�oo two binary relations,
	 
 � � 	 � � 	 � ) � � ) � � � )�� ) � 	 � � �	 
 � � 	 � � � � ����� � � +
	 � (63)

extends relational composition (for � � ���
we are back to ��� � ).

In the spirit of the
�

notation of section 8.2, we denote
� � ��� by ��� in

the following conversion of the existential quantification in (61) into pointfree
notation:

	�� � � � � � � � � � � ��� � � � � � � � � � � � � � � � � ����� � � � � � � � �
� �

(63) for 	 � � � � � + , an so on �
� � ker � � � � � � � � � ker ��� + � �

Then we include this in the overall formula and reason:
	 
 � � � � � � � � � � � � ��� ��� � ��� � � ��� � � ker ��� � � � � � � � ker � � + ��� �

� �
rule (62) for 	 � � � � � � + �

	 
 � � � � � � � � � � � � � � � ker � + � � � � � � � � ker ��� � � � � � � � ker � � + ��� �
� �

kernel of composition �
	 
 � � � � � � � � ker � � � � � � � � � + � ker � � � � � � � � � ker � � + � � �
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Thus we reach the following pointfree definition, in which we generalize
� � � � � to

an arbitrary endo-relation � �
�

oo :

�
�

� � ��� ���� ker � � � ��� + � � ker ��� + � ��� ker � � (64)

Why does definition (64) require � to have the same source and target type?
Just expand the right hand-side of (64) to

��� � � ker � � � � � + + � � � � � � � � ��� ��� �
and even further to

� � � � ����� � + � � � � � � � ��� � + � � � � ��� � � �
and draw diagram

�

� �

��

�
))SSSSSSSSSSSSSSSSSSS �
�

oo
�

vvlllllllllllllllll

� �

��

�

� � � � � � �

{{xx
xx

xx
xx

xx
xxx

xx
xx

xx
xx

x

�

� 
 
 �
� � � � � � � �oo

� � � � � � �
aaDDDDDDDDDDDDDDDDDDDD

Therefore, MVD �
�

� � � requires � to be an endorelation. This diagram provides

and alternative meaning for MVDs: �
�

� � � holds iff the projection of � via
� �%� � � “factorizes” through � .

As happens with FDs, the axiomatic theory of MVDs assumes � to be “a
set of tuples”. As was have done before, we model such a set by a coreflexive
relation as use capital letter

�
to stress this assumption.

10 Reasoning

MVDs are less intuitive than FDs. In fact, it is known from the standard theory
that FDs are just a particular case of MVDs, that is,

�
�
� � � �

�
� � � (65)
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holds. Our proof of this fact (often termed the conversion axiom) is as follows:

�
�
� �

� �
augmentation (53) for �

� � � �
�
�
� � �

� �
FD definition (17) �

ker � � � � � + � ker ���
� �

composition is monotone,
� � � � � � � � for coreflexive

� �
ker � � � � � + � ker ��� � �

� �
in general,

� $ ��� , thus
� � � � ker

� �
ker � � � � � + � � ker ��� + � � � ker � �

� �
definition (64) �

�
�

� � �
This axiom is given in [Mai83] as a corollary of the theorem of lossless decom-
position of MVDs. Instead of resorting to such an indirect proof method, which
requires further ingredients of the underlying theory, our proof by calculation is
performed in the same style as earlier on for FDs.

MVD theory generalizes FD theory. Some results stem directly from the
conversion axiom, as is the case of the MVD reflexivity axiom,

� $ �
� �
�

� � � (66)

since

�
�

� � �
� �

conversion (65) �
�
�
� �

� �
FD reflexivity (59) �

� $ �
Some others are new, for instance the complementation axiom:

�
�

� � � � �
�

� � � (67)
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which the reader may wish to prove as an exercise. All other MVD inference
axioms can be found in [Mai83], section 7.4.1. In this paper we don’t go beyond
this point.

11 Conclusions

When computer scientists refer to the relational calculus, by default what is un-
derstood is the calculus of � -ary relations studied in logics and database theory,
and not the calculus of binary relations which was initiated by De Morgan in
the 1860s [Pra92] an eventually became the basis of the algebra of program-
ming [BdM97,Bac04].

According to [Kan03], it was Quine, in his 1932 Ph.D. dissertation, who
showed how to develop the theory of � -ary relations for all � simultaneously,
by defining ordered � -tuples in terms of the ordered pair. (Norbert Wiener is
apparently the first mathematician to publicly identify, in the 1910s, � -ary re-
lations with subsets of � -tuples.) Codd discovered and publicized procedures
for constructing a set of simple � -ary relations which can support a set of given
data and constructed an extension of the calculus of binary relations capable of
handling most typical data retrieval problems.

Since binary relations are just � -ary relations, for �
� 


, there seems to
be little point in explaining � -ary relational theory in terms of binary relations.
When Codd talks about the binary relation representation of an � -ary relation in
[Cod70], one has the feeling that there are more disadvantages than advantages
in such a representation.

Contrary to these intuitions, this paper shows that such a strategy makes
sense, at least in the database theory context. Classical pointwise relational
database theory is full of lengthy formulæ, and proofs with lots of � � � notation,
case analyses and English explanations for “obvious” steps. The adoption of the
(pointfree) binary relation calculus is beneficial in several main respects. First,
the fact that pointfree notation abstracts from “points” or variables makes the
reasoning more compact and effective. Elegant formulæ such as (29) — when
compared with (2) — come in support for this claim. Second, proofs are per-
formed by easy-to-follow calculations. Third, one is able to generalize the origi-
nal theory, as happens with our generalization of attributes to arbitrary (suitably
typed) functions in FDs and MVDs.

In retrospect, the use of coreflexive relations to model sets of tuples and
predicates in the binary relation calculus (instead of arbitrarily partitioning at-
tributes in “source ones” and “target ones”) is perhaps the main ingredient of
the simplification and subsequent generalization. (A similar strategy has been
followed in [OR04] concerning a pointfree model of hash tables).
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12 Future work

This paper addresses the foundations of FD theory in a pointfree style. No claim
is made for extending or improving the standard theory. What is gained is a
better starting point for an immense body of knowledge. (FDs are the subject
of no more than 20% of the pages Maier’s book on relational database theory
[Mai83].)

The effectiveness of the approach can only be tested once more and more
results are dealt with. In this paper, multivalued dependencies have only been
hinted at. Join dependencies have not been considered at all.

Outside the database context, functional dependencies have been used to
solve ambiguities in multiple parameter type classes in the Haskell type system
[Jon00]. This may happen to be an area of application of the reasoning tech-
niques developed in this paper.

At the level of foundations, left and right conditions [Hoo97] should be also
exploited as alternatives to coreflexives. Concerning representation theory and
lossless decomposition, some recent results in [Oli04] and [Rod05] should be
taken into account and generalized. This brings us back (albeit in a sketchy way)
to our motivation on spreadsheet normalization.

Lossless decomposition. Maintaining arbitrary FDs can be hard, because they
constrain the update, insert, delete operations on database files and waste space.
Therefore, instead of allowing a relation � to satisfy an arbitrary FD, it is prefer-
able to “extract” such a dependency by decomposing � in two parts — the FD
itself, eg.

�
PILOT � FLIGHT � DATE �

and the “rest” of � , eg.
� ���

PILOT � FLIGHT � DEPARTS �
in the example presented in the beginning of this paper.

In general, let
� �
� � be a functional dependency. Then � can be factorized

in two components, the functional dependency itself � � � � � � and the “rest” of
� , which we model by post-composing � with some selector function & :

�

�
�

OO

�

��

�

� � �
ddIIIIIIIIII�
oo

�

��
 �
��� � � � �oo
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Can we recover � from the two components & �'� and � �'��� � � ? The answer

will be “yes” provided there is some
� 
 
 � // � such that

� � 	 � 	 & � � � � � ��� � � �
Such is the case of, for instance,

	 � � �
, �

� � � and & � � � , or
	 � $ � ) � ,

�
��� � and & ��� � , etc.

Lossless decompositions of this kind provide a representation theory for � -
ary relations which isolate FDs and save disk space. FDs and MVDs are just the
invariant properties on � which make such decompositions lossless. Thus their
relevance in the whole theory.
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