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Introduction Tropical Optimization

Introduction: Tropical Optimization

◮ Tropical (idempotent) mathematics focuses on the theory and

applications of semirings with idempotent addition

◮ The tropical optimization problems are those that are formulated

and solved within the framework of tropical mathematics

◮ Many problems have objective functions defined on vectors over

idempotent semifields (semirings with multiplicative inverses)

◮ Both unconstrained problems and problems with constraints in the

form of linear inequalities and equalities are considered

◮ The problems find applications in various areas, including
◮ project scheduling,
◮ location analysis,
◮ transportation networks,
◮ decision making,
◮ discrete event systems
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Idempotent Algebra Definitions and Notation

Idempotent Algebra: Definitions and Notation

Idempotent Semifield

◮ Definition: the algebraic system 〈X, 0, 1,⊕,⊗〉

◮ Carrier set: X with neutral elements, zero 0 and identity 1

◮ Associative and commutative binary operations: ⊕ and ⊗

◮ Multiplication ⊗ is distributive over addition

◮ Addition ⊕ is idempotent: x⊕ x = x for all x ∈ X

◮ Multiplication is invertible: for each nonzero x ∈ X , there exists an

inverse x−1 ∈ X such that x⊗ x−1 = 1

◮ Linear order: the order x ≤ y ⇐⇒ x⊕ y = y is a total order

◮ Algebraic completeness: the equation xp = a is solvable for any

a ∈ X and integer p to provide powers with rational exponents

◮ Notational convention: the multiplication signs ⊗ will be omitted
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Idempotent Algebra Definitions and Notation

Semifield Rmax,+ (Max-Plus Algebra)

◮ Definition: Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉

◮ Carrier set: X = R ∪ {−∞} ; zero and identity: 0 = −∞ , 1 = 0

◮ Binary operations: ⊕ = max and ⊗ = +

◮ Idempotent addition: x⊕ x = x for all x (max(x, x) = x)

◮ Multiplicative inverse: for each x ∈ R , there exists x−1 (= −x )

◮ Power notation: for each x, y ∈ R , there is defined xy (= xy)

◮ Further examples of real idempotent semifields:

Rmin,+ = 〈R ∪ {+∞},+∞, 0,min,+〉,

Rmax,× = 〈R+ ∪ {0}, 0, 1,max,×〉,

Rmin,× = 〈R+ ∪ {+∞},+∞, 1,min,×〉,

where R+ = {x ∈ R|x > 0}

N. Krivulin (SPbSU) Tropical Optimization Problems RAMiCS 2015 5 / 28



Idempotent Algebra Definitions and Notation

Vector and Matrix Algebra Over X

◮ The idempotent semifield X is routinely extended to the

idempotent systems of vectors in X
n and of matrices in X

m×n

◮ The matrix and vector operations follow the usual entry-wise

formulae with ⊕ as addition, and ⊗ as multiplication

◮ For any vectors a = (ai) and b = (bi) in X
n , and a scalar x ∈ X ,

the vector operations follow the conventional rules

{a⊕ b}i = ai ⊕ bi, {xa}i = xai

◮ For any matrices A = (aij) ∈ X
m×n , B = (bij) ∈ X

m×n and

C = (cij) ∈ X
n×l , and x ∈ X , the matrix operations are given by

{A⊕B}ij = aij ⊕ bij , {AC}ij =
n⊕

k=1

aikckj , {xA}ij = xaij
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Idempotent Algebra Definitions and Notation

Idempotent Semimodule Over X

◮ Definition: the system 〈Xn,0,⊕〉 with scalar multiplication ⊗

◮ Carrier set: the set of column vectors of order n denoted X
n

◮ Zero vector: 0 = (0, . . . , 0)T , vector of ones: 1 = (1, . . . , 1)T

◮ Operations: vector addition ⊗ , and scalar multiplication ⊗

◮ Regular vector: any vector without zero components

◮ Multiplicative conjugate transposition transforms any nonzero

column vector x = (xi) into the row vector x− = (x−i ) , where

x−i =

{
x−1

i , if xi 6= 0;

0, otherwise

◮ Linear dependence: a vector y is linearly dependent on vectors

x1, . . . ,xm if y = c1x1 ⊕ · · · ⊕ cmxm for some scalars c1, . . . , cm
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Idempotent Algebra Definitions and Notation

Graphical Representation for R
2
max,+
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◮ Addition (left), scalar multiplication (middle), and a linear span

(right) of vectors in the Cartesian coordinate system in the plane
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Idempotent Algebra Definitions and Notation

Matrices Over X (Further Definitions)

◮ Zero and identity matrices:

0 =




0 . . . 0

...
. . .

...

0 . . . 0


 , I =




1 0

. . .

0 1




◮ Row- (column-) regular matrix: any matrix without rows (columns)

that consist entirely of zeros

◮ Multiplicative conjugate transposition transforms any nonzero

matrix A = (aij) into the matrix A− = (a−ij) , where

a−ij =

{
a−1

ji , if aji 6= 0;

0, otherwise
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Tropical Optimization Problems Examples of Problems

Tropical Optimization Problems: Examples

Linear Objective Functions

◮ Hoffman (1963), Superville (1978), U. Zimmermann (1981)

minimize pTx,

subject to Ax ≥ d
(direct solution)

◮ K. Zimmermann (1984, 1992, 2003, 2006)

minimize pTx,

subject to Ax ≤ d, Cx ≥ b,

g ≤ x ≤ h

(algorithmic solution)

◮ Butkovič (1984, 2010), Butkovič and Aminu (2009)

minimize pTx,

subject to Ax⊕ b = Cx⊕ d
(algorithmic solution)
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Tropical Optimization Problems Examples of Problems

Nonlinear Objective Functions

◮ Cuninghame-Green (1962, 1979), Engel and Schneider (1975),

Elsner and van den Driessche (2004, 2010), K. (2013,2014)

minimize x−Ax (direct solution)

◮ Cuninghame-Green (1976), U. Zimmermann (1981)

minimize (Ax)−d,

subject to Ax ≤ d
(direct solution)

◮ K. Zimmermann (1984)

minimize (Ax)−p⊕ p−Ax,

subject to g ≤ x ≤ h
(algorithmic solution)
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Tropical Optimization Problems Examples of Problems

Nonlinear Objective Functions

◮ K. (2004, 2009, 2012)

minimize (Ax)−p⊕ q−Ax (direct solution)

◮ Butkovič and Tam (2009)

minimize 1
TAx(Ax)−1; (direct solution)

maximize 1
TAx(Ax)−1 (direct solution)

◮ Gaubert, Katz and Sergeev (2012)

minimize (pTx⊕ r)(qTx⊕ s)−1,

subject to Ax⊕ b ≤ Cx⊕ d
(algorithmic solution)
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Solution via Matrix Sparsification Problem Formulation

Solution via Matrix Sparsification: Problem

Formulation

Problem
Given a matrix A ∈ X

m×n and vectors p ∈ X
m , q ∈ X

n , the problem

is to find regular vectors x ∈ X
n that

minimize q−x(Ax)−p

◮ The problem appears in approximation in the sense of span

seminorm (the maximum deviation between elements of a vector)

◮ Applications include project scheduling, decision making
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Solution via Matrix Sparsification Partial Solution

Partial Solution

Problem

minimize q−x(Ax)−p

Proposition

Let A be a row-regular matrix, p be

nonzero and q regular vectors.

Then, the minimum is ∆ = (Aq)−p , and

attained at x = αq for all α > 0

Sketch of Proof.

1. xx− ≥ I =⇒ (q−x)−1x = (q−xx−)− ≤ q

2. (q−x)−1x ≤ q =⇒ (q−x)−1Ax ≤ Aq

3. (q−x)−1Ax ≤ Aq =⇒ q−x(Ax)−p ≥ (Aq)−p = ∆

4. x = αq =⇒ q−x(Ax)−p = (Aq)−p = ∆
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Solution via Matrix Sparsification Partial Solution

Problem

minimize q−x(Ax)−p

Partial Solution

∆ = (Aq)−p = 2,

x = αq, α ∈ R

Example (in terms of Rmax,+ )

A =

(
2 0
4 1

)
, p =

(
5
2

)
, q =

(
1
2

)
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Solution via Matrix Sparsification Characterization of Solution

Characterization of Solution

Problem

minimize q−x(Ax)−p

Lemma
Let A be row-regular, p be nonzero, q

be regular, and ∆ = (Aq)−p .

Then, all regular solutions are given by

q−x = α, Ax ≥ α∆−1p, α > 0

Sketch of Proof.
1. q−x(Ax)−p = ∆ ⇐⇒ q−x = α , (Ax)−p = α−1∆ , α > 0

2. (Ax)−p = α−1∆ ⇐⇒ (Ax)−p ≤ α−1∆ , (Ax)−p ≥ α−1∆

3. q−x = α =⇒ x ≤ αq =⇒ (Ax)−p ≥ α−1∆

4. (Ax)−p ≤ α−1∆ ⇐⇒ p ≤ α−1∆Ax ⇐⇒ Ax ≥ α∆−1p
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Solution via Matrix Sparsification Properties of Solution

Properties of Solution

Problem

minimize q−x(Ax)−p

Corollary

Let A be row-regular, p be nonzero, q

be regular, and ∆ = (Aq)−p .

Then, the set of regular solutions is closed

under addition and scalar multiplication

Sketch of Proof.
Addition:

q−x = α, Ax ≥ α∆−1p,

q−y = β, Ay ≥ β∆−1p
=⇒

q−(x⊕ y) = α⊕ β,

A(x⊕ y) ≥ (α⊕ β)∆−1p

Scalar multiplication: analogously

N. Krivulin (SPbSU) Tropical Optimization Problems RAMiCS 2015 17 / 28



Solution via Matrix Sparsification Matrix Sparsification

Matrix Sparsification

Problem

minimize q−x(Ax)−p

Lemma
Let A = (aij) be a row-regular matrix,

p = (pi) be a nonzero vector, q = (qj) be

a regular vector, and ∆ = (Aq)−p .

Then, replacing the matrix A by

the sparsified matrix Â = (âij) , where

âij =

{
aij , if aij ≥ ∆−1piq

−1

j ;

0, otherwise;

does not change the solution

Sketch of Proof.
The representation q−x = α , Ax ≥ α∆−1p yields that there may be

terms aijxj , which do not affect the left-hand side of the inequality
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Solution via Matrix Sparsification Matrix Sparsification

Problem

minimize q−x(Ax)−p

Example (in terms of Rmax,+ )

A =

(
2 0
4 1

)
, p =

(
5
2

)
, q =

(
1
2

)

Threshold and Sparsified Matrices

∆ = 2, ∆−1pq− =

(
2 1

−1 −2

)
, Â =

(
2 0

4 1

)
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Solution via Matrix Sparsification Extended Solution

Extended Solution

Problem

minimize q−x(Ax)−p

Lemma
Let A be sparsified row-regular, p be

nonzero, q be regular, and ∆ = (Aq)−p .

Then, any vector given by the condition

x = (I ⊕∆−1A−pq−)u, u > 0

is a solution of the problem

Sketch of Proof.

1. x = (I ⊕∆−1A−pq−)u ⇐⇒ α∆−1A−p ≤ x ≤ αq

2. α∆−1A−p ≤ x ≤ αq =⇒ q−x = α , Ax ≥ α∆−1p
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Solution via Matrix Sparsification Extended Solution

Problem

minimize q−x(Ax)−p

Extended Solution

x = Bu, u ∈ R
2,

B = I ⊕∆−1A−pq−

=

(
0 −1

−2 0

)
=

(
b1 b2

)

Example (in terms of Rmax,+ )

A =

(
2 0

4 1

)
, p =

(
5
2

)
, q =

(
1
2

)
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Solution via Matrix Sparsification All Solutions

All Solutions

Problem

minimize q−x(Ax)−p

Theorem
Let A be sparsified row-regular, p be

nonzero, q be regular, and ∆ = (Aq)−p .

Let A be the set of matrices obtained from

A by fixing one nonzero entry in each row

and setting the others to 0 .

Then, all regular solutions are given by

x = (I ⊕∆−1A−

1
pq−)u, u > 0, A1 ∈ A

Sketch of Proof.
x = (I ⊕∆−1A−

1
pq−)u , A1 ∈ A ⇐⇒ q−x = α , Ax ≥ α∆−1p
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Solution via Matrix Sparsification All Solutions

Problem

minimize q−x(Ax)−p

Example (in terms of Rmax,+ )

A =

(
2 0

4 1

)
, p =

(
5
2

)
, q =

(
1
2

)

All Solutions

∆ = 2, A = {A1,A2}, A1 =

(
2 0

4 0

)
, A2 =

(
2 0

0 1

)
;

x = B1u, u ∈ R
2, B1 = I ⊕∆−1A−

1
pq− =

(
0 −1
0 0

)
;

x = B2u, u ∈ R
2, B2 = I ⊕∆−1A−

2
pq− =

(
0 −1

−2 0

)
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Solution via Matrix Sparsification All Solutions

Problem

minimize q−x(Ax)−p

All Solutions

x = B1u, u ∈ R
2,

B1 = I ⊕∆−1A−

1
pq−

=

(
0 −1
0 0

)
=

(
b1 b2

)

Example (in terms of Rmax,+ )

A =

(
2 0

4 1

)
, p =

(
5
2

)
, q =

(
1
2

)
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Solution via Matrix Sparsification Complete Solution

Complete Solution

Problem

minimize q−x(Ax)−p

Theorem
Let A be sparsified row-regular, p be

nonzero, q be regular, and ∆ = (Aq)−p .

Let A be the set of matrices obtained from

A by leaving one nonzero entry in each row.

Let B0 be the matrix whose columns form the maximal independent

system of columns in matrices B1 = I ⊕∆−1A−

1
pq− for all A1 ∈ A .

Then, all regular solutions are given by x = B0u , u > 0

Sketch of Proof.
Follows from that the set of solutions to the problem is closed under

vector addition and scalar multiplication
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Solution via Matrix Sparsification Complete Solution

Problem

minimize q−x(Ax)−p

Example (in terms of Rmax,+ )

A =

(
2 0

4 1

)
, p =

(
5
2

)
, q =

(
1
2

)

Complete Solution

B1 =

(
0 −1
0 0

)
, B2 =

(
0 −1

−2 0

)
;

b1 =

(
0
0

)
, b2 =

(
−1
0

)
, b3 =

(
0

−2

)
, b3 = b1 ⊕ (−2)b2;

x =

(
0 −1
0 0

)
u, u ∈ R

2, B0 = B1 =

(
0 −1
0 0

)
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Solution via Matrix Sparsification Complete Solution

Problem

minimize q−x(Ax)−p

Example (in terms of Rmax,+ )

A =

(
2 0
4 1

)
, p =

(
5
2

)
, q =
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Concluding Remarks

Concluding Remarks

◮ An optimization problem, which arises in approximation in the

span seminorm, was examined in terms of tropical mathematics

◮ The problem is to minimize a function defined on vectors over an

idempotent semifield by using conjugate transposition

◮ All solutions were characterized by simultaneous equation and

inequality, and properties of the solution set were investigated

◮ A matrix sparsification technique was developed to derive a

complete solution as a family of solution subsets

◮ The characteristic properties of solutions were exploited to

describe the complete solution in a compact vector form

◮ The proposed solution approach can serve as a template to derive

complete, direct solutions of other problems

◮ More solutions to tropical optimization problems with applications

are available at http://arxiv.org/a/krivulin n 1
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