Solving Tropical Optimization Problems via Matrix Sparsification

Nikolai Krivulin

Faculty of Mathematics and Mechanics Saint Petersburg State University St. Petersburg, Russia

E-mail: nkk<at>math.spbu.ru URL: http://www.math.spbu.ru/user/krivulin/

15th International Conference on Relational and Algebraic Methods in Computer Science (RAMiCS 2015) Braga, Portugal, September 28 – October 1, 2015

Outline

Outline

Introduction Tropical Optimization Idempotent Algebra **Definitions and Notation Tropical Optimization Problems** Examples of Problems Solution via Matrix Sparsification Problem Formulation Partial Solution Characterization of Solution Properties of Solution Matrix Sparsification Extended Solution All Solutions Complete Solution **Concluding Remarks**

N. Krivulin (SPbSU)

Tropical Optimization Problems

RAMICS 2015 2 / 28

(≥) < ≥)</p>

Introduction: Tropical Optimization

- Tropical (idempotent) mathematics focuses on the theory and applications of semirings with idempotent addition
- The tropical optimization problems are those that are formulated and solved within the framework of tropical mathematics
- Many problems have objective functions defined on vectors over idempotent semifields (semirings with multiplicative inverses)
- Both unconstrained problems and problems with constraints in the form of linear inequalities and equalities are considered
- The problems find applications in various areas, including
 - project scheduling,
 - location analysis,
 - transportation networks,
 - decision making,
 - discrete event systems

イロト 不得 トイヨト イヨト 三日

Idempotent Algebra: Definitions and Notation

Idempotent Semifield

- *Definition:* the algebraic system $\langle \mathbb{X}, \mathbb{0}, \mathbb{1}, \oplus, \otimes \rangle$
- Carrier set: X with neutral elements, zero 0 and identity 1
- ► Associative and commutative binary operations: ⊕ and ⊗
- Addition \oplus is *idempotent*: $x \oplus x = x$ for all $x \in X$
- ▶ Multiplication is *invertible:* for each nonzero $x \in X$, there exists an inverse $x^{-1} \in X$ such that $x \otimes x^{-1} = 1$
- *Linear order:* the order $x \le y \iff x \oplus y = y$ is a total order
- ► Algebraic completeness: the equation x^p = a is solvable for any a ∈ X and integer p to provide powers with rational exponents
- Notational convention: the multiplication signs \otimes will be omitted

Semifield $\mathbb{R}_{max,+}$ (Max-Plus Algebra)

- Definition: $\mathbb{R}_{\max,+} = \langle \mathbb{R} \cup \{-\infty\}, -\infty, 0, \max, + \rangle$
- Carrier set: $\mathbb{X} = \mathbb{R} \cup \{-\infty\}$; zero and identity: $\mathbb{0} = -\infty$, $\mathbb{1} = 0$
- Binary operations: $\oplus = \max$ and $\otimes = +$
- Idempotent addition: $x \oplus x = x$ for all $x \pmod{x, x} = x$
- Multiplicative inverse: for each $x \in \mathbb{R}$, there exists x^{-1} (= -x)
- *Power notation:* for each $x, y \in \mathbb{R}$, there is defined x^y (=xy)
- Further examples of real idempotent semifields:

$$\begin{split} \mathbb{R}_{\min,+} &= \langle \mathbb{R} \cup \{+\infty\}, +\infty, 0, \min, + \rangle, \\ \mathbb{R}_{\max,\times} &= \langle \mathbb{R}_+ \cup \{0\}, 0, 1, \max, \times \rangle, \\ \mathbb{R}_{\min,\times} &= \langle \mathbb{R}_+ \cup \{+\infty\}, +\infty, 1, \min, \times \rangle, \end{split}$$

where $\mathbb{R}_+ = \{x \in \mathbb{R} | x > 0\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Vector and Matrix Algebra Over X

- ► The idempotent semifield X is routinely extended to the idempotent systems of vectors in Xⁿ and of matrices in X^{m×n}
- The matrix and vector operations follow the usual entry-wise formulae with \oplus as addition, and \otimes as multiplication
- ► For any vectors $a = (a_i)$ and $b = (b_i)$ in \mathbb{X}^n , and a scalar $x \in \mathbb{X}$, the vector operations follow the conventional rules

$$\{\boldsymbol{a} \oplus \boldsymbol{b}\}_i = a_i \oplus b_i, \qquad \{x\boldsymbol{a}\}_i = xa_i$$

► For any matrices $A = (a_{ij}) \in \mathbb{X}^{m \times n}$, $B = (b_{ij}) \in \mathbb{X}^{m \times n}$ and $C = (c_{ij}) \in \mathbb{X}^{n \times l}$, and $x \in \mathbb{X}$, the matrix operations are given by

$$\{A \oplus B\}_{ij} = a_{ij} \oplus b_{ij}, \quad \{AC\}_{ij} = \bigoplus_{k=1}^{n} a_{ik}c_{kj}, \quad \{xA\}_{ij} = xa_{ij}$$

Idempotent Semimodule Over X

- *Definition:* the system $\langle \mathbb{X}^n, \mathbf{0}, \oplus \rangle$ with scalar multiplication \otimes
- Carrier set: the set of column vectors of order n denoted Xⁿ
- Zero vector: $\mathbf{0} = (0, \dots, 0)^T$, vector of ones: $\mathbf{1} = (\mathbb{1}, \dots, \mathbb{1})^T$
- Operations: vector addition \otimes , and scalar multiplication \otimes
- Regular vector: any vector without zero components
- ► Multiplicative conjugate transposition transforms any nonzero column vector $x = (x_i)$ into the row vector $x^- = (x_i^-)$, where

$$x_i^- = \begin{cases} x_i^{-1}, & \text{if } x_i \neq 0; \\ 0, & \text{otherwise} \end{cases}$$

► Linear dependence: a vector y is linearly dependent on vectors x_1, \ldots, x_m if $y = c_1 x_1 \oplus \cdots \oplus c_m x_m$ for some scalars c_1, \ldots, c_m

Graphical Representation for $\mathbb{R}^2_{\max,+}$

 Addition (left), scalar multiplication (middle), and a linear span (right) of vectors in the Cartesian coordinate system in the plane

N. Krivulin (SPbSU)

Matrices Over X (Further Definitions)

► Zero and identity matrices:

$$\mathbf{0} = \begin{pmatrix} \mathbb{0} & \dots & \mathbb{0} \\ \vdots & \ddots & \vdots \\ \mathbb{0} & \dots & \mathbb{0} \end{pmatrix}, \qquad \mathbf{I} = \begin{pmatrix} \mathbb{1} & & \mathbb{0} \\ & \ddots & \\ \mathbb{0} & & \mathbb{1} \end{pmatrix}$$

- Row- (column-) regular matrix: any matrix without rows (columns) that consist entirely of zeros
- ► Multiplicative conjugate transposition transforms any nonzero matrix $A = (a_{ij})$ into the matrix $A^- = (a^-_{ij})$, where

$$a_{ij}^{-} = \begin{cases} a_{ji}^{-1}, & \text{if } a_{ji} \neq 0; \\ \mathbb{0}, & \text{otherwise} \end{cases}$$

N. Krivulin (SPbSU)

イロト 不得 ト 不良 ト 不良 ト 一 臣

Tropical Optimization Problems: Examples

Linear Objective Functions

► Hoffman (1963), Superville (1978), U. Zimmermann (1981)

 $\begin{array}{ll} \mbox{minimize} & \boldsymbol{p}^T \boldsymbol{x}, \\ \mbox{subject to} & \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{d} \end{array} \qquad (\textit{direct solution})$

K. Zimmermann (1984, 1992, 2003, 2006)

 $\begin{array}{ll} \mbox{minimize} & {\pmb p}^T {\pmb x}, \\ \mbox{subject to} & {\pmb A} {\pmb x} \leq {\pmb d}, \quad {\pmb C} {\pmb x} \geq {\pmb b}, \\ & {\pmb g} \leq {\pmb x} \leq {\pmb h} \end{array} \qquad (algorithmic \ solution)$

Butkovič (1984, 2010), Butkovič and Aminu (2009)

minimize $p^T x$,
subject to(algorithmic solution)N. Krivulin (SPbSU)Tropical Optimization ProblemsRAMiCS 201510 / 28

Nonlinear Objective Functions

 Cuninghame-Green (1962, 1979), Engel and Schneider (1975), Elsner and van den Driessche (2004, 2010), K. (2013,2014)

minimize $x^{-}Ax$ (direct solution)

Cuninghame-Green (1976), U. Zimmermann (1981)

 $\begin{array}{ll} \mbox{minimize} & (Ax)^- d, \\ \mbox{subject to} & Ax \leq d \end{array} \qquad (\mbox{direct solution}) \end{array}$

K. Zimmermann (1984)

 $\begin{array}{ll} \text{minimize} & (\boldsymbol{A}\boldsymbol{x})^{-}\boldsymbol{p}\oplus\boldsymbol{p}^{-}\boldsymbol{A}\boldsymbol{x},\\ \text{subject to} & \boldsymbol{g}\leq\boldsymbol{x}\leq\boldsymbol{h} \end{array}$

(algorithmic solution)

RAMiCS 2015

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

11/28

N. Krivulin (SPbSU)

Tropical Optimization Problems

Nonlinear Objective Functions

► K. (2004, 2009, 2012)

minimize $(Ax)^- p \oplus q^- Ax$

(direct solution)

Butkovič and Tam (2009)

minimize $\mathbf{1}^T A \mathbf{x} (A \mathbf{x})^{-1}$; (direct solution)

maximize $\mathbf{1}^T A \mathbf{x} (A \mathbf{x})^{-1}$ (direct solution)

Gaubert, Katz and Sergeev (2012)

 $\begin{array}{ll} \mbox{minimize} & ({\pmb p}^T {\pmb x} \oplus r) ({\pmb q}^T {\pmb x} \oplus s)^{-1}, \\ \mbox{subject to} & {\pmb A} {\pmb x} \oplus {\pmb b} \leq {\pmb C} {\pmb x} \oplus {\pmb d} \end{array}$

(algorithmic solution)

N. Krivulin (SPbSU)

Tropical Optimization Problems

RAMiCS 2015 12 / 28

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Solution via Matrix Sparsification: Problem Formulation

Problem

Given a matrix $A \in X^{m \times n}$ and vectors $p \in X^m$, $q \in X^n$, the problem is to find regular vectors $x \in X^n$ that

minimize $q^-x(Ax)^-p$

- The problem appears in approximation in the sense of span seminorm (the maximum deviation between elements of a vector)
- Applications include project scheduling, decision making

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Partial Solution

Partial Solution

Problem

minimize
$$q^- x (Ax)^- p$$

Proposition

Let A be a row-regular matrix, p be nonzero and q regular vectors.

Then, the minimum is $\Delta = (Aq)^- p$, and attained at $x = \alpha q$ for all $\alpha > 0$

Sketch of Proof.

1.
$$xx^- \ge I \implies (q^-x)^{-1}x = (q^-xx^-)^- \le q$$

2. $(q^-x)^{-1}x \le q \implies (q^-x)^{-1}Ax \le Aq$
3. $(q^-x)^{-1}Ax \le Aq \implies q^-x(Ax)^-p \ge (Aq)^-p = \Delta$
4. $x = \alpha q \implies q^-x(Ax)^-p = (Aq)^-p = \Delta$

N. Krivulin (SPbSU)

RAMiCS 2015 14 / 28

・ ロ ト ・ 雪 ト ・ 目 ト ・

Partial Solution

Problem

minimize

Example (in terms of $\mathbb{R}_{\max,+}$)

minimize
$$q^{-}x(Ax)^{-}p$$
 $A = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}, p = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, q = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
Partial Solution
 $\Delta = (Aq)^{-}p = 2,$
 $x = \alpha q, \alpha \in \mathbb{R}$

N. Krivulin (SPbSU)

Tropical Optimization Problems

RAMiCS 2015 15/28

ъ

★ Ξ → ★ Ξ →

Characterization of Solution

Characterization of Solution

Problem

Lemma

Let A be row-regular, p be nonzero, q be regular, and $\Delta = (Aq)^- p$.

minimize $q^-x(Ax)^-p$

Then, all regular solutions are given by

$$\boldsymbol{q}^{-}\boldsymbol{x} = \alpha, \quad \boldsymbol{A}\boldsymbol{x} \ge \alpha \Delta^{-1}\boldsymbol{p}, \quad \alpha > 0$$

Sketch of Proof.

1.
$$q^{-}x(Ax)^{-}p = \Delta \iff q^{-}x = \alpha, (Ax)^{-}p = \alpha^{-1}\Delta, \alpha > 0$$

2. $(Ax)^{-}p = \alpha^{-1}\Delta \iff (Ax)^{-}p \le \alpha^{-1}\Delta, (Ax)^{-}p \ge \alpha^{-1}\Delta$
3. $q^{-}x = \alpha \implies x \le \alpha q \implies (Ax)^{-}p \ge \alpha^{-1}\Delta$
4. $(Ax)^{-}p \le \alpha^{-1}\Delta \iff p \le \alpha^{-1}\Delta Ax \iff Ax \ge \alpha \Delta^{-1}p$

N. Krivulin (SPbSU)

RAMiCS 2015 16 / 28

★ Ξ → ★ Ξ →

Properties of Solution

Properties of Solution

Problem

minimize
$$oldsymbol{q}^-oldsymbol{x}(oldsymbol{A}oldsymbol{x})^-oldsymbol{p}$$

Corollary

Let A be row-regular, p be nonzero, q be regular, and $\Delta = (Aq)^- p$.

Then, the set of regular solutions is closed under addition and scalar multiplication

RAMiCS 2015

17/28

Sketch of Proof.

Addition:

$$\begin{array}{ll} \boldsymbol{q}^{-}\boldsymbol{x} = \alpha, & \boldsymbol{A}\boldsymbol{x} \geq \alpha \Delta^{-1}\boldsymbol{p}, \\ \boldsymbol{q}^{-}\boldsymbol{y} = \beta, & \boldsymbol{A}\boldsymbol{y} \geq \beta \Delta^{-1}\boldsymbol{p} \end{array} \implies \begin{array}{ll} \boldsymbol{q}^{-}(\boldsymbol{x} \oplus \boldsymbol{y}) = \alpha \oplus \beta, \\ \boldsymbol{A}(\boldsymbol{x} \oplus \boldsymbol{y}) \geq (\alpha \oplus \beta) \Delta^{-1}\boldsymbol{p} \end{array}$$

Scalar multiplication: analogously

N. Krivulin (SPbSU)

Tropical Optimization Problems

Matrix Sparsification

Matrix Sparsification

Problem

minimize
$$q^-x(Ax)^-p$$

Lemma

Let $A = (a_{ij})$ be a row-regular matrix, $p = (p_i)$ be a nonzero vector, $q = (q_j)$ be a regular vector, and $\Delta = (Aq)^- p$.

Then, replacing the matrix A by the sparsified matrix $\hat{A} = (\hat{a}_{ij})$, where

$$\widehat{a}_{ij} = \begin{cases} a_{ij}, & \text{if } a_{ij} \ge \Delta^{-1} p_i q_j^{-1}; \\ 0, & \text{otherwise}; \end{cases}$$

does not change the solution

Sketch of Proof.

The representation $q^-x = \alpha$, $Ax \ge \alpha \Delta^{-1}p$ yields that there may be terms $a_{ij}x_j$, which do not affect the left-hand side of the inequality

Problem

Example (in terms of $\mathbb{R}_{\max,+}$)

minimize
$$q^{-}x(Ax)^{-}p$$
 $A = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}$, $p = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $q = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Threshold and Sparsified Matrices

$$\Delta = 2, \qquad \Delta^{-1} \boldsymbol{p} \boldsymbol{q}^{-} = \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix}, \qquad \widehat{\boldsymbol{A}} = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}$$

N. Krivulin (SPbSU)

Tropical Optimization Problems

RAMiCS 2015 19 / 28

Extended Solution

Extended Solution

Problem

minimize
$$oldsymbol{q}^-oldsymbol{x}(oldsymbol{A}oldsymbol{x})^-oldsymbol{p}$$

Lemma

Let A be sparsified row-regular, p be nonzero, q be regular, and $\Delta = (Aq)^- p$.

Then, any vector given by the condition

$$\boldsymbol{x} = (\boldsymbol{I} \oplus \Delta^{-1} \boldsymbol{A}^{-} \boldsymbol{p} \boldsymbol{q}^{-}) \boldsymbol{u}, \quad \boldsymbol{u} > \boldsymbol{0}$$

is a solution of the problem

Sketch of Proof.

1.
$$\boldsymbol{x} = (\boldsymbol{I} \oplus \Delta^{-1} \boldsymbol{A}^{-} \boldsymbol{p} \boldsymbol{q}^{-}) \boldsymbol{u} \iff \alpha \Delta^{-1} \boldsymbol{A}^{-} \boldsymbol{p} \le \boldsymbol{x} \le \alpha \boldsymbol{q}$$

2.
$$\alpha \Delta^{-1} A^{-} p \leq x \leq \alpha q \implies q^{-} x = \alpha$$
, $Ax \geq \alpha \Delta^{-1} p$

N. Krivulin (SPbSU)

▲ 国 → ▲ 国 → 二

Problem

Example (in terms of $\mathbb{R}_{\max,+}$)

$$oldsymbol{A} = \left(egin{array}{cc} 2 & 0 \ 4 & 1 \end{array}
ight), \quad oldsymbol{p} = \left(egin{array}{cc} 5 \ 2 \end{array}
ight), \quad oldsymbol{q} = \left(egin{array}{cc} 1 \ 2 \end{array}
ight)$$

Extended Solution

minimize $q^{-}x(Ax)^{-}p$

$$egin{aligned} oldsymbol{x} &= oldsymbol{B}oldsymbol{u}, \quad oldsymbol{u} \in \mathbb{R}^2, \ oldsymbol{B} &= oldsymbol{I} \oplus \Delta^{-1}oldsymbol{A}^-oldsymbol{p}oldsymbol{q}^- \ &= egin{pmatrix} 0 & -1 \ -2 & 0 \end{pmatrix} = egin{pmatrix} oldsymbol{b} oldsymbol{b}_1 & oldsymbol{b}_2 \end{pmatrix} \end{aligned}$$

$$b_2$$
 x b_1 b_1 b_2 b_1 b_1 b_2 b_2 b_1 b_2 b_2

N. Krivulin (SPbSU)

Tropical Optimization Problems

RAMiCS 2015 21 / 28

All Solutions

All Solutions

Problem

minimize
$$oldsymbol{q}^-oldsymbol{x}(oldsymbol{A}oldsymbol{x})^-oldsymbol{p}$$

Theorem

Let A be sparsified row-regular, p be nonzero, q be regular, and $\Delta = (Aq)^- p$.

Let \mathcal{A} be the set of matrices obtained from \mathbf{A} by fixing one nonzero entry in each row and setting the others to \mathbb{O} .

Then, all regular solutions are given by

$$\boldsymbol{x} = (\boldsymbol{I} \oplus \Delta^{-1} \boldsymbol{A}_1^- \boldsymbol{p} \boldsymbol{q}^-) \boldsymbol{u}, \quad \boldsymbol{u} > \boldsymbol{0}, \quad \boldsymbol{A}_1 \in \mathcal{A}$$

Sketch of Proof. $x = (I \oplus \Delta^{-1} A_1^- p q^-) u$, $A_1 \in \mathcal{A} \iff q^- x = \alpha$, $Ax \ge \alpha \Delta^{-1} p$

N. Krivulin (SPbSU)

Problem

Example (in terms of $\mathbb{R}_{\max,+}$)

minimize
$$q^{-}x(Ax)^{-}p$$
 $A = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}$, $p = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $q = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

All Solutions

$$egin{aligned} \Delta &= 2, \qquad \mathcal{A} = \{ oldsymbol{A}_1, oldsymbol{A}_2 \}, \qquad oldsymbol{A}_1 = \left(egin{aligned} 2 & 0 \ 4 & 0 \end{array}
ight), \qquad oldsymbol{A}_2 = \left(egin{aligned} 2 & 0 \ 0 & 1 \end{array}
ight); \ oldsymbol{x} &= oldsymbol{B}_1 oldsymbol{u}, \qquad oldsymbol{u} \in \mathbb{R}^2, \qquad oldsymbol{B}_1 = oldsymbol{I} \oplus \Delta^{-1} oldsymbol{A}_1^- oldsymbol{p} oldsymbol{q}^- = \left(egin{aligned} 0 & -1 \ 0 & 0 \end{array}
ight); \ oldsymbol{x} &= oldsymbol{B}_2 oldsymbol{u}, \qquad oldsymbol{u} \in \mathbb{R}^2, \qquad oldsymbol{B}_2 = oldsymbol{I} \oplus \Delta^{-1} oldsymbol{A}_2^- oldsymbol{p} oldsymbol{q}^- = \left(egin{aligned} 0 & -1 \ 0 & 0 \end{array}
ight); \ oldsymbol{x} &= oldsymbol{B}_2 oldsymbol{u}, \qquad oldsymbol{B}_2 = oldsymbol{I} \oplus \Delta^{-1} oldsymbol{A}_2^- oldsymbol{p} oldsymbol{q}^- = \left(egin{aligned} 0 & -1 \ -2 & 0 \end{array}
ight) \end{aligned}$$

N. Krivulin (SPbSU)

Tropical Optimization Problems

国际 化国际 RAMiCS 2015 23 / 28

< 🗇 >

Solution via Matrix Sparsification All Solutions

Problem

Example (in terms of $\mathbb{R}_{\max,+}$)

minimize
$$q^{-}x(Ax)^{-}p$$

All Solutions

$$egin{aligned} oldsymbol{x} &= oldsymbol{B}_1 oldsymbol{u}, \quad oldsymbol{u} \in \mathbb{R}^2, \ oldsymbol{B}_1 &= oldsymbol{I} \oplus \Delta^{-1}oldsymbol{A}_1^-oldsymbol{p}oldsymbol{q}^- \ &= egin{pmatrix} 0 & -1 \ \mathbb{O} & 0 \end{pmatrix} = egin{pmatrix} oldsymbol{b}_1 & oldsymbol{b}_2 \ oldsymbol{b}_1 & oldsymbol{b}_2 \end{bmatrix}$$

N. Krivulin (SPbSU)

Tropical Optimization Problems

RAMiCS 2015 24 / 28

Complete Solution

Complete Solution

Problem

Theorem

Let A be sparsified row-regular, p be nonzero, q be regular, and $\Delta = (Aq)^- p$.

minimize $q^- x (Ax)^- p$

Let \mathcal{A} be the set of matrices obtained from A by leaving one nonzero entry in each row.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Let B_0 be the matrix whose columns form the maximal independent system of columns in matrices $B_1 = I \oplus \Delta^{-1} A_1^- pq^-$ for all $A_1 \in A$.

Then, all regular solutions are given by $m{x} = m{B}_0m{u}$, $m{u} > m{0}$

Sketch of Proof.

Follows from that the set of solutions to the problem is closed under vector addition and scalar multiplication

Problem

Example (in terms of $\,\mathbb{R}_{\mathrm{max},+}\,$)

minimize
$$q^{-}x(Ax)^{-}p$$
 $A = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}$, $p = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $q = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Complete Solution

$$oldsymbol{B}_1 = egin{pmatrix} 0 & -1 \ 0 & 0 \end{pmatrix}, & oldsymbol{B}_2 = egin{pmatrix} 0 & -1 \ -2 & 0 \end{pmatrix}; \ oldsymbol{b}_1 = egin{pmatrix} 0 \ 0 \ \end{pmatrix}, & oldsymbol{b}_2 = egin{pmatrix} -1 \ 0 \ \end{pmatrix}, & oldsymbol{b}_3 = egin{pmatrix} 0 \ -2 \ \end{pmatrix}, & oldsymbol{b}_3 = oldsymbol{b}_1 \oplus (-2)oldsymbol{b}_2; \ oldsymbol{x} = egin{pmatrix} 0 & -1 \ 0 & 0 \ \end{pmatrix} oldsymbol{u}, & oldsymbol{u} \in \mathbb{R}^2, & oldsymbol{B}_0 = oldsymbol{B}_1 = egin{pmatrix} 0 & -1 \ 0 & 0 \ \end{pmatrix} oldsymbol{b}_2; \ oldsymbol{x} = egin{pmatrix} 0 & -1 \ 0 & 0 \ \end{pmatrix} oldsymbol{u}, & oldsymbol{u} \in \mathbb{R}^2, & oldsymbol{B}_0 = oldsymbol{B}_1 = egin{pmatrix} 0 & -1 \ 0 & 0 \ \end{pmatrix} oldsymbol{b}_2; \ oldsymbol{a} = oldsymbol{b}_1 = oldsymbol{b}_1 \oplus oldsymbol{b}_2; \ oldsymbol{b}_2 = oldsymbol{b}_2; \ oldsymbol{b}_2 = oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2; \ oldsymbol{b}_2 = oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2; \ oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2 \oplus oldsymbol{b}_2; \ oldsymbol{b}_2 \oplus oldsym$$

N. Krivulin (SPbSU)

Tropical Optimization Problems

RAMiCS 2015 26 / 28

Problem

Example (in terms of $\mathbb{R}_{\max,+}$)

minimize
$$\boldsymbol{q}^{-}\boldsymbol{x}(\boldsymbol{A}\boldsymbol{x})^{-}\boldsymbol{p}$$
 $\boldsymbol{A} = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}, \quad \boldsymbol{p} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad \boldsymbol{q} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Concluding Remarks

- An optimization problem, which arises in approximation in the span seminorm, was examined in terms of tropical mathematics
- The problem is to minimize a function defined on vectors over an idempotent semifield by using conjugate transposition
- All solutions were characterized by simultaneous equation and inequality, and properties of the solution set were investigated
- A matrix sparsification technique was developed to derive a complete solution as a family of solution subsets
- The characteristic properties of solutions were exploited to describe the complete solution in a compact vector form
- The proposed solution approach can serve as a template to derive complete, direct solutions of other problems
- More solutions to tropical optimization problems with applications are available at http://arxiv.org/a/krivulin_n_1