
Code “monadification” made easy

J.N. Oliveira

Notes for the MiEI/LCC degrees

University of Minho/DI, June 2010

(last update: May 2020)

Pointwise Haskell

Starting point: we unfold function sum = (|[zero , add]|) into

sum [] = 0
sum (h : t) = h + sum t

noting that this could have been written as follows

sum [] = id 0
sum (h : t) = let x = sum t in id (h + x)

using let notation. Why such a “verbose” version of the starting, so simple a piece of
code?

The easy rules

The let ... in... notation stresses the fact that recursive call happens earlier than the
delivery of the result, in general:

(f · g) a = let b = g a in f b

The id function signals the exit points of the algorithm, that is, the points where it
returns something to the caller.

Both lead straight to the equivalent, monadic version

msum [] = return 0
msum (h : t) = do {x ← msum t; return (h + x)}

under the rules:

• id becomes return

• let x = ...in... becomes do {x ← ...; ...}

Identity monad
In fact, in the identity monad this version of sum is equivalent to the previous two, for
let and do mean the same in such a monad, as do id and return.

It turns out that the monadic version just given,

msum [] = return 0
msum (h : t) = do {x ← msum t; return (h + x)}

is generic in the sense that it runs on whatever monad you like. By default, the
identity monad is chosen:

*Main> msum [3,4,5]

12

Haskell automatically switches to the monad you need, for instance

do { a <- msum [3,4,5]; writeFile "x" (show a) }

Adding effects
Indeed, you may add effects to your code that implicitly do the switching. For
instance, by adding “printouts”

msum′ [] = return 0
msum′ (h : t) =

do {x ← msum′ t;
print ("x= " ++ show x);
return (h + x)}

traces the code in the way prescribed by the print function:

*Main> msum’ [3,5,1,3,4]

"x= 0"

"x= 4"

"x= 7"

"x= 8"

"x= 13"

*Main>

Summary

Recall the parallel,

(f · g) x = let y = (g x) in f y

compared with

(f • g) x = do {y ← g x ; f y }

and

f · id = f = id · f

compared with

f • return = f = return • f

In the identity monad, f • g = f · g and return = id .

Adding effects

Adding effects is not as arbitrary as it may seem from the previous examples. This can
be appreciated by defining the function getmin that yields the smallest element of a
list:

getmin [a] = a
getmin (h : t) = min h (getmin t)

This is incomplete because it does not specify the meaning of getmin [].

To complete the definition, we first go monadic as we did before:

mgetmin [a] = return a
mgetmin (h : t) = do {x ← mgetmin t; return (min h x)}

Adding effects

Then we choose a monad to express the meaning of getmin [], for instance the Maybe
monad

mgetmin [] = Nothing
mgetmin [a] = return a
mgetmin (h : t) = do {x ← mgetmin t; return (min h x)}

Alternatively, we might have written

mgetmin [] = Error "Empty input"

going into the Error monad, or even the simpler (yet interesting) mgetmin [] = [],
which shifts the code into the list monad, yielding singleton lists in the success case,
otherwise the empty list.

Example: map goes monadic
Partial functions (such as getmin above) cause much interference in functional
programming. Monads help us to keep this under control.

Take map f = (| in · (id + f × id)|), that is

map f [] = []
map f (h : t) = (f h) : map f t

as example and suppose f is a partial function. How do we cope with erring
evaluations of f h?

Easy — first we “letify” the function as before:

map f [] = id []
map f (h : t) = let
b = f h
x = map f t in id (b : x)

Example: map goes monadic

Then we go monadic in the usual way,

mmap f [] = return []
mmap f (h : t) = do {b ← f h; x ← mmap f t; return (b : x)}

thus building a function of the expected type:

mmap :: (Monad m)⇒ (a→ m b)→ [a]→ m [b]

Let us see this at work:

mmap mgetmin [[1,2],[3]] = Just [1,3]

mmap mgetmin [[1,2],[]] = Nothing

Another example: map goes monadic
Let us see the same code automatically switching to another monad, this time coping
with probabilistic computations, e.g.

f x =

{
x + 1 70%
x − 1 30%

Probabilistic function f either increments or decrements its input, with different
probabilities.

We get a probabilistic map without changing a single line of code, cf. e.g.

∗Main >mmap f [1, 2]
[2, 3] 49.0 %
[0, 3] 21.0 %
[2, 1] 21.0 %
[0, 1] 9.0 %

Final example: (|inBTree|) goes (state) monadic

Recall that, by cata-reflection, function f = (|inBTree|), that is,

f Empty = Empty
f (Node (a, (x , y))) = Node (a, (f x , f y))

does nothing, since f = id . Let us write this monadically, using the rules as before:

f :: (Monad m)⇒ BTree a→ m (BTree a)
f Empty = return Empty
f (Node (a, (x , y))) = do {
x ′ ← f x ;
y ′ ← f y ;
return (Node (a, (x ′, y ′)))}

Doing nothing can lead to doing something useful provided we add effects to f . This
time we choose the state monad.

Decorating trees
Recall two basic actions of the state monad:

• get = 〈id , id〉 — reads the current value of the state

• put x = 〈!, x〉 writes value x into the state

We can add these to f above so that this decorates each node of input tree with a
kind of “serial number”, as follows:

f Empty = return Empty
f (Node (a, (x , y))) = do {
n← get; put (n + 1);
x ′ ← f x ;
y ′ ← f y ;
return (Node ((a, n), (x ′, y ′)))}

Decorating trees

St.hs (state monad) library:

data St s a = St {st :: (s → (a, s))}

where St and st are the in and out of this type.

Final comments:

• Mind the type of f :

f :: (Num s)⇒ BTree a→ St s (BTree (a, s))

once you choose the version of the sate monad available from module St.hs.

• Don’t forget that the output of f is now an action of an automaton; so you need
to supply an initial state for the automaton to “run” — see examples in St.hs.

• Writing monadic code is not difficult provided one is systematic.

Decorating trees

Another example (Exp.hs library)

deco :: Num n⇒ Exp v o → Exp (n, v) (n, o)
deco e = π1 (st (f e) 0) where

f (Var e) = do {n← get; put (n + 1); return (Var (n, e))}
f (Term o l) = do {

n← get; put (n + 1);
m← sequence (map f l);
return (Term (n, o) m)
}

where

sequence :: [m a]→ m [a]

Another St example
Stack automaton evaluating expression x ∗ (y + 2):

run x y = exec prog empty stack
where prog = do { -- loading
push (x);
push (y);
push (2);

-- evaluating y + 2
r1 ← pop ();
r2 ← pop ();
push (r1 + r2);

-- evaluating x * (y + 2)
r1 ← pop ();
r2 ← pop ();
push (r1 ∗ r2);

-- get returns current state
query head
}

The monadic “curse” :-)

“Monads [...] come with a curse. The
monadic curse is that once someone
learns what monads are and how to
use them, they lose the ability to
explain it to other people”

(Douglas Crockford: Google Tech Talk on
how to express monads in JavaScript

2013)

Douglas Crockford (2013)

https://www.youtube.com/watch?v=b0EF0VTs9Dc

