
Type checking by domain analysis in Ampersand

Stef M. M. Joosten and Sebastiaan J. C. Joosten
RAMiCS 2015, Braga

Why Ampersand?

& as a paradigm

Ampersand helps
Businesses control its
operations, by formalising
the rules of the Business.

A system designed or
built with Ampersand
helps its users maintain a
set of rules.

& as a language

Ampersand-Rules are
expressed in RA.

RA presented is almost-
heterogeneous.

Ampersand compiler
uses heterogeneous RA
internally.

& as a database

To prototype systems,
database-applications are
generated.

The population in the
database is always a
model to business-rules
that are “invariant”.

Specifying business-applications in RA

Model theory Ampersand Business
Sentence rule Business rule / requirement

Language concepts + relations Domain language (NL)

Model data / population
(changes in time!)

Administrative truth

Theory concepts + relations + rules Knowledge model

concepts + relations + rules +
interfaces = information system

Business process support
system

Why typed relations?

In business, we keep persons and cars separate.

So, from a business point of view things (atoms)
must be instance of a concept.

& says: every relation has a signature

RELATION r[A*B]

e.g.

RELATION owns[Person*Car]

Why type checking?

Heterogeneous
relation algebra

is great, but...

Express things like:
● ‘Every Employee is a Person’
● ‘Every Student is a Person’
● ‘Teaching-Assistant are those

Students which are Employees’

Example rules:
● Employees receive their

respective salary at the 25th of
the month

● Only employees who are not
students can give grades

Language presented to the Ampersand user

Heterogeneous algebra

● Every relation r :: A*B has a signature
(provided by Ampersand user)

● Unary symbols can be typed
● Every term is typable

(compiler provides a signature)
● For every operation, ; ∩ ◡ −

type restrictions apply
(compiler guards these restrictions)

Homogeneous algebra

● Objects (&: Concepts) are sorted
● For the composition, s;t

the target of s, and source of t,
need not match

● Every type C∩D arising at
a composition s;t
with s :: A*C and t :: D*B,
has a specific name

How to use domain analysis

Ȃ Use the rules to specify the ordering on concepts.

I[Employee] ∩ I[Student] = I[TeachingAssistant]

I[Employee] ∩ I[Person] = I[Employee]

A rule has a left hand side, and a right hand side.

I[Employee] ∩ I[Student] = I[TeachingAssistant]

I[Employee] ∩ I[Student] = I[TeachingAssistant]

left hand side right hand side

Every term is typable, we get domain knowledge:

two types: total relation: defines “Teaching Assistant”
Employee*Employee
Student*Student

Type checking
by domain

analysis

Analyse Terms

Order TypeTerms

Check TypeTerms

Type checking by domain analysis // Example script

r[A*C], s[A*B], t[B*C]

r = s;t

Type checking by domain analysis

Type checking by domain analysis // Example script 2

r[A*C], s[B*A], t[B*C]

r = s;t

Type checking by domain analysis

Algorithm: Type checking by domain analysis

Create a TypeTerm for every Term

Relate all TypeTerms using ‘sub’

Find equivalence classes,
calculate the closure of sub

Find the least concept for each TypeTerm

Every TypeTerm should have a unique least
concept

Algorithm: Type checking by domain analysis

Create a TypeTerm for every Term

Relate all TypeTerms using ‘sub’

Find equivalence classes,
calculate the closure of sub

Find the least concepts for each TypeTerm

Every TypeTerm should have a unique least
concept

 Term TypeTerm

r;s, r dom(r;s), dom(r)
cod(r;s), cod(r)

Typed Identity
element I[A]

pop(A)

Compose: r;s inter(r,s)

Algorithm: Type checking by domain analysis

Create a TypeTerm for every Term

Relate all TypeTerms using ‘sub’

Find equivalence classes,
calculate the closure of sub

Find the least concepts for each TypeTerm

Every TypeTerm should have a unique least
concept

 TypeTerm sub

dom(r;s) dom(r;s) `sub` dom(r)

dom(r), r[A*B] dom(r) `sub` pop(A)

dom(x) cod(x) `sub` dom(x◡)
dom(x◡) `sub` cod(x)

x = y dom(x) `sub` dom(y)
cod(x) `sub` cod(y)
dom(y) `sub` dom(y)
cod(y) `sub` cod(y)

!

Algorithm: Type checking by domain analysis

Create a TypeTerm for every Term

Relate all TypeTerms using ‘sub’

Find equivalence classes,
calculate the closure of sub

Find the least concepts for each TypeTerm

Every TypeTerm should have a unique least
concept

classes: sub* ∩ I

pretype(s) of each typeterm:

pretype = (sub*) ; pop◡

Algorithm: Type checking by domain analysis

Create a TypeTerm for every Term

Relate all TypeTerms using ‘sub’

Find equivalence classes,
calculate the closure of sub

Find the least concepts for each TypeTerm

Every TypeTerm should have a unique least
concept

TypeTerm

pop(A)

pop(B) pop(C)

Algorithm: Type checking by domain analysis

Create a TypeTerm for every Term

Relate all TypeTerms using ‘sub’

Find equivalence classes,
calculate the closure of sub

Find the least conepts for each TypeTerm

Every TypeTerm should have a unique least
concept

TypeTerm

pop(A)

pop(B) pop(C)

Experimental
results

Use graphs as intuitive feedback

Reason with the entire script at once

No need to handle ‘type declaration’
separately: r ⊆ 1[A*B]

Type checking by Domain analysis

● Reasoning about the entire script
○ Bad scalability
○ Composing scripts may lead to unpredictable behavior
○ Limitations to graphical feedback

● Graphs as feedback
○ Can not explain why a line is missing
○ Extra maintenance burden

● No separate way to handle type information
○ Type errors become ‘correct’ inferences
○ Equal types – I[A] = I[B] – become type errors

TypeTerm

A = B ∩ C

pop(B) pop(C)

Conclusion

Ampersand needs type checking

Type checking can be done through domain analysis

Currently, a different algorithm is used

The type graphs are visually attractive, so may be useful for some other application.

