
Connections between relation algebras and

cylindric algebras

Ian Hodkinson

Thanks to the RAMiCS organisers for inviting me



Introduction

Relation algebras were developed by Tarski in the early 1940s.
Relation algebras algebraise binary relations.

Cylindric algebras were also introduced by Tarski together with Chin and
Thompson, in the late 1940s.
Cylindric algebras algebraise n-ary relations (for arbitrary ordinals n).

In this talk, we study some connections between them.

In particular, we outline a way of constructing cylindric algebras from
relation algebras, preserving representability both ways.
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Why?

1. Many results for cylindric algebras were proved earlier for relation
algebras:

relation algebras cylindric algebras
1. Non-finite axiomatisability

of representable algebras Monk 1964 Monk 1969
2. No finite-variable axiomatisation Jónsson 1988

of representable algebras (Tarski 1974?) Andréka 1997
3. No canonical axiomatisation

of representable algebras IH–Venema 2005 Bulian-IH 2013
4. Undecidability of representability Hirsch–IH 2001 IH 2012 (∗)
5. {Strongly representable atom

structures} non-elementary Hirsch–IH 2002 Hirsch–IH 2009

A reasonably general way to lift relation algebra results to cylindric
algebras would have helped.
This talk outlines a lifting that proves (∗).
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Why?

2. There are many other algebras of relations:

• diagonal-free cylindric algebras

• polyadic algebras

• polyadic equality algebras

Reproving relation algebra results for these involves even more work!
A general lifting procedure would make it easier.

3. The relationship between relation algebras and cylindric algebras (and
other kinds of algebra) is interesting in its own right.
Long history, impressive work (Monk 1961, Johnson 1969, Maddux
1978–91).
Our construction contributes to this area.
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Outline of talk

1. Definitions

2. Aim of our construction

3. Earlier work

4. Outline of construction

5. Remarks, open problems
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1. DEFINITIONS

A relation algebra is an algebra

A = (A,+,−,0,1,1,
, ,̆ ;),

where

• (A,+,−,0,1) is a boolean algebra
• (A, ; ,1

,
) is a monoid

• ˘ is a unary function on A
• A satisfies the Peircean law:

(a ; b) · c 6= 0 ⇐⇒ (ă ; c) · b 6= 0 ⇐⇒ (c ; b̆) · a 6= 0,
for all a, b, c ∈ A, where a · b = −(−a+−b).

c

a b

For simplicity, in this talk we restrict to finite simple relation algebras A
(A is simple iff 1 ; a ; 1 = 1 for all a 6= 0).
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Representations of (simple) relation algebras

A (square) representation of A = (A,+,−,0,1,1,
, ,̆ ;) is a one-one

map h : A→ ℘(U2), for some ‘base’ set U , such that for all a, b ∈ A,

1. h(a+ b) = h(a) ∪ h(b) and h(−a) = U2 \ h(a)

2. h(0) = ∅ and h(1) = U2

3. h(1
,
) = {(x, x) : x ∈ U}

4. h(ă) = {(x, y) ∈ U2 : (y, x) ∈ h(a)}
5. h(a ; b) = {(x, y) ∈ U2 : ∃z((x, z) ∈ h(a) ∧ (z, y) ∈ h(b))}.

So h represents each a ∈ A as a binary relation on U . The algebraic
operations correspond via h to ‘concrete’ operations on binary relations.

Crucially, if (x, y) ∈ h(a ; b) then there is z ∈ U with (x, z) ∈ h(a) and
(z, y) ∈ h(b).
We call such a z a witness for the composition a ; b on (x, y).

We say that A is representable if it has a representation.
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Cylindric algebras

Let n ≥ 3. An n-dimensional cylindric algebra is an algebra

C = (C,+,−,0,1, dij, ci : i, j < n),

where

• (C,+,−,0,1) is a boolean algebra as before
• the dij are constants (called diagonals )
• the ci are unary functions on C (called cylindrifiers/cylindrifications )
C must satisfy certain equations (details not needed here).

In this talk we restrict to simple cylindric algebras:
c0 . . . cn−1a = 1 whenever a 6= 0.

Idea: the elements of C are like first-order formulas written with variables
x0, . . . , xn−1.

• dij is like xi = xj
• cia is like ∃xia
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Representations of (simple) cylindric algebras

Let C = (C,+,−,0,1, dij, ci : i, j < n) be a (simple) n-dimensional
cylindric algebra.

A (square) representation of C is a one-one map h : C → ℘(Un), for
some base set U , such that for each i, j < n and each a ∈ C,

1. h(dij) = {(x0, . . . , xn−1) ∈ Un : xi = xj}
2. h(cia) = {(x0, . . . , xn−1) ∈ Un : ∃(y0, . . . , yn−1) ∈ h(a)

(xj = yj for each j ∈ n \ {i})}
3. h respects the boolean operations (as for relation algebras)

Each element of the algebra is ‘represented’ as an n-ary relation on U .

Again, we say that C is representable if it has a representation.
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2. AIM OF OUR CONSTRUCTION

For each n ≥ 3, we seek a recursive reduction: a recursive map Cn that

• is defined on every finite simple relation algebra A
• takes each such A to a finite n-dimensional cylindric algebra Cn(A)

• preserves representability both ways: for each A,
A is representable iff Cn(A) is representable

Fact 1 (Hirsch–IH 2001) There is no algorithm to decide whether a
finite simple relation algebra is representable.

Conclusion Assuming that a recursive reduction Cn exists, there is no
algorithm to decide whether a finite n-dimensional cylindric algebra is
representable.

A
Cn(A)

Cn decide representability

of n-dimensional CAs
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3. EARLIER WORK

J. D. Monk (Ph.D. thesis, 1961)

Monk’s thesis describes a construction of a 3-dimensional cylindric
algebra from any relation algebra.

Monk states that the idea originated with Lyndon (letter to Thompson,
1949).

• The construction preserves representability both ways.

• For finite relation algebras, the construction is recursive.

We conclude:

Theorem 2 There is no algorithm to decide whether a finite
3-dimensional cylindric algebra is representable.

Monk gives no construction in dimensions > 3.
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R. D. Maddux (Ph.D. thesis 1978, paper 1989, survey 1991)

Maddux found a method that can construct n-dimensional cylindric
algebras from a finite relation algebra A, for arbitrary n ≥ 3.

He used objects called n-dimensional cylindric bases.

To explain cylindric bases, we need to introduce

• atoms

• networks
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Atoms and networks

Fix a finite simple relation algebra A = (A,+,−,0,1,1,
, ,̆ ;).

An atom of A is a minimal nonzero element with respect to the standard
boolean ordering (a ≤ b iff a+ b = b).

Write AtA for the set of atoms of A.

Being finite, A is atomic — every nonzero element dominates an atom.

An (atomic A-)network is a pair N = (N1, N2), where

• N1 is a set of ‘nodes’

• N2 : N1 ×N1 → AtA satisfies (for all x, y, z ∈ N1):
1. N2(x, x) ≤ 1

,

2. N2(x, y) = N2(y, x)̆ (this is an atom)
3. N2(x, y) ≤ N2(x, z) ;N2(z, y)

We often omit the indexes 1,2 — just write N(x, y) etc.
If n ≥ 3, we say that N is n-dimensional if N1 = n = {0,1, . . . , n− 1}.
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Embedding a network into a representation

Networks can describe parts of representations.

Let h : A→ ℘(U2) be a representation of A.
Let N = (N1, N2) be an A-network.

A (partial) embedding of N into h is a (partial) map f : N1 → U such
that (f(x), f(y)) ∈ h(N2(x, y)) for all x, y ∈ N1.

3-dimensional network

base set U of representation of A

embedding into representation

N describes the relations between points in rng(f) as specified by h.
Example: N(x, y) ≤ 1

,
iff (f(x), f(y)) ∈ h(1

,
) iff f(x) = f(y).
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Maddux’s construction

An n-dimensional cylindric basis of A is a set of n-dimensional networks
over A, with certain closure properties.

Each such basis forms the set of atoms of a finite n-dimensional cylindric
algebra. If this is representable, so is A.

• The set of all 3-dimensional networks is a 3-dimensional cylindric
basis for A. Similarly for 4-dimensional networks.

• For n = 3, the resulting 3-dimensional cylindric algebra is
isomorphic to Monk’s — so representable iff A is representable.

• But for n > 3, the cylindric algebra may not be representable, even
when A is representable.

• And for n ≥ 5, A may not have an n-dimensional cylindric basis.

What’s going on?
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Embedding homogeneously

We say that N embeds homogeneously into h if every partial embedding
of N into h extends to a total embedding.

That is, all possible contexts of partial embeddings of N are the same.

Fact 3 Every 3-dimensional network embeds homogeneously into every
representation of A.

It follows that the cylindric algebra obtained from a 3-dimensional
cylindric basis is representable if A is representable.

But Fact 3 can fail for higher-dimensional networks.
This is ‘why’ the cylindric algebra got from an n-dimensional cylindric
basis (n > 3) need not be representable, even when A is.
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4. THE CONSTRUCTION

Fix finite n ≥ 3. We identify n with {0, . . . , n− 1}.
We devise a new style of ‘representation’ of our relation algebra A, in
which clusters of ≤ n points yield only 3-dimensional information.

Standard notation: for a set X and integer k,

[X]k = {S ⊆ X : |S| = k}.

Definition. An n-dimensional representation of A over a base set V is a
family

ρ =
〈
hS : S ∈ [V ]n−3

〉
,

where:
1. Each hS is a loose representation of A over the base set V \ S.

‘Loose’ means that we don’t require hS(1
,
) = {(x, x) : x ∈ V \ S}.

Remark: S is a ‘black hole’ outside the loose representation hS.
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n-dimensional representation ctd. . .

2. Multiple compositions can be witnessed by a single point:

Suppose G ⊆ V with |G| < n.

Suppose for each S ∈ [G]n−3, we are given
• points xS, yS ∈ G \ S
• elements aS, bS of A

with (xS, yS) ∈ hS(aS ; bS).

Suppose for each T ∈ [G]n−4, we are given an A-network NT with
nodes G \ T .

Then there is z ∈ V \G such that
1. (xS, z) ∈ hS(aS) and (z, yS) ∈ hS(bS) for each S ∈ [G]n−3,
2. the identity map embeds NT into hT∪{z}, for each T ∈ [G]n−4.
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Multiple compositions can be witnessed by a single point — a)

b

G zb

b

S

aS

bSaS ; bS
b

b n = 6

xS

yS

b
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Multiple compositions can be witnessed by a single point — b)

G zb

b

n = 6

b

∼= NT

T

T ∪ {z}

b

b b
in hT∪{z}
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Existence of n-dimensional representations?

Theorem 4 A is representable iff it has an n-dimensional
representation.

Proof. If A is representable, then an n-dimensional representation can
be built using a game.

If A has an n-dimensional representation, then A certainly has loose
representations.
But it is easy to ‘tighten’ a loose representation into a conventional
representation of A.
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Networks for n-dimensional representations?

3-dimensional networks embed homogeneously into representations
of A. This is why Maddux’s 3-dimensional cylindric bases work so well.

What kind of ‘network’ embeds homogeneously into an n-dimensional
representation of A?

Answer: a bundle of 3-dimensional A-networks.
This is what we call an (n-dimensional) hologram.

Note: the representations hS in an n-dimensional representation may
not respect 1

,
. So holograms handle equality separately, using an

equivalence relation on n.
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Holograms formally

— our n-dimensional analogues of 3-dimensional networks.

An (n-dimensional) hologram (over A) is a family

η =
(
∼, 〈NX : X ∈ H(∼)〉

)
where

• ∼ is an equivalence relation on n (specifying ‘logical equality’)

• H(∼) = {X ⊆ n : n \X is the union of (n− 3) ∼-classes}
• each NX is an atomic A-network whose set of nodes is X

• NX(i, j) ≤ 1
,

whenever i, j ∈ X and i ∼ j.
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Embedding a hologram into an n-dimensional representation

Let ρ = 〈hS : S ∈ [V ]n−3〉 be an n-dimensional representation of A.

Let η = (∼, 〈NX : X ∈ H(∼)〉) be a hologram.

A (partial) embedding of η into ρ is a (partial) map f : n→ V such that:

1. f(i) = f(j) iff i ∼ j, for each i, j ∈ dom(f),

2. For each X ∈ H(∼) with n \X ⊆ dom(f),
letting X∗ = {f(k) : k ∈ n \X} ∈ [V ]n−3,
f � X is a (partial) embedding of the network NX into the loose
representation hX∗.

We say that η embeds homogeneously into ρ if every partial embedding
of η into ρ extends to a total embedding.
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X
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f

V

embedding of NX into hX∗
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f

V

embedding of NY into hY ∗

25



b

b

b b

b b

b

0

1 2 3

4

5

6

n = 7

X

X∗

Y

Y ∗

f

V

embedding of NY into hY ∗

embedding of NX into hX∗
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n-dimensional cylindric algebra from holograms

Now everything is analogous to Maddux’s 3-dimensional cylindric bases.

Fact 5 Every n-dimensional hologram embeds homogeneously into
every n-dimensional representation of A.

Let H be the set of all (n-dimensional) holograms.
H forms the set of atoms of an n-dimensional cylindric algebra Cn(A).

Since A is finite, so are H and Cn(A).
The map A 7→ Cn(A) is recursive.

Theorem 6 Cn(A) is representable iff A is representable.

Proof. A representation of Cn(A) is essentially an n-dimensional
representation of A.
Such a representation exists iff A is representable (theorem 4).
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5. CONCLUSION

Theorem 7 For each finite n ≥ 3, there is no algorithm to decide
whether a finite n-dimensional cylindric algebra is representable.

Proof. A 7→ Cn(A) is our desired recursive reduction.

Can generalise theorem 7 to

• diagonal-free cylindric algebras
• polyadic algebras
• polyadic equality algebras

Can generalise reduction to arbitrary simple relation algebras (not
necessarily finite), by: A 7→ Cn(Aσ).
But this does not seem fully satisfactory.

Might consider n-variable first-order logic interpreted over an
n-dimensional representation.
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