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Overview

Overview

maximal objects in a subset of partial order are ones that have no

objects strictly above them

hence they are pairwise incomparable, i.e., form an antichain

maximal objects play an important role in many algorithms

since we are interested in algebraic program derivation

we present an algebra of (strict-)orders and antichains

an approximation relation between antichains induces a semilattice

the maxima operator can be viewed as a closure operator in an

associated pre-ordered set

this finally yields a characterisation of antichains in terms of a

Galois connection
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Overview

sample application:

preference databases

user specifies her preferences as a strict-order

BMO (best matches only) semantics returns the maximal objects,

because these meet user wishes best

we algebraically derive the standard Block-Nested Loop (BNL)

algorithm for computing the maxima

approximation order reflects the steps taken by the BNL algorithm

antichain algebra can be used to improve the efficiency
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Strict-Orders and Maxima Algebraically

Strict-Orders and Maxima Algebraically

concrete abstract

relation between objects semiring element a

composition ; semiring multiplication ·

identity relation multiplicative semiring unit 1

union semiring addition +

inclusion subsumption order a ≤ b ⇔ a+ b = b

sets of objects tests p ≤ 1

single objects atomic tests

inverse image ||a〉〉 p
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Strict-Orders and Maxima Algebraically

element a is d(iamond)-transitive if ∀ p : ||a · a〉〉 p ≤ ||a〉〉 p
more liberal than stipulating a · a ≤ a
for relations a both formulations coincide

a is d-irreflexive if for all atomic x : x · ||a〉〉x ≤ 0

strict-order: d-transitive and d-irreflexive element
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Strict-Orders and Maxima Algebraically

best or maximal objects w.r.t. element a and test p:

a . p =df p− ||a〉〉 p

interpretation for (preference) strict-order a:

||a〉〉 p, the inverse image of p under a, is the set of objects

a-dominated by some object in p

thus p− ||a〉〉 p are the non-dominated, hence maximal objects in p
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Strict-Orders and Maxima Algebraically

some useful properties:

1. a . 0 = 0

2. a . 1 = ¬pa

3. pb ≤ pa ⇔ a . 1 ≤ b . 1

4. a . p ≤ p

5. a . (a . p) = a . p

6. (a+ b) . p = (a . p) · (b . p).

7. b ≤ a ⇒ a . p ≤ b . p, i.e., . is antitone in its first argument

8. 1 ≤ a ⇒ a . p = 0
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Strict-Orders and Maxima Algebraically

so far no special properties of strict-orders required

for further laws need an assumption that “enough” maximal

objects exist

expressed by requiring every non-maximal object to be dominated

by some maximal one

always satisfied if set of all objects is finite (as in databases)

infinite case closely related with noetherity (see below)
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Strict-Orders and Maxima Algebraically

element a is called normal if ∀ p : ||a〉〉 p ≤ ||a〉〉 (a . p)
meaning: every object dominated by some p-object is also

dominated by a maximal p-object

equivalent to ∀ p : ||a〉〉 p = ||a〉〉 (a . p)
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Strict-Orders and Maxima Algebraically

element a is noetherian if, for all tests p,

a . p ≤ 0⇒ p ≤ 0 .

by contraposition and leastness of 0 equivalent to

p 6= 0⇒ a . p 6= 0

means that every non-empty p contains at least one maximal

object (dual of the usual well-foundedness condition)

in the relational case therefore also equivalent to the absence of

infinitely ascending chains
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Strict-Orders and Maxima Algebraically

Theorem

if a is noetherian then for any q ∈ test(S) we have q ≤ ||a∗〉〉 (a . q),

i.e., all points in q are a∗-dominated by points in a . q

every noetherian and d-transitive element is normal

every normal element is noetherian and d-transitive
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Strict-Orders and Maxima Algebraically

important application:

a normal ⇒ a . (p+ q) = a . (a . p+ a . q)

paves the way for a distributed computation of maxima:

for disjoint p and q the calculations of a . p and a . q are

independent

law generalises from + to arbitrary existing suprema in the set of

tests
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Antichains

Antichains

antichain: set of mutually incomparable objects

equivalently, a set is an antichain if it equals its maxima set

algebraic characterisation:

for a semiring element a, a test p is an a-antichain if p = a . p

AC(a): set of all a-antichains

0 ∈ AC(a) for every a

for d-irreflexive a every atomic test is an antichain

AC(a) is downward closed, i.e.,

p ∈ AC(a) ∧ q ≤ p⇒ q ∈ AC(a)
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Lattice Structure of Antichains

Lattice Structure of Antichains

we now exhibit a lattice structure on the set of antichains

first we define an approximation relation

test p is improved by test q, in symbols p v q, if q results from

removing some objects of p that are dominated by q-objects

and possibly adding others that are not dominated by p-objects

formally,

p v q ⇔df p− ||a〉〉 q ≤ q ∧ q · ||a〉〉 p ≤ 0

by Boolean algebra and distributivity, equivalently

p v q ⇔ p ≤ ||a+ 1〉〉 q ∧ q · ||a〉〉 p ≤ 0
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Lattice Structure of Antichains

properties:

∀ p ∈ test(S) : 0 v p.

v is reflexive precisely on AC(a), i.e., p v p ⇔ p ∈ AC(a)

v is antisymmetric

if a is d-transitive, then for antichains the second conjunct in the

definition of v is implied by the first one, i.e., for p, q ∈ AC(a) we

have p v q ⇔ p ≤ ||a+ 1〉〉 q
if a is d-transitive then v is transitive and hence a partial order on

AC(a).

If a is normal then p v a . p
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Lattice Structure of Antichains

Theorem
a . transforms all ≤-suprema in test(S) into v-suprema in AC(a)

a . is isotone w.r.t. ≤ and v, i.e.,

∀ p, q ∈ test(S) : p ≤ q ⇒ a . p v a . q
AC(a) is an upper semilattice with p t q = a . (p+ q) and

0 t p = p

if (S,≤) is a quantale then AC(a) is a complete lattice with

tvA = a . (ΣA), where Σ is the supremum operator on (S,≤)

a . preserves t on AC(a)

a . is also isotone w.r.t. v and v on arbitrary tests:

∀ p, q ∈ test(S) : p v q ⇒ a . p v a . q
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Maxima as a Closure Operator

Maxima as a Closure Operator

a closure operator on a partially ordered set (L,≤) is a total function

f : L → L with the following properties:

x ≤ f(x) (extensivity)

x ≤ y ⇒ f(x) ≤ f(y) (isotony)

f(f(x)) = f(x) (idempotence)
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Maxima as a Closure Operator

by earlier properties a . satisfies all three properties of a closure

operator w.r.t. v
unfortunately, however, v is not even a preorder on test(S), since

reflexivity holds exactly on AC(a)

to remedy this, we define another comparison relation on test(S):

p �a q ⇔df a . p v a . q
then � is a preorder, but not a partial order

we have p � q ∧ q � p ⇔ a . p = a . q

finally, p ≤ q ⇒ p � q
with the definition of � we can now actually view a . as a closure

operator by carrying the notion over to preorders
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A Galois Connection for the Maxima Operator

A Galois Connection for the Maxima Operator

since the maxima operator is a closure operator, we can use a

well-known result concerning Galois connections, again adapted to the

case of preorders rather than partial orders

consider two preorders (A,≤A) and (B,≤B) and total functions

F : A → B and G : B → A

the pair (F,G) is called a Galois connection (GC) between A and

B iff

∀x ∈ A : ∀ y ∈ B : F (x) ≤B y ⇔ x ≤A G(y)

F is called the lower, G the upper adjoint of the GC
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A Galois Connection for the Maxima Operator

the following result is well known for the case of partial orders; we

adapt it to preorders

every closure operator H : L → L induces the following Galois

connection between L and H(L):

H(x) ≤ y ⇔ x ≤ ι(y)

where ι is the embedding of H(L) into L, i.e., ι(y) = y for y ∈ H(L)
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A Galois Connection for the Maxima Operator

hence for p ∈ test(S) and q ∈ AC(a) we have the Galois connection

a . p � q ⇔ p � ι(q)

as a lower adjoint therefore the a . operator preserves all existing

�-suprema

this nicely rounds off the small collection of preservation results in the

main theorem
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Application

Application

we now sketch an algebraic, calculational derivation of the

standard BNL algorithm for computing maximal objects

we assume that the test algebra of the underlying semiring is finite

and hence atomic, i.e.,

every test is the sum of the atoms below it

let test r represents all available tuples in a database and a be a

fixed strict-order representing a preference relation

the task is to compute a . r, i.e., a test representing the set of all

a-maximal objects in r
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Application

standard approach:

make a constant of the specification into a parameter

calculate an inductive or recursive version of the generalised

specification

here: make r into a parameter called u

hence for test u we define the function ma(u) that computes the

maxima of u w.r.t. preference a as

ma(u) =df a . u
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Application

aim

develop a recursive version of the function ma by induction on the

size of the parameter u

by the finiteness and atomicity of the test algebra, the size |u| of u

can be defined as the cardinality of the set of atoms below u.

base case |u| = 0

then u = 0

hence ma(0) = 0− ||a〉〉 0 = 0.
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Application

inductive case: choose an atomic test x ≤ u and set v =df u− x

ma(u)

= {[ unfold ma ]}
a . (x+ v)

= {[ max-additivity ]}
a . (a . x+ a . v)

= {[ d-irreflexivity of a, atomicity of x ]}
a . (x+ a . v)

= {[ fold ma ]}
a . (x+ ma(v))
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Application

now, since ma(v) = a . v is an antichain, we define an auxiliary

function

inc(x, p) =df a . (x+ p) = x t p

where x is an atomic test and p an antichain

then we can continue the previous derivation to obtain

ma(u) = inc(x,ma(v))
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Application

altogether, we have derived the recursion

ma(u) = if u = 0 then 0

else choose atom x ≤ u in

inc(x,ma(u− x))

the original task is now solved using the call ma(r)

by the main theorem we have p v inc(x, p)

hence the BNL algorithm produces a v-ascending chain of

antichains ending with the v-largest antichain a . r
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Application

now we apply the algebra to bring the function ma into

tail-recursive form,

as a preparation for transliterating it into loop form

essential observation: the expression in the recursive case is

inc(x,ma(u− x)) = x tma(u− x) and

t as a supremum operator is associative and has the v-least

element 0 as its neutral element

we define an auxiliary function mat(p, u) =df p tma(u) with an

additional parameter p that will accumulate the end result

by neutrality of 0 we can solve the original task as

ma(u) = mat(0, u)
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Application

we calculate a recursive version of mat from the one for ma by the

usual re-bracketing technique

in the termination case u = 0 we obtain mat(p, 0) = p t 0 = p

In the recursive case for u 6= 0 we get by unfolding, the main

theorem, associativity of t and folding

mat(p, u) = p t inc(x,ma(u− x)) = p t (x tma(u− x)) =

(p t x) tma(u− x) = mat(p t x, u− x) ,

which is a tail-recursive call
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Application

in the paper we similarly calculate a recursive version of the

function inc(x, p)

parameter p is frequently called the (working) window

it contains candidates for objects of the overall maxima set

and is incrementally adapted as the single tuples x are inspected

in turn.
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Application

result:

inc(x, p) = if p = 0

thenx

else choose atom y ≤ p in

if x ≤ ||a〉〉 y
then p

else if y ≤ ||a〉〉x then inc(x, p− y)

else y + inc(x, p− y)
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Conclusion

Conclusion

algebraic account of an approximation relation between antichains

induces a semilattice

renders the maxima operator isotone in several ways

maxima operator a closure operator in an associated preorder

hence satisfies a Galois connection

algebra applied to the non-trivial example of the BNL algorithm

we are convinced that the theory will be useful for many further

calculational derivations involving the maxima operator and

antichains
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