Towards Antichain Algebra

Bernhard Möller

Institut für Informatik, Universität Augsburg

RAMiCS 2015

B. Möller

Overview

Overview

- maximal objects in a subset of partial order are ones that have no objects strictly above them
- hence they are pairwise incomparable, i.e., form an antichain
- maximal objects play an important role in many algorithms
- since we are interested in algebraic program derivation
- we present an algebra of (strict-)orders and antichains
- an approximation relation between antichains induces a semilattice
- the maxima operator can be viewed as a closure operator in an associated pre-ordered set
- this finally yields a characterisation of antichains in terms of a Galois connection

B. Möller

sample application:

- preference databases
- user specifies her preferences as a strict-order
- BMO (best matches only) semantics returns the maximal objects, because these meet user wishes best
- we algebraically derive the standard Block-Nested Loop (BNL) algorithm for computing the maxima
- approximation order reflects the steps taken by the BNL algorithm
- antichain algebra can be used to improve the efficiency

Strict-Orders and Maxima Algebraically

Strict-Orders and Maxima Algebraically

concrete	abstract
relation between objects	semiring element a
composition ;	semiring multiplication \cdot
identity relation	multiplicative semiring unit 1
union	semiring addition $+$
inclusion	subsumption order $a \leq b \Leftrightarrow a + b = b$
sets of objects	tests $p \leq 1$
single objects	atomic tests
inverse image	$ a\rangle p$

- element a is d(iamond)-transitive if $\forall p : |a \cdot a\rangle p \leq |a\rangle p$
- \blacksquare more liberal than stipulating $a \cdot a \leq a$
- for relations a both formulations coincide
- a is d-irreflexive if for all atomic $x: x \cdot |a\rangle x \leq 0$
- strict-order: d-transitive and d-irreflexive element

best or maximal objects w.r.t. element *a* and test *p*:

$$a \triangleright p =_{df} p - |a\rangle p$$

- interpretation for (preference) strict-order *a*:
- |a⟩ p, the inverse image of p under a, is the set of objects
 a-dominated by some object in p
- thus $p |a\rangle p$ are the non-dominated, hence maximal objects in p

some useful properties:

1. $a \triangleright 0 = 0$ 2. $a \triangleright 1 = \neg a$ 3. $b \leq a \Leftrightarrow a \triangleright 1 \leq b \triangleright 1$ 4. $a \triangleright p \leq p$ 5. $a \triangleright (a \triangleright p) = a \triangleright p$ 6. $(a + b) \triangleright p = (a \triangleright p) \cdot (b \triangleright p)$. 7. $b \leq a \Rightarrow a \triangleright p \leq b \triangleright p$, i.e., \triangleright is antitone in its first argument 8. $1 \leq a \Rightarrow a \triangleright p = 0$

- so far no special properties of strict-orders required
- for further laws need an assumption that "enough" maximal objects exist
- expressed by requiring every non-maximal object to be dominated by some maximal one
- always satisfied if set of all objects is finite (as in databases)
- infinite case closely related with noetherity (see below)

- element a is called normal if $\forall p : |a\rangle p \le |a\rangle (a \triangleright p)$
- meaning: every object dominated by some p-object is also dominated by a maximal p-object
- equivalent to $\forall p : |a\rangle p = |a\rangle (a \triangleright p)$

• element a is noetherian if, for all tests p,

$$a \triangleright p \leq 0 \Rightarrow p \leq 0$$
 .

• by contraposition and leastness of 0 equivalent to

$$p\neq 0 \Rightarrow a \triangleright p \neq 0$$

- means that every non-empty p contains at least one maximal object (dual of the usual well-foundedness condition)
- in the relational case therefore also equivalent to the absence of infinitely ascending chains

B. Möller

Theorem

- if a is noetherian then for any q ∈ test(S) we have q ≤ |a*> (a ▷ q),
 i.e., all points in q are a*-dominated by points in a ▷ q
- every noetherian and d-transitive element is normal
- every normal element is noetherian and d-transitive

- important application:
- $a \text{ normal} \Rightarrow a \triangleright (p+q) = a \triangleright (a \triangleright p + a \triangleright q)$
- paves the way for a distributed computation of maxima:
- for disjoint p and q the calculations of $a \triangleright p$ and $a \triangleright q$ are independent
- law generalises from + to arbitrary existing suprema in the set of tests

Antichains

- antichain: set of mutually incomparable objects
- equivalently, a set is an antichain if it equals its maxima set
- algebraic characterisation:
- for a semiring element a, a test p is an a-antichain if $p=a\triangleright p$
- AC(a): set of all *a*-antichains
- $0 \in AC(a)$ for every a
- $\hfill \ensuremath{\,\bullet\)}$ for d-irreflexive a every atomic test is an antichain
- AC(a) is downward closed, i.e.,

$$p \in AC(a) \land q \le p \Rightarrow q \in AC(a)$$

Lattice Structure of Antichains

- we now exhibit a lattice structure on the set of antichains
- first we define an approximation relation
- test p is improved by test q, in symbols $p \sqsubseteq q$, if q results from removing some objects of p that are dominated by q-objects
- and possibly adding others that are not dominated by *p*-objects

$$p \sqsubseteq q \Leftrightarrow_{df} p - |a\rangle q \le q \land q \cdot |a\rangle p \le 0$$

by Boolean algebra and distributivity, equivalently

$$p \sqsubseteq q \Leftrightarrow p \le |a+1\rangle q \land q \cdot |a\rangle p \le 0$$

properties:

- $\forall p \in \mathsf{test}(S) : 0 \sqsubseteq p.$
- \sqsubseteq is reflexive precisely on AC(a), i.e., $p \sqsubseteq p \Leftrightarrow p \in AC(a)$
- 🛛 🗌 is antisymmetric
- if a is d-transitive, then for antichains the second conjunct in the definition of \sqsubseteq is implied by the first one, i.e., for $p, q \in AC(a)$ we have $p \sqsubseteq q \Leftrightarrow p \le |a+1\rangle q$
- if a is d-transitive then \sqsubseteq is transitive and hence a partial order on AC(a).
- If a is normal then $p \sqsubseteq a \triangleright p$

Theorem

- $a \triangleright$ transforms all \leq -suprema in test(S) into \sqsubseteq -suprema in AC(a)
- $a \triangleright$ is isotone w.r.t. \leq and \sqsubseteq , i.e.,

$$\forall \, p,q \in \mathsf{test}(S) : p \leq q \, \Rightarrow \, a \triangleright p \sqsubseteq a \triangleright q$$

- AC(a) is an upper semilattice with $p \sqcup q = a \triangleright (p+q)$ and $0 \sqcup p = p$
- if (S, \leq) is a quantale then AC(a) is a complete lattice with $\bigsqcup_{\sqsubseteq} A = a \triangleright (\Sigma A)$, where Σ is the supremum operator on (S, \leq)
- $a \triangleright$ preserves \sqcup on AC(a)
- $a \triangleright$ is also isotone w.r.t. \sqsubseteq and \sqsubseteq on arbitrary tests:

$$\forall \, p,q \in \mathsf{test}(S): p \sqsubseteq q \, \Rightarrow \, a \triangleright p \sqsubseteq a \triangleright q$$

Maxima as a Closure Operator

a closure operator on a partially ordered set (L, \leq) is a total function $f: L \to L$ with the following properties:

$$x \le f(x)$$
(extensivity) $x \le y \Rightarrow f(x) \le f(y)$ (isotony) $f(f(x)) = f(x)$ (idempotence)

- by earlier properties a ▷ satisfies all three properties of a closure operator w.r.t.
- unfortunately, however, \sqsubseteq is not even a preorder on test(S), since reflexivity holds exactly on $\mathrm{AC}(a)$
- to remedy this, we define another comparison relation on test(S):

$$\bullet \ p \preceq_a q \Leftrightarrow_{df} a \triangleright p \sqsubseteq a \triangleright q$$

- \blacksquare then \preceq is a preorder, but not a partial order
- $\bullet \text{ we have } p \preceq q \ \land \ q \preceq p \ \Leftrightarrow \ a \triangleright p = a \triangleright q$
- finally, $p \leq q \Rightarrow p \preceq q$
- with the definition of ≤ we can now actually view a ▷ as a closure operator by carrying the notion over to preorders

A Galois Connection for the Maxima Operator

since the maxima operator is a closure operator, we can use a well-known result concerning Galois connections, again adapted to the case of preorders rather than partial orders

- consider two preorders (A,\leq_A) and (B,\leq_B) and total functions F:A \to B and G:B \to A
- the pair (F,G) is called a Galois connection (GC) between A and B iff

$$\forall x \in A : \forall y \in B : F(x) \leq_B y \Leftrightarrow x \leq_A G(y)$$

• F is called the lower, G the upper adjoint of the GC

the following result is well known for the case of partial orders; we adapt it to preorders

every closure operator $H: L \to L$ induces the following Galois connection between L and H(L):

$$H(x) \le y \Leftrightarrow x \le \iota(y)$$

where ι is the embedding of H(L) into L, i.e., $\iota(y)=y$ for $y\in H(L)$

hence for $p\in \operatorname{test}(S)$ and $q\in \operatorname{AC}(a)$ we have the Galois connection

$$a \triangleright p \preceq q \Leftrightarrow p \preceq \iota(q)$$

as a lower adjoint therefore the $a \triangleright$ operator preserves all existing \preceq -suprema

this nicely rounds off the small collection of preservation results in the main theorem

- we now sketch an algebraic, calculational derivation of the standard BNL algorithm for computing maximal objects
- we assume that the test algebra of the underlying semiring is finite and hence atomic, i.e.,
- every test is the sum of the atoms below it
- let test r represents all available tuples in a database and a be a fixed strict-order representing a preference relation
- the task is to compute a ▷ r, i.e., a test representing the set of all a-maximal objects in r

standard approach:

- make a constant of the specification into a parameter
- calculate an inductive or recursive version of the generalised specification
- here: make r into a parameter called u
- hence for test u we define the function ma(u) that computes the maxima of u w.r.t. preference a as

$$ma(u) =_{df} a \triangleright u$$

aim

- develop a recursive version of the function ma by induction on the size of the parameter u
- by the finiteness and atomicity of the test algebra, the size |u| of u can be defined as the cardinality of the set of atoms below u.

```
base case |u| = 0
```

- then u = 0
- hence $ma(0) = 0 |a\rangle 0 = 0$.

inductive case: choose an atomic test $x \leq u$ and set $v \, =_{df} \, u - x$

$$ma(u)$$

$$= \{ \{ \text{unfold } ma \} \}$$

$$a \triangleright (x + v)$$

$$= \{ \{ \text{max-additivity} \} \}$$

$$a \triangleright (a \triangleright x + a \triangleright v)$$

$$= \{ \{ \text{d-irreflexivity of } a, \text{ atomicity of } x \} \}$$

$$a \triangleright (x + a \triangleright v)$$

$$= \{ \{ \text{fold } ma \} \}$$

$$a \triangleright (x + ma(v))$$

now, since $ma(v) = a \triangleright v$ is an antichain, we define an auxiliary function

$$inc(x,p) =_{df} a \triangleright (x+p) = x \sqcup p$$

where x is an atomic test and p an antichain

then we can continue the previous derivation to obtain ma(u) = inc(x, ma(v))

altogether, we have derived the recursion

```
\begin{aligned} ma(u) &= \text{if } u = 0 \text{ then } 0 \\ & \text{else choose atom } x \leq u \text{ in} \\ & inc(x, ma(u-x)) \end{aligned}
```

- the original task is now solved using the call ma(r)
- by the main theorem we have $p \sqsubseteq inc(x, p)$
- hence the BNL algorithm produces a ⊆-ascending chain of antichains ending with the ⊆-largest antichain a ▷ r

- now we apply the algebra to bring the function ma into tail-recursive form,
- as a preparation for transliterating it into loop form
- essential observation: the expression in the recursive case is $inc(x,ma(u-x))=x\sqcup ma(u-x) \text{ and }$
- □ as a supremum operator is associative and has the □-least element 0 as its neutral element
- we define an auxiliary function $mat(p, u) =_{df} p \sqcup ma(u)$ with an additional parameter p that will accumulate the end result
- by neutrality of 0 we can solve the original task as ma(u) = mat(0, u)

we calculate a recursive version of mat from the one for ma by the usual re-bracketing technique

- in the termination case u = 0 we obtain $mat(p, 0) = p \sqcup 0 = p$
- In the recursive case for $u \neq 0$ we get by unfolding, the main theorem, associativity of \sqcup and folding

$$mat(p, u) = p \sqcup inc(x, ma(u - x)) = p \sqcup (x \sqcup ma(u - x)) =$$
$$(p \sqcup x) \sqcup ma(u - x) = mat(p \sqcup x, u - x) ,$$

which is a tail-recursive call

- in the paper we similarly calculate a recursive version of the function inc(x,p)
- parameter p is frequently called the (working) window
- it contains candidates for objects of the overall maxima set
- and is incrementally adapted as the single tuples x are inspected in turn.

result:

inc(x,p) = if p = 0then x else choose atom $y \le p$ in if $x \le |a\rangle y$ then p else if $y \le |a\rangle x$ then inc(x, p - y)else y + inc(x, p - y)

Conclusion

- algebraic account of an approximation relation between antichains
- induces a semilattice
- renders the maxima operator isotone in several ways
- maxima operator a closure operator in an associated preorder
- hence satisfies a Galois connection
- algebra applied to the non-trivial example of the BNL algorithm
- we are convinced that the theory will be useful for many further calculational derivations involving the maxima operator and antichains