
MathIS Matisse e = m + c Geometry Calculating programs Numbers For-loops Whole division Wrapping up

For-loops for free

In other words, students’ calculations above already deploy a CbC
(correct by construction) ”for-loop” implementation of
multiplication:

a .* n = for (a+) 0 n

something to be encoded (much later!) imperatively, eg. in C:

int mul(int a, int n)
{
int s=0; int i;
for (i=1;i<n+1;i++) {s += a;}
return s;
};

MathIS Matisse e = m + c Geometry Calculating programs Numbers For-loops Whole division Wrapping up

Not so immediate for-loops

Now consider the challenge of encoding the square function,
sq n = n2. Following the same approach, let students first recall
known facts about squares, including Newton’s binomial formula:

02 = 0

12 = 1

(a + b)2 = a2 + 2ab + b2

Playing the same game, the following will be obtained:

sq 0 = 0

sq (n + 1) = sq n + 2n + 1� �� �
odd n

By the way: students aware that n2 is the sum of the first n odd
numbers.

MathIS Matisse e = m + c Geometry Calculating programs Numbers For-loops Whole division Wrapping up

Not so immediate for-loops

• However, sq is not a for-loop because each additive
contribution odd n = 2n + 1 is dependent on n.

• What about odd itself? Ask the students to try and exploit
“its maths”,

odd 0 = 1

odd(n + 1) = 2 + odd n

which lead immediately to for-loop for (2+) 1.

• Still, students don’t know what to do with sq. What can we
do about this?

MathIS Matisse e = m + c Geometry Calculating programs Numbers For-loops Whole division Wrapping up

Two-variable for-loops

By putting sq and odd side by side,

sq 0 = 0
sq (n + 1) = sq n + odd n

odd 0 = 1
odd (n+1) = 2 + odd n

observe that both functions share the same input pattern and can thus
run “together”, co-operating with each other. Thus proceed to tupling,

�sq, odd�x = (sq x , odd x)

only to exploit “the maths” of this pair of functions:

�sq, odd�0 = (0, 1)
�sq, odd�(i + 1) = let (s, o) = �sq, odd� i in (s + o, 2 + o)

Clearly, this is for-loop for((s, o) �→ (s + o, 2 + o))(0, 1) which computes

i2 on variable s and odd i on variable o. Thus the code which follows:

MathIS Matisse e = m + c Geometry Calculating programs Numbers For-loops Whole division Wrapping up

Calculation

�
sq · in = [0 ,+] · F�sq, odd�
odd · in = [1 , (2+) · π2] · F�sq, odd�

⇔ { mutual recursion law }

�sq, odd� = (|�[0 ,+], [1 , (2+) · π2]�|)
⇔ { exchange law }

�sq, odd� = (|[�0, 1� , �+, (2+) · π2�]|)
⇔ { (|[i , b]|) = for b i (going pointwise into for-loop) }

�sq, odd� = for �+, (2+) · π2� (0, 1)

⇔ { unfolding loop body }

�sq, odd� = for λ(s, o).(s + o, 2 + o) (0, 1)

MathIS Matisse e = m + c Geometry Calculating programs Numbers For-loops Whole division Wrapping up

Two-variable for-loops

C code for sq (and odd , implicitly):

int sq(int n)
{
int s=0; int i; int o=1;
for (i=1;i<n+1;i++) {s+=o; o+=2;}
return s;
};

Learning outcome

The number of variables required by a for-loop implementation of
a given function over the natural numbers is the number of
mutually recursive functions which such given function
“unfolds” into once “their maths” are inspected.

