
Roughness by Residuals

M. E. Müller

Univ. Augsburg

Wednesday 30th September, 2015

Contents

Introduction

Approximations

Rough sets (without elements)
... but with characteristic functions
... but with subidentities

Finding core relations and reducts

Conclusion

Introduction
At-least and at-most approximations

⇤ and ⇧

Morphology : ✏·(·) and �·(·) w.r.t binary relations

KAT : [·| · and h·| · w.r.t tests

Residuals : wp and sp w.r.t p.o., preorder, ...

Approximations : [[·]]· and h|·|i· w.r.t equivalences

Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

Attributes A

A
col shp edg siz

w g b c t d s 1 3 4 S B

1 0 0 0 0 0 1 0 0 1 1 0

0 0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 1 0

0 1 0 1 0 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0 0 1 1 0

1 0 0 1 0 0 0 1 0 0 1 0

Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

Kernel relations
⇠
col

1 0 0 0 1 0 1
0 1 1 0 0 1 0

0 1 1 0 0 1 0

0 0 0 1 0 0 0

1 0 0 0 1 0 1
0 1 1 0 0 1 0

1 0 0 0 1 0 1

Def. Kernel relation: x
⇠
fy :() f(x) = f(y)

Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

Indiscernability
⇡
R =

T

{ ˜

col , ˜

shp}

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

Def. Kernel relation: x
⇠
fy :() f(x) = f(y)

Def. Indiscernability: x
⇡
Ry :() x(

T

R)y

Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

⇡
R =

T

{ ˜

col , ˜

shp}

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

Goal: Find a smallest R ✓ EquR(U) that creates a finest
⇡
R!

(
⇡
R = 1 or

⇡
R ⇡ T)

Rough sets, “pointwise”

Def. Upper and Lower Approximations N.B. R :=
⇡
R

[[R]]s :

= {x 2 U : [x]R ✓ s} (1)

h|R|is :

= {x 2 U : [x]R \ s 6= ;} . (2)

Iso-/Antitony of [[]] and h| |i w.r.t. set and relation arguments

s ✓ t =) h|R|is ✓ h|R|it
[[R]]s ✓ [[R]]t

but P ✓ R =) h|P |is ✓ h|R|is
[[P]]s ◆ [[R]]s

Duality (as desired)

[[R]]s = h|R|is. (3)

Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
We observe (pointwise):

x 2 [[R]]s () [x]R ✓ s

Def. Upper and Lower Approximations, again.

[[R]]s :

= hR�ṡ | {1} (4)

h|R|is :

= hR�ṡ | {0} (5)

where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.

Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
We observe (pointwise):

x 2 [[R]]s () xRy �! y 2 s

Def. Upper and Lower Approximations, again.

[[R]]s :

= hR�ṡ | {1} (4)

h|R|is :

= hR�ṡ | {0} (5)

where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.

Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
We observe (pointwise):

x 2 [[R]]s () xRy _ yṡ1

Def. Upper and Lower Approximations, again.

[[R]]s :

= hR�ṡ | {1} (4)

h|R|is :

= hR�ṡ | {0} (5)

where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.

Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
We observe (pointwise):

x 2 [[R]]s () ¬(yṡ1 ^ xRy)

Def. Upper and Lower Approximations, again.

[[R]]s :

= hR�ṡ | {1} (4)

h|R|is :

= hR�ṡ | {0} (5)

where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.

Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
We observe (pointwise):

x 2 [[R]]s () xR
N#ṡ1

Def. Upper and Lower Approximations, again.

[[R]]s :

= hR�ṡ | {1} (4)

h|R|is :

= hR�ṡ | {0} (5)

where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.

Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
We observe (pointwise):

x 2 [[R]]s () xR�ṡ1

Def. Upper and Lower Approximations, again.

[[R]]s :

= hR�ṡ | {1} (4)

h|R|is :

= hR�ṡ | {0} (5)

where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.

Example

2
ċ 0 1

1 0

1 0

0 1
0 1
0 1
1 0

1 0

U
⇠
shp

1 1 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1/ 0 0 0 0

0 0 0 1/ 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 1

2
⇠
shp�ċ 0 1

0 0

0 0

0 0

0 0

0 1

1 0

0 0

Therefore, h
⇠
shp�ċ | {1} = h

⇠
shp

N
#ċ | {1} = { } = [[

⇠
shp]] { , , }.

Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () [x]R ✓ S·U

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S) (6)

h|R|is :

= dom (R�S�) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C) : c 2 c} (8)

where c = U/Q is a target classification.

Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () 8y : xRy �! ySy

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S) (6)

h|R|is :

= dom (R�S�) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C) : c 2 c} (8)

where c = U/Q is a target classification.

Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () 8y : xRy _ ySy

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S) (6)

h|R|is :

= dom (R�S�) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C) : c 2 c} (8)

where c = U/Q is a target classification.

Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () 8y : ¬(ySy ^ xRy)

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S) (6)

h|R|is :

= dom (R�S�) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C) : c 2 c} (8)

where c = U/Q is a target classification.

Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () 8y : xR
N#S y

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S) (6)

h|R|is :

= dom (R�S�) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C) : c 2 c} (8)

where c = U/Q is a target classification.

Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () 8y : xR�S y

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S) (6)

h|R|is :

= dom (R�S�) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C) : c 2 c} (8)

where c = U/Q is a target classification.

Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () x 2 R�S ·U

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S) (6)

h|R|is :

= dom (R�S�) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C) : c 2 c} (8)

where c = U/Q is a target classification.

Rough sets by KAD

Preimages, domains and tests

With KAT we are given

hR| :

= min {X 2 U : R ✓ X #R } (9)

�hR| :

= max

�

X 2 U : X #R ✓ C

(10)

Here, C = >> (i.e. not a relative, but absolute complement).
Then, by domain laws,

hR| S = hR#S | = hR�S� | = h|R|is (11)

and, canonically,

[R|T :

= �hR|T�
= hR�T | = [[R]]t. (12)

Rough sets by GC

... are for free.

With [[·]] / h|·|i being defined by [·| · / h·| ·, and reading sets as
subidentities,

hR| s ✓ t () hR| t� ✓ s� () s ✓ �hR| t� () s ✓ [R| t. (13)

What we get for free

I
[[R]]s = h|R|is proving (3).

I
[[R]]s = s () h|R|is = s proving (17, 18) in the paper.

I ...

I a nice metaphor: “RST is just a GC, with only equivalences”.

Positive regions and refinement

How good is R to ...

I describe a classification U/Q (or s/Q)...

I compared to a relation P?

Def. Positive regions

[[R l P]]s/Q :

=

[

c2s/Q

[[R l P]]c :

=

[

c2s/Q

[

t2c/P

[[R]]t. (14)

[[R l P]]s/Q is the largest set of elements x 2 s s.t. [x]R ✓ [x]P ✓ [x]Q.

Positive regions by residuals
[[R l P]]s/Q = h (R�P)�Q | s = dom ((R�P)�Q #S) (15)

s.t. [[R]]s = dom ((R�⇠
s)�S) = dom (R�S)

but
S

[[R]](s/Q) = R�Q ·s = dom (R�Q #S)

Positive regions and refinement

How good is R to ...

I describe a classification U/Q (or s/Q)...

I compared to a relation P?

Def. Positive regions

[[R l P]]s/Q :

=

[

c2s/Q

[[R l P]]c :

=

[

c2s/Q

[

t2c/P

[[R]]t. (14)

Positive regions by residuals

[[R l P]]s/Q = h (R�P)�Q | s = dom ((R�P)�Q #S) (15)

s.t. [[R]]s = dom ((R�⇠
s)�S) = dom (R�S)

but
S

[[R]](s/Q) = R�Q ·s = dom (R�Q #S)

R is better than P , if...

Def. Refinement

R refines P w.r.t H on s/Q, i↵

R
H
⌫
s/Q

P :() [[R l H]](s/Q) ◆ [[P l H]](s/Q) (16)

() dom (((R�H)�Q)#S) ◆ dom (((P�H)�Q)#S)

Def. R is a (H-relative) reduct of P (on s/Q), if...

1. R ✓ P (hence
⇡
P ✓

⇡
R and P⌫R)

2. R is a largest subset of P s.t. R⌫P.

Red(P) is the set of all reducts of P; Cor(P)

:

=

T

Red(R).

R is better than P , if...

Def. Refinement

R refines P w.r.t H on s, i↵

R
H
⌫
s
P :() [[R l H]]s ◆ [[P l H]]s (16)

() dom ((R�H)#S) ◆ dom ((P�H)#S)

Def. R is a (H-relative) reduct of P (on s/Q), if...

1. R ✓ P (hence
⇡
P ✓

⇡
R and P⌫R)

2. R is a largest subset of P s.t. R⌫P.

Red(P) is the set of all reducts of P; Cor(P)

:

=

T

Red(R).

R is better than P , if...

Def. Refinement

R refines P w.r.t H on U , i↵

R
H
⌫P :() [[R l H]]U ◆ [[P l H]]U (16)

() dom (R�H) ◆ dom (P�H)

Def. R is a (H-relative) reduct of P (on s/Q), if...

1. R ✓ P (hence
⇡
P ✓

⇡
R and P⌫R)

2. R is a largest subset of P s.t. R⌫P.

Red(P) is the set of all reducts of P; Cor(P)

:

=

T

Red(R).

We need to make a few points

It is nice to know that R 2 Red(P),
but the definition does not help finding such R.

Def. “s.” is an arbitrarily chosen, fixed element (point) of s.

Sets and Partitions

I Sets
I characteristic relations: ṡ : U ! 2 s = hṡ| 1
I subidentities: S :

= 1 \ (s⇥ s) s = hS| U
I Classifications

I quotients s/R: s/R = {hR|x : x 2 s}
I pointwise representation: r ✓ s s/R = {[c.] : c. 2 r}

Concrete Tasks
... sadly require concrete data (points)

Goal: Construct (e�ciently) some R in Red(P)

Gedankenexperiment (Q := R� {R})
Suppose, R 2 Cor(P).

I Then, R 2 R for all R 2 Red(P).

I Hence, R
P
� Q (strictly!).

I By definition, 9x : x /2 [[(Q l P]]s ⇢ [[R l P]]s 3 x.

I Then, [x]⇡
R
✓ [x]⇡

P
but [x]Q 6✓ [x]⇡

P
.

I Therefore, there is a representation r of s/
⇡
P, s.t.

9r.1, r.2 : r.1Rr.2 ^ [r.1]⇡Q
= [r.2]⇡Q

(17)

Concrete Tasks
... sadly require concrete data (points)

Goal: Construct (e�ciently) some R in Red(P)

Gedankenexperiment (Q := R� {R})
Suppose, R 2 Cor(P).

I Then, R 2 R for all R 2 Red(P).

I Hence, R
P
� Q (strictly!).

I By definition, 9x : x /2 [[(Q l P]]s ⇢ [[R l P]]s 3 x.

I Then, [x]⇡
R
✓ [x]⇡

P
but [x]Q 6✓ [x]⇡

P
.

I Therefore, there is a representation r of s/
⇡
P, s.t.

9r.1, r.2 : r.1Rr.2 ^ r.1
⇡
Qr.2 (17)

Concrete Tasks
... sadly require concrete data (points)

Goal: Construct (e�ciently) some R in Red(P)

Gedankenexperiment (Q := R� {R})
Suppose, R 2 Cor(P).

I Then, R 2 R for all R 2 Red(P).

I Hence, R
P
� Q (strictly!).

I By definition, 9x : x /2 [[(Q l P]]s ⇢ [[R l P]]s 3 x.

I Then, [x]⇡
R
✓ [x]⇡

P
but [x]Q 6✓ [x]⇡

P
.

I Therefore, there is a representation r of s/
⇡
P, s.t.

9r.1, r.2 : r.1Rr.2 ^ 8Q 2 R : Q 6= R �! r.1Qr.2 (17)

A visual example

”Discernability matrices”

�P

ZC CES ZES CES ES
ZCES CES ZS ZCES

ZCES CES C
ZCES ZES

CES

1. No entry is nil — hence,
⇡
P =

T

n ⇠
siz ,

⇠
col ,

⇠
edg ,

⇠
shp

o

= 1

2. In any R 2 Red(P),
⇡
shp is indispensable: it is essential

3.
⇠
col 2 Cor(P)

Discernability of representatives

I If we have to make points, try making as few as possible.

I Speeding up exhaustive pointwise processes.

A (last) motivational example U = { , , , , , }

1. Let P =

n ⇠
col ,

⇠
shp

o

.

2. Is
⇠
col indispensable in P w.r.t. 1?

2.1 Choose wisely r
P�

n ⇠
col

o

= r ⇠
shp

= { , , , }.

2.2 Consider : Then, []

⇠
P
= { }.

2.3 But: /2 [[

n ⇠
shp

o

l P]]U
because [] ⇠

shp

= { , } 6✓ { } = []⇠
P

3. Hence,
⇠
col is essential

Finding Reducts (Skowron’s exhaustive approach)

1. (Compute c := s/Q.)

2. (Compute h :

= [[R l Q]]s.)

3. Guess a suitable r :

= {c. : c 2 h/Q}.

4. For every x, y 2 U , compute
�

R : R 2 R ^ xRy

5. Corc(R)

:

=

n

R : 9x, y 2 r : x
T

R� {R}y
o

6. For every P ✓ R� Corc(R) :

Q :

= P [Corc(R)s is a Q-reduct of R w.r.t. s, i↵:

Q
Q
⌫sR and Q is not a superset of any other reduct.

Finding Reducts (A not so exhaustive approach)

1. (Compute c := s/Q.)

2. (Compute h :

= [[R l Q]]s.)

3. Guess a suitable r :

= {c. : c 2 h/Q}.
4. For every x, y 2 r, compute

�

R : R 2 R ^ xRy

5. Corc(R)

:

=

n

R : 9x, y 2 r : x
T

R� {R}y
o

6. For every P ✓ R� Corc(R) ordered by voodoo:

Q :

= P [Corc(R)s is a Q-reduct of R w.r.t. s, i↵:

Q
Q
⌫sR and Q is not a superset of any other reduct.

Conclusion

Summary

I Rough sets by residuals

I Rough sets by GC

I An algorithm for reduct construction

Prospects

I Rough sets by KAT (if not done yet)

I Rough sets by morphology (if not done yet)

I Rough sets by formal concept analysis (if not done yet)

I ... automatically create a searchable space of logic programs
with > being a program s.t. P 6` E� and ? s.t. Q ` E+ with
|⇡ as p.o. (not done yet)

you 2 dom (Thanks #ATTENTION) .

	Introduction
	Approximations
	Rough sets (without elements)
	... but with characteristic functions
	... but with subidentities

	Finding core relations and reducts
	Conclusion

