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Introduction
At-least and at-most approximations

⇤ and ⇧

Morphology : ✏·(·) and �·(·) w.r.t binary relations

KAT : [·| · and h·| · w.r.t tests

Residuals : wp and sp w.r.t p.o., preorder, ...

Approximations : [[·]]· and h|·|i· w.r.t equivalences



Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

Attributes A

A
col shp edg siz

w g b c t d s 1 3 4 S B

1 0 0 0 0 0 1 0 0 1 1 0

0 0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1 1 0

0 1 0 1 0 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0 0 1 1 0

1 0 0 1 0 0 0 1 0 0 1 0



Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

Kernel relations
⇠
col

1 0 0 0 1 0 1
0 1 1 0 0 1 0

0 1 1 0 0 1 0

0 0 0 1 0 0 0

1 0 0 0 1 0 1
0 1 1 0 0 1 0

1 0 0 0 1 0 1

Def. Kernel relation: x
⇠
fy :() f(x) = f(y)



Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

Indiscernability
⇡
R =

T

{ ˜

col , ˜

shp}

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

Def. Kernel relation: x
⇠
fy :() f(x) = f(y)

Def. Indiscernability: x
⇡
Ry :() x(

T

R)y



Information systems and kernel relations

Features F

F
U col shp edg siz

w square 4 S

b square 4 B

b square 4 S

g circle 1 S

w triangle 3 B

b diamond 4 S

w circle 1 S

⇡
R =

T

{ ˜

col , ˜

shp}

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

Goal: Find a smallest R ✓ EquR(U) that creates a finest
⇡
R!

(
⇡
R = 1 or

⇡
R ⇡ T )



Rough sets, “pointwise”

Def. Upper and Lower Approximations N.B. R :=
⇡
R

[[R]]s :

= {x 2 U : [x]R ✓ s} (1)

h|R|is :

= {x 2 U : [x]R \ s 6= ;} . (2)

Iso-/Antitony of [[ ]] and h| |i w.r.t. set and relation arguments

s ✓ t =) h|R|is ✓ h|R|it
[[R]]s ✓ [[R]]t

but P ✓ R =) h|P |is ✓ h|R|is
[[P ]]s ◆ [[R]]s

Duality (as desired)

[[R]]s = h|R|is. (3)



Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
We observe (pointwise):

x 2 [[R]]s () [x]R ✓ s

Def. Upper and Lower Approximations, again.

[[R]]s :

= hR�ṡ | {1} (4)

h|R|is :

= hR�ṡ | {0} (5)

where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.



Rough sets by characteristic functions

We represent s ✓ U by its characteristic relation ṡ : U ! 2.
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where

RR : P�Q :

= P
N#Q or R ✓ P�Q () P #R ✓ Q

LR : Q�P :

= Q#PN or R ✓ Q�P () R#P ✓ Q

with R being the biggest solution of the respective inequalities.



Example

2
ċ 0 1

1 0

1 0

0 1
0 1
0 1
1 0

1 0

U
⇠
shp

1 1 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1/ 0 0 0 0

0 0 0 1/ 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 1

2
⇠
shp�ċ 0 1

0 0

0 0

0 0

0 0

0 1

1 0

0 0

Therefore, h
⇠
shp�ċ | {1} = h

⇠
shp

N
#ċ | {1} = { } = [[

⇠
shp]] { , , }.



Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () [x]R ✓ S·U

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S ) (6)

h|R|is :

= dom (R�S� ) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C ) : c 2 c} (8)

where c = U/Q is a target classification.
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Rough sets by subidentities

We represent s ✓ U by its subidentity S = 1 \ (s⇥ s) and define
S�

:

= 1 \ S. We observe:

x 2[[R]]s () x 2 R�S ·U

Def. Upper and Lower Approximations, again.

[[R]]s :

= dom (R�S ) (6)

h|R|is :

= dom (R�S� ) (7)

Def. Approximations of classifications

[[R]]U/Q :

= {[[R]]c : c 2 c} = {dom (R�C ) : c 2 c} (8)

where c = U/Q is a target classification.



Rough sets by KAD

Preimages, domains and tests

With KAT we are given

hR| :

= min {X 2 U : R ✓ X #R } (9)

�hR| :

= max

�

X 2 U : X #R ✓ C
 

(10)

Here, C = >> (i.e. not a relative, but absolute complement).
Then, by domain laws,

hR| S = hR#S | = hR�S� | = h|R|is (11)

and, canonically,

[R|T :

= �hR|T�
= hR�T | = [[R]]t. (12)



Rough sets by GC

... are for free.

With [[·]] / h|·|i being defined by [·| · / h·| ·, and reading sets as
subidentities,

hR| s ✓ t () hR| t� ✓ s� () s ✓ �hR| t� () s ✓ [R| t. (13)

What we get for free

I
[[R]]s = h|R|is proving (3).

I
[[R]]s = s () h|R|is = s proving (17, 18) in the paper.

I ...

I a nice metaphor: “RST is just a GC, with only equivalences”.



Positive regions and refinement

How good is R to ...

I describe a classification U/Q (or s/Q)...

I compared to a relation P?

Def. Positive regions

[[R l P ]]s/Q :

=

[

c2s/Q

[[R l P ]]c :

=

[

c2s/Q

[

t2c/P

[[R]]t. (14)

[[R l P ]]s/Q is the largest set of elements x 2 s s.t. [x]R ✓ [x]P ✓ [x]Q.

Positive regions by residuals
[[R l P ]]s/Q = h (R�P )�Q | s = dom ( (R�P )�Q #S ) (15)

s.t. [[R]]s = dom ( (R�⇠
s )�S ) = dom (R�S )

but
S

[[R]](s/Q) = R�Q ·s = dom ( R�Q #S )
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R is better than P , if...

Def. Refinement

R refines P w.r.t H on s/Q, i↵

R
H
⌫
s/Q

P :() [[R l H]](s/Q) ◆ [[P l H]](s/Q) (16)

() dom ( ( (R�H )�Q )#S ) ◆ dom ( ( (P�H )�Q )#S )

Def. R is a (H-relative) reduct of P (on s/Q), if...

1. R ✓ P (hence
⇡
P ✓

⇡
R and P⌫R)

2. R is a largest subset of P s.t. R⌫P.

Red(P) is the set of all reducts of P; Cor(P)

:

=

T

Red(R).
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R is better than P , if...

Def. Refinement

R refines P w.r.t H on U , i↵

R
H
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=
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We need to make a few points

It is nice to know that R 2 Red(P),
but the definition does not help finding such R.

Def. “s.” is an arbitrarily chosen, fixed element (point) of s.

Sets and Partitions

I Sets
I characteristic relations: ṡ : U ! 2 s = hṡ| 1
I subidentities: S :

= 1 \ (s⇥ s) s = hS| U
I Classifications

I quotients s/R: s/R = {hR|x : x 2 s}
I pointwise representation: r ✓ s s/R = {[c.] : c. 2 r}



Concrete Tasks
... sadly require concrete data (points)

Goal: Construct (e�ciently) some R in Red(P)

Gedankenexperiment (Q := R� {R})
Suppose, R 2 Cor(P).

I Then, R 2 R for all R 2 Red(P).

I Hence, R
P
� Q (strictly!).

I By definition, 9x : x /2 [[(Q l P]]s ⇢ [[R l P]]s 3 x.

I Then, [x]⇡
R
✓ [x]⇡

P
but [x]Q 6✓ [x]⇡

P
.

I Therefore, there is a representation r of s/
⇡
P, s.t.

9r.1, r.2 : r.1Rr.2 ^ [r.1]⇡Q
= [r.2]⇡Q

(17)
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Concrete Tasks
... sadly require concrete data (points)

Goal: Construct (e�ciently) some R in Red(P)

Gedankenexperiment (Q := R� {R})
Suppose, R 2 Cor(P).

I Then, R 2 R for all R 2 Red(P).

I Hence, R
P
� Q (strictly!).
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R
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P
but [x]Q 6✓ [x]⇡

P
.
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⇡
P, s.t.
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A visual example

”Discernability matrices”

�P

ZC CES ZES CES ES
ZCES CES ZS ZCES

ZCES CES C
ZCES ZES

CES

1. No entry is nil — hence,
⇡
P =

T

n ⇠
siz ,

⇠
col ,

⇠
edg ,

⇠
shp

o

= 1

2. In any R 2 Red(P),
⇡
shp is indispensable: it is essential

3.
⇠
col 2 Cor(P)



Discernability of representatives

I If we have to make points, try making as few as possible.

I Speeding up exhaustive pointwise processes.

A (last) motivational example U = { , , , , , }

1. Let P =

n ⇠
col ,

⇠
shp

o

.

2. Is
⇠
col indispensable in P w.r.t. 1?

2.1 Choose wisely r
P�

n ⇠
col

o

= r ⇠
shp

= { , , , }.

2.2 Consider : Then, [ ]

⇠
P
= { }.

2.3 But: /2 [[

n ⇠
shp

o

l P]]U
because [ ] ⇠

shp

= { , } 6✓ { } = [ ]⇠
P

3. Hence,
⇠
col is essential



Finding Reducts (Skowron’s exhaustive approach)

1. (Compute c := s/Q.)

2. (Compute h :

= [[R l Q]]s.)

3. Guess a suitable r :

= {c. : c 2 h/Q}.

4. For every x, y 2 U , compute
�

R : R 2 R ^ xRy
 

5. Corc(R)

:

=

n

R : 9x, y 2 r : x
T

R� {R}y
o

6. For every P ✓ R� Corc(R) :

Q :

= P [ Corc(R)s is a Q-reduct of R w.r.t. s, i↵:

Q
Q
⌫sR and Q is not a superset of any other reduct.



Finding Reducts (A not so exhaustive approach)

1. (Compute c := s/Q.)

2. (Compute h :

= [[R l Q]]s.)

3. Guess a suitable r :

= {c. : c 2 h/Q}.
4. For every x, y 2 r, compute

�

R : R 2 R ^ xRy
 

5. Corc(R)

:

=

n

R : 9x, y 2 r : x
T

R� {R}y
o

6. For every P ✓ R� Corc(R) ordered by voodoo:

Q :

= P [ Corc(R)s is a Q-reduct of R w.r.t. s, i↵:

Q
Q
⌫sR and Q is not a superset of any other reduct.



Conclusion

Summary

I Rough sets by residuals

I Rough sets by GC

I An algorithm for reduct construction

Prospects

I Rough sets by KAT (if not done yet)

I Rough sets by morphology (if not done yet)

I Rough sets by formal concept analysis (if not done yet)

I ... automatically create a searchable space of logic programs
with > being a program s.t. P 6` E� and ? s.t. Q ` E+ with
|⇡ as p.o. (not done yet)



you 2 dom (Thanks #ATTENTION ) .
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