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NB: Proposed solutions are given in red. Equation numbers of the form ([3]:n) are taken
from [3]. Notation conventions: outfix notation such as that used in splits and juncs
provides for unambiguous parsing of relational algebra expressions. Concerning infix

operators (such as eg. composition, U) and unary ones (eg. converse) the following

conventions will be adopted for saving parentheses: (a) unary and prefix operators (eg. 9,

p) bind tighter than binary; (b) composition binds tighter than any other binary operator.
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Exercise 1. (adapted from exercise 5.1.4 in C.B. Jones’s Systematic Software Development
Using VDM [1)):

Hotel room numbers are pairs (I, ) where [ indicates a floor and r a door number in floor [.
Write the invariant on room numbers which captures the following rules valid in a particular
hotel with 25 floors, 60 rooms per floor:

1. there is no floor number 13; (guess why)

2. level 1 is an open area and has no rooms;

3. the top five floors consist of large suites and these are numbered with even integers.

Proposed solution:
Floor =N
inv [ 2 [e€26- {13}

Room = N

inv r 2 re60

Hotel Room = Floor x Room
inv (I,r) 2141 A (I >21=evenr)

Exercise 2. Check rule

(3i: R: T)=(3i:T: R) (1)



Proposed solution:

(Fi: R: T)
o { A -unitis TRUE }
(i : TRUE A R: T)
& { 3-trading ([31:174) }
(Fi: RANT)

= { A -commutativity }
(i = T N R)

& { 3-trading ([31:174) }
(3i : T: R)

(Vbya : e :b=fc: r(ca)): s(ba))

is the same as

Veya :r(ea): s(fea))

where f is a function and r, s are binary predicates.

Proposed solution: check the following steps —

(Mbya : (e : b= fec: r(ca)): s(ba))

REN { V-nesting ([3]:179) }

NMa = (Vb: (Fec:b=fc: r(ca)):

o { 3-trading ([3]:174) }

VMa = (Vb : (e :r(ca): b=fe):

= { splitting ([3]:183) }

s(b,a)))

s(b, a)))

Ma = Ve :r(ca): (Vb : b= fc: s(ba))))

= { V-one-point ([3]:175) }

Ma = (Ve :r(e,a): s(fea)))
& { V-nesting ([3]:179) }

Ve,a :r(ca): s(fea))

Exercise 3. Check carefully which rules of the quantifier calculus need to be applied to
prove that predicate

(@)
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Exercise 4. Define relations ¢ <2— A, A<>— B suchthatcRa = r(c,a)and bSa =
s(b, a). Then PF-transform (2) and (3), showing that the equivalence proved above is noth-
ing but the rule

f-RCSeRCf-S 4
which is number ([3]:67) in the tutorial. O
Proposed solution:
— PF-transform of (2) —
(Vbya : (e :b=fc: r(ca)): s(ba))
& { fisafunction; introducing relations R and S }
(Vbya : (3¢ : bfe: cRa)): bSa)
& { composition ([31:12) }
(Vbya : b(f-R)a: bSa)
& { entailment is inclusion ([3]:13) }
J-RCS
— PF-transform of (3) —
Veya :r(ea): s(fea))
& { introducing relations R and S }
(Ve,a 0 cRa: (f ¢)Sa)
< {2}
(Ve,a : cRa: e(f°-8)a)
= { entailment is inclusion ([3]:13) }

RC f°-S

Exercise 5. (This is exercise [3]:5.) Given a function B <f— A, show that img f is the
coreflexive @, of predicate pz 2 (Fa :: = = f a).
O

Proposed solution:
y(img f)x
& { def. image ([3]:29) }
y(f - f°)x
& { composition ([3]:12) }
(Fa :: yfa N af’x)
=4 { fis a function (twice) ; converse of f }

(Ha y=faNx=fa)



= { equality is transitive ; predicate logic: p = qiffp=p A ¢}
(Jay=faNnz=faANy=z)
& { equality is transitive ; predicate logic: p = qiffp=p A ¢ }
(FJa :y=x ANax=fa)
& { I-trading ([3]:174) }
(Ja:y=z:x=fa)
& { x,y are free }
(y=z) AN (a = z=fa)
ﬁ:_/

< { definition of coreflexive of predicate p }

Exercise 6. Justify the following PF calculation of ([3]:67), where the equivalence is proved
by cyclic implication (“ping-pong”):

f-RCS
= { monotonicity of composition }

fef-RCf-S

= { functions are entire ([3]:30) ; monotonicity ; transitivity }
RCfo-8

= { monotonicity of composition }
f-RCf-f°-58

= { functions are simple ([3]:30) ; monotonicity ; transitivity }
f-RCS

Exercise 7. So, for f entire and simple (< a function) rule ([3]:67) holds. Now, suppose
that rule ([3]:67) holds for f replaced by an arbitrary relation X:

X-RCSeRCX°-S (5)
Check what you can infer about this rule for the particular instantiations:

- R, S :=id, X (left-cancellation)
- S, R :=id, X° (right-cancellation)

Conclude that (5) holds if and only if X is a function.
O

Proposed solution:



— Substitution R, S :=id, X:

X idCX&idCX° X

& { natural-id; X C X always true (C is reflexive) }
TRUE & id C X°- X

54 { trivia }
1dC X°- X

& { (31:30) }

X is entire
— Substitution S, R := id, X°:

X - X°Cide X°C X°-id
=4 { natural-id; X° C X° always true }
X -X°Cuid
& { (31:30) }
X is simple
Thus:
e The previous exercise shows that, for X simple and entire (a function), (5) holds
e The current exercise shows that, if (5) holds, then X is a function,

Thus:
Conclude that (5) holds if and only if X is a function.

Exercise 8. Complete the following calculation about functions:
f<y
& { natural-id }
[-idCyg
= { shunting on f ([3]:67) }
idC f°-g
& { shunting on g ([3]:68) }
id-g° C f°
= { natural-id; converses }
g< f
SofCg < gC f. Therefore

fCogef=9&f2y9 6)

Why?



Proposed solution:
f=y
=4 { “ping-pong ([3]:14) }
fCagngcf
54 { previous calculation }

fCy

4 { previous calculation }

g f
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Exercise 9. Recalling universal properties (Galois connections)

XCRNS & XCRAXCS @)
RUSCX & RCXASCX ®)
X-RCY & XCY/R 9

resort to the indirect equality (IE) rule to calculate the following property of relation (right)
division:

U/(RUS)=(U/R)N(U/S) (10)
Moreover, resort to

Wb :aRb: cSb) <L 4

WE e
B

in converting (10) to PW-notation. Which rule of universal quantification have you calcu-
lated?

Proposed solution: calculation of (10) is as follows

XCU/(RUS)

& { (9); distribution of lower-adjoint (X-) }
X - RUX-SCU

= { (8);(9) twice }
XCU/RANXCU/S

& {0}
XCU/RNU/S

{ E }

U/ (RUS)=(U/R)N(U/S)



Literally, the PW conversion of this is, for all suitably typed a and c :
Vb :aRbVaSb: cUb)y< (Vb :aRb: cUb) AN (¥b:aSb: cUD)
This is known as the V-Splitting rule, usually written as
Vb: RvVS:U) & (Vb:R:U)AN{Nb:S:U)

regarding R, S and U as predicate expressions and assuming dummies a,b,c implicit. O

Exercise 10. Resort to
Py~ P, o R-®, C D, T (12)
in calculating the split by conjunction rule of the PO calculus of [3]:
By, Py <D, & Dy, <D, N Dy, <D, (13)
NB: you will need the following distribution property,
(NY) - T=(@-T)NW-T) (14)
easy to prove using indirect equality and GC (f = p,g = (-T)) — do it.

Proposed solution:

P

o Doy <2 D,
A { (12);(31:60) }
R-®, C (g, NDg,)- T
< {as:m }
R-®, C &, -TAR-D, C P,-T
= { (12) twice }

Pq, < Pp N Dy, - P

Exercise 11. (This is exercise [3]:10.) From the free theorem of 1 L A andfactker! =
T infer

f-RCT-SRCT-S (15)
Proposed solution: FT of 1 <~ A first:

(1<=—2A4)!

o { clause ([3]:105) }
'"Ra C Ry !

& { Ry =id (1 is a constant type) and abbreviating R4 by R }
I"RC!



For functions:
. f=1 (16)
recall (6). Then we calculate (15):
f-RCT-S
& { T=ker!}
f-RCI° 1.8
PN { shunting on ! ([3]:67) followed by (16) }
I"RC!.S§
o { shunting on! ([3]:67); T = ker! }
RCT-S

Exercise 12. (This is the second part of exercise [3]:8.) A relation S is said to satisfy func-
tional dependency g — f wherever projection f - S - ¢g° is simple, that is, iff

ker(g-S°) C ker f (17

holds [2]. Resort to ([3]:86), (17) and to the rules of both the PF-transform and the Eind-
hoven quantifier calculus to show that healthiness condition (17) imposed on mapping com-
prehension ([3]:88) is equivalent to

(Vba : bacdom S AN gb=ga: f(Sb)=f(Sa))

Proposed solution: The following rule, taken from [2]

R,S /
Given two binary relations B <—— A and two predicates 2 B A and 2 - B
(coreflexively denoted by W and D, respectively), then

- R-UCS & (Vba:opbANtpa ANbRa:bSa) (18)
0O
saves some steps in the calculation:
ker(g-S°) C ker f
& { kernel (twice) ; converses }
S-g°-g-S°Cf°-f
& { ([31:82, [3]:83) since S is assumed simple }
§5-¢°-g-65CS8°-f°.f.8
& { (18) ; abbreviating notation }
(Vb,a : baedomS N gb=ga: b(S°-f°-f-S)a)
& { (18) ; compressing notation }
(Vb,a : byaedomS N gb=ga: b(S°- f°-f-9)a)
& { see expansion of b(S° - f° - f - S)a below }
(Vba : bacdom S AN gb=ga: byacdomS N f(Sb)= f(Sa))
= { trading (31) on b,a € dom S so as to get rid of it in the body of the ¥ }
(Vb,a : baedomS AN gb=ga: f(Sb)=f(Sa))



Expansion of b(S° - f° - f - S)a:
b(S®-f°-f-Sa

& { ([3]:12) twice ; compressing notation }
By,z = bS°y A fy=fx A xSa)
& { ([3]:86) twice ; converses }

Hy,x mbedom S ANy=Sb A fy=fax ANac€domS N x=S5a)
& { quantifier calculus }

bacdom S A (3y,x : y=SbAxz=Sa: fy=fua)
& { quantifier calculus ([3]:176) }

b,a € dom S N f(Sb)= f(Sa)

Exercise 13. Calculating with Alloy sequences, cf. eg. sequence.als:

sig Seq {
segElems: Seqgldx — lone elem
}

that is, sequences are N to A simple relations (0 ¢ N):
Seg A= N——= A
inv L 2 noHoles L

where
noHoles L & L-succC T L (19)
Operators:
tail L 2 L - suce (20)
head L 2 L -img1l 21
c:L 2 ¢-1°UL - succ® (22)

1. Transform (19) to PW-notation and check which of the following sequences represent
sequence [a, b, al:

=
— w N2
==
GOSN
==
o = w| 2

> QR
> QR
> QR

Proposed solution:
(19)
= { (13113)5(131:27) }
noHoles L < (Ya,n : a L (succn): a(T - L)n)
& { succn 2 n+ 1; composition and y Tz = true }
noHoles L < (YVa,n : aL(n+1): (3d = d Ln)) (23)

Right-case, as mid-case violates (23) for n = 1 and left-case corresponds to [b, a, al.
O




2. Knowing that
img 1 Uimg succ = id 24)

show that L = head L U (tail L) - succ®.
NB: add variables to (24) beforehand just to see what it means.
Proposed solution: conversion of (24) to PW-notation:
(24)
< { adding variables ; (R U S)a < bRa V bSa }
(Vn,m = n(imgl)m V n(img succ)m < n=m)
& { substitution m := n ; composition (twice) ; converses of functions }
Vn o (Fan=1kAn=1kV(3IEk = n=succk N = succk))
= { constant functions ; predicate logic ; succk 2 k+1 }
VMn = Gk aon=0LVvE@3Ek:n=Fk+1))
54 { drop redundant quantifier }
Vn n=1vV{E@k 2 n=k+1))

(Cf. Peano algebra for the natural numbers.) Now the main part of the exercise:

L = head L U (tail L) - succ®
= { definitions of head and tail }
L=1L-imglU(L- succ)- succ®
= { associativity of composition ; distribution of lower-adjoint (L-) }
L=1L-(imglU succ- succ®)
& { (24); id-natural }
L=1L

Exercise 14. Show that @,,,gies el D oHoles holds, that is, tail L preserves invari-

ant noH oles, that is, complete:

tail
anoHoles < gzSnoHoles

& { go pointwise (tail is a function) }
(VL : noHoles L : noHoles(tail L))

& { inline (19) ; trading 091125b’ (??) ; assume quantifier }
L-succCT-L = ...



Proposed solution:

= { definition (20) twice }

L-succCT-L = (L-succ)-succ CT-(L-succ)
& { associativity of composition }

L-succCT-L = (L-succ)-succ C (T-L)-succ)
& { monotonicity of lower-adjoint (-succ) }

L-succCT-L = (L-succ)-succC (T-L)- succ)

Exercise 15. Complete the proof below so as to show that @, & DoHoles

holds:
L-succCT-L = (¢c:L)-succCT-(c:L)

We show that consequent (¢ : L) - succ C T - (¢ : L) is entailed by antecedent L - succ C
T-L:
(¢c:L)-succCT-(c:L)
< { definition (22) }
(¢-1°UL-succ®)-succCT-(c: L)
& { distribution of lower-adjoint (-succ) }
c-1°-succUL-succ® - succ C T -(c: L)
= { (8) followed by (15) }

1°-succ CT-(c: L)
L-succ®-succ CT-(c: L)

{ succ and 1 have disjoint images (there isnon € Nsuchthat 1 =n + 1) ; (24) }

L - (imglUimgsucc) CT-(c:L)

L CT-(c:L)
{ L is below anything ; (8) ; (22) }

- (img succ) C T - (¢c-1°UL - succ®)
{ distribution of (T-) ; R C X implies R C X UY (twice) }

L-imglCT-1°
L - (img succ) C T - L - succ®

{ shunting on 1° ([3]:68) ; kernel of ! ; succ is simple }

{
{
{é-imglgT-(c~1°UL~succ")
{
{

VN {T-T =T ;domain/range duality }



T
d (succ®)) €T - L - succ®

N

L-

L-

& { T is above anything ; ([3]:83) }
L-suceCT-L

=

Proposed solution: the calculation above is an improvement over that given in the

classroom — only one strengthening (implication) step is needed. O

Exercise 16. Consider the definition of a new relation operator

slice(R,S) 2 RNS/R° (25)

1. Add variables to this definition and check the following encoding of this combinator
in Alloy:

funslice[r K - A, st A— Al :K— A{
{a:rdom,b:ar|(allb :ar|binsb)}
¥

. Check the outcome of slice(R, <) for R the relation

15| Arthur

NB: The aim of the slice combinator is to convert a given relation R into a simple
relation by looking at particular (eg. maximal) elements of its range relative to some
ordering (eg. <).

. Use indirect equality to show that definition (25) is equivalent to the universal property
(Galois connection)

X Cslice(R,S) & XCR N X-R°CS (26)
. Resort to (26) in showing that

(a) slice(R, T) = R forall R.

(b) slice(R,id) = Rif R is simple.

Proposed solution:

1. PF to PW transform of (25) is as follows:

b(slice(R,S))a < bRa N b(S/R%)a
= {an }

b(slice(R,S))a < bRa A (Vb : aR°V : bSV)
& { converse }

b(slice(R,S))a < bRa A (Vb : b Ra: bSV)

In Alloy, b:a.r (resp. b’ :a.r) encodes bRa (resp. b’ Ra); moreover, b’ in s.b en-
codes b’ S b.




2. Only John concerns us, since for the other entries the relation is univocal. Let us
calculate:

b(slice(R, <))John

& {}
bR John A (VU : b =10vb=12: b<¥)
& {}
(b=10vb=12) A b<10 A b< 12
& {}
b=10
So,
N| A
. 10| John
slice(R, <) = 11| Mary
15| Arthur

3. We calculate:
slice(R,S) = RN S/R°
s {IE@ELS) }
(VX = X Cslice(R,S) < X C RNS/R°)

& {om}
(VX = X Cslice(R,S) < X CR AN X CS/R%)
& {O}

(VX = X Cslice(R,S)© X CRANX-RCS)
4. Concerning (a):
X Cslice(R,T) X CRANX-R°CT
& { everything is below T }
X Cslice(R, T)= X CR
& { B35 }
slice(R, T) =R
Concerning (b), fill in what’s missing:
X Cslice(R,id) < X CR N X-R°Cid
& { R- R° Cidsince Ris simple }
X Cslice(R,T)©XCRANX-R°Cid AN R-R°Cid

= L

&=



=
X Cslice(R, T) X CR

=1 { IE ([3]:15), R is simple assumed }
slice(R,id) = R

Exercise 17. Suppose you want to adapt slice so as to work over lists of pairs:
slice i [(b,a)] -> ((b,b) -> Bool) -> [(b,a)]

Calculate the FT of slice.

Exercise 18. Consider the definition which follows,
f<g2 fC(L)g 27
where < is a partial order.

— Convert this definition to pointwise notation and check its meaning.
— Show that f < g means the same as f( < <——4id )g

a

Exercise 19. Consider the following requirements for a N to N function:

reindex S

Givenaset S CN, N N is the least function, in the sense of (27),
which maps all numbers in S to an initial segment of N.

Consider the following specification of reindex S (universal property): for all k, S
k monotone A k- ®g injective < reindex S <k (28)

1. Spell out “k monotone” and “k - g injective” using relational algebra notation.

2. From (28) show that, for all S, function reindex S is a subrelation of the < ordering
on N, that is, for all n € N, (reindex S)n < n.

Using an informal drawing, sketch function reindex{2, 3, 6}.

4. Show that reindex O = reindex{i} = 1.

hed

Nesting:

Va,b : RANS:T)y=Na:R: ¥b:S5:1T)) (29)
(Fa,b: RANS:T)=(Fa: R: 3b:S5:1T)) (30)



Trading:

NMi:RANS:T)=Vi:R: S=T) 31
Fi: RAS: T)={(3i:R: SAT) (32)
Splitting:
Vj:R: NVk:S:T)=NVk:3j:R:85:T) (33)
(Fj:R: 3k :S:T)=3k:3j:R:95:T) (34)
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