UCE: MFES-09/10

(http://wiki.di.uminho.pt/twiki/bin/view/Education/MFES)

CSI Module — Exercise list nr.1

M.Sc. Degree in Informatics and Informatics Engineering University of Minho

NB: Proposed solutions are given in red. Equation numbers of the form ([3]:n) are taken from [3]. **Notation conventions:** outfix notation such as that used in *splits* and *juncs* provides for unambiguous parsing of relational algebra expressions. Concerning infix operators (such as eg. composition, \cup) and unary ones (eg. converse) the following conventions will be adopted for saving parentheses: (a) unary and prefix operators (eg. δ , ρ) bind tighter than binary; (b) composition binds tighter than any other binary operator.

1 2009.11.26

Exercise 1. (adapted from exercise 5.1.4 in C.B. Jones's Systematic Software Development Using VDM [1]):

Hotel room numbers are pairs (l,r) where l indicates a floor and r a door number in floor l. Write the invariant on room numbers which captures the following rules valid in a particular hotel with 25 floors, 60 rooms per floor:

- 1. there is no floor number 13; (guess why)
- 2. level 1 is an open area and has no rooms;
- 3. the top five floors consist of large suites and these are numbered with even integers.

Proposed solution:

$$\begin{split} Floor &= \mathbb{N} \\ \textbf{inv} \ l \triangleq l \in 26 - \{13\} \\ Room &= \mathbb{N} \\ \textbf{inv} \ r \triangleq r \in 60 \\ \\ HotelRoom &= Floor \times Room \\ \textbf{inv} \ (l,r) \triangleq l \neq 1 \ \land \ (l > 21 \Rightarrow even \ r) \end{split}$$

Exercise 2. Check rule

$$\langle \exists i : R : T \rangle = \langle \exists i : T : R \rangle \tag{1}$$

Proposed solution:

$$\langle \exists \, i \, : \, R : \, T \rangle \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \land \text{-unit is True} \, \right\} \\ \langle \exists \, i \, : \, \text{True} \, \land \, R : \, T \rangle \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \exists \text{-trading ([3]:174)} \, \right\} \\ \langle \exists \, i \, :: \, R \, \land \, T \rangle \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \land \text{-commutativity} \, \right\} \\ \langle \exists \, i \, :: \, T \, \land \, R \rangle \\ \Leftrightarrow \qquad \left\{ \begin{array}{l} \exists \text{-trading ([3]:174)} \, \right\} \\ \langle \exists \, i \, : \, T : \, R \rangle \\ \end{array}$$

Exercise 3. Check **carefully** which rules of the quantifier calculus need to be applied to prove that predicate

$$\langle \forall b, a : \langle \exists c : b = f c : r(c, a) \rangle : s(b, a) \rangle \tag{2}$$

is the same as

$$\langle \forall c, a : r(c, a) : s(f c, a) \rangle \tag{3}$$

where f is a function and r, s are binary predicates.

Proposed solution: check the following steps —

Exercise 4. Define relations $C \stackrel{R}{\longleftarrow} A$, $A \stackrel{S}{\longleftarrow} B$ such that cRa = r(c,a) and bSa = s(b,a). Then PF-transform (2) and (3), showing that the equivalence proved above is nothing but the rule

$$f \cdot R \subseteq S \Leftrightarrow R \subseteq f^{\circ} \cdot S \tag{4}$$

which is number ([3]:67) in the tutorial. \Box

Proposed solution:

- PF-transform of (2) —

```
\begin{split} & \langle \forall \ b, a \ : \ \langle \exists \ c \ : \ b = f \ c : \ r(c,a) \rangle : \ s(b,a) \rangle \\ \Leftrightarrow & \left\{ \ f \ \text{is a function; introducing relations} \ R \ \text{and} \ S \ \right\} \\ & \left\langle \forall \ b, a \ : \ \langle \exists \ c \ : \ b \ f \ c : \ cRa \rangle \rangle : \ bSa \rangle \\ \Leftrightarrow & \left\{ \ \text{composition} \ ([3]:12) \ \right\} \\ & \left\langle \forall \ b, a \ : \ b(f \cdot R)a : \ bSa \right\rangle \\ \Leftrightarrow & \left\{ \ \text{entailment is inclusion} \ ([3]:13) \ \right\} \\ & f \cdot R \subseteq S \end{split}
```

- PF-transform of (3) —

```
\begin{split} & \langle \forall \ c, a \ : \ r(c,a) : \ s(f \ c,a) \rangle \\ \Leftrightarrow & \quad \big\{ \ \text{ introducing relations } R \text{ and } S \ \big\} \\ & \quad \langle \forall \ c, a \ : \ cRa : \ (f \ c)Sa \rangle \\ \Leftrightarrow & \quad \big\{ \ ([3]:27) \ \big\} \\ & \quad \langle \forall \ c, a \ : \ cRa : \ c(f^{\circ} \cdot S)a \rangle \\ \Leftrightarrow & \quad \big\{ \ \text{ entailment is inclusion ([3]:13) } \big\} \\ & \quad R \subseteq f^{\circ} \cdot S \end{split}
```

Exercise 5. (This is exercise [3]:5.) Given a function $B \xleftarrow{f} A$, show that $img\ f$ is the coreflexive Φ_p of predicate $p\ x \triangleq \langle \exists\ a\ ::\ x=f\ a \rangle$.

Proposed solution:

```
y(img f)x
\Leftrightarrow \qquad \{ \text{ def. image ([3]:29) } \}
y(f \cdot f^{\circ})x
\Leftrightarrow \qquad \{ \text{ composition ([3]:12) } \}
\langle \exists a :: yfa \land af^{\circ}x \rangle
\Leftrightarrow \qquad \{ f \text{ is a function (twice) ; converse of } f \}
\langle \exists a :: y = fa \land x = fa \rangle
```

```
 \langle \exists \ a \ :: \ y = fa \ \land \ x = f \ a \ \land \ y = x \rangle 
 \Leftrightarrow \qquad \{ \ \text{ equality is transitive ; predicate logic: } p \Rightarrow q \text{ iff } p = p \ \land \ q \ \} 
 \langle \exists \ a \ :: \ y = x \ \land \ x = f \ a \rangle 
 \Leftrightarrow \qquad \{ \ \exists \text{-trading ([3]:174)} \ \} 
 \langle \exists \ a \ :: \ y = x : \ x = f \ a \rangle 
 \Leftrightarrow \qquad \{ \ x, y \text{ are free } \} 
 (y = x) \ \land \ \underbrace{\langle \exists \ a \ :: \ x = f \ a \rangle}_{p} 
 \Leftrightarrow \qquad \{ \ \text{definition of coreflexive of predicate } p \ \} 
 \varPhi_{p}
```

{ equality is transitive; predicate logic: $p \Rightarrow q$ iff $p = p \land q$ }

Exercise 6. Justify the following PF calculation of ([3]:67), where the equivalence is proved by cyclic implication ("ping-pong"):

$$\begin{split} f \cdot R &\subseteq S \\ \Rightarrow &\quad \{ \text{ monotonicity of composition } \} \\ f^{\circ} \cdot f \cdot R &\subseteq f^{\circ} \cdot S \\ \Rightarrow &\quad \{ \text{ functions are entire ([3]:30) ; monotonicity ; transitivity } \} \\ R &\subseteq f^{\circ} \cdot S \\ \Rightarrow &\quad \{ \text{ monotonicity of composition } \} \\ f \cdot R &\subseteq f \cdot f^{\circ} \cdot S \\ \Rightarrow &\quad \{ \text{ functions are simple ([3]:30) ; monotonicity ; transitivity } \} \\ f \cdot R &\subseteq S \end{split}$$

Exercise 7. So, for f entire and simple (\Leftrightarrow a function) rule ([3]:67) holds. Now, suppose that rule ([3]:67) holds for f replaced by an arbitrary relation X:

$$X \cdot R \subseteq S \Leftrightarrow R \subseteq X^{\circ} \cdot S \tag{5}$$

Check what you can infer about this rule for the particular instantiations:

-
$$R, S := id, X$$
 (left-cancellation)
- $S, R := id, X^{\circ}$ (right-cancellation)

Conclude that (5) holds **if and only if** X is a function.

- Substitution R, S := id, X:

$$\begin{array}{ll} X \cdot id \subseteq X \Leftrightarrow id \subseteq X^{\circ} \cdot X \\ \Leftrightarrow & \left\{ \begin{array}{l} \text{natural-} id; X \subseteq X \text{ always true } (\subseteq \text{ is reflexive}) \end{array} \right\} \\ \text{TRUE} \Leftrightarrow id \subseteq X^{\circ} \cdot X \\ \Leftrightarrow & \left\{ \begin{array}{l} \text{trivia} \end{array} \right\} \\ id \subseteq X^{\circ} \cdot X \\ \Leftrightarrow & \left\{ \begin{array}{l} ([3]:30) \end{array} \right\} \\ X \text{ is entire} \end{array}$$

- Substitution $S, R := id, X^{\circ}$:

$$\begin{array}{ll} X\cdot X^\circ\subseteq id\Leftrightarrow X^\circ\subseteq X^\circ\cdot id\\ \Leftrightarrow & \{ \ \ \text{natural-}id; X^\circ\subseteq X^\circ \ \text{always true} \ \}\\ X\cdot X^\circ\subseteq id\\ \Leftrightarrow & \{ \ \ ([3]:30) \ \}\\ X \ \text{is simple} \end{array}$$

Thus:

- The previous exercise shows that, for X simple and entire (a function), (5) holds
- The current exercise shows that, if (5) holds, then X is a function,

Thus:

Conclude that (5) holds if and only if X is a function.

Exercise 8. Complete the following calculation about functions:

$$\begin{split} f &\subseteq g \\ \Leftrightarrow &\quad \{ \text{ natural-} id \ \} \\ f &\cdot id \subseteq g \\ \Leftrightarrow &\quad \{ \text{ shunting on } f \text{ ([3]:67) } \} \\ id &\subseteq f^{\circ} \cdot g \\ \Leftrightarrow &\quad \{ \text{ shunting on } g \text{ ([3]:68) } \} \\ id &\cdot g^{\circ} \subseteq f^{\circ} \\ \Leftrightarrow &\quad \{ \text{ natural-} id; \text{ converses } \} \\ g &\subseteq f \end{split}$$

So $f \subseteq g \Leftrightarrow g \subseteq f$. Therefore

$$f \subseteq g \Leftrightarrow f = g \Leftrightarrow f \supseteq g \tag{6}$$

Why?

Proposed solution:

$$f = g$$

$$\Leftrightarrow \qquad \left\{ \text{ "ping-pong ([3]:14) } \right\}$$

$$f \subseteq g \ \land \ g \subseteq f$$

$$\Leftrightarrow \qquad \left\{ \text{ previous calculation } \right\}$$

$$f \subseteq g$$

$$\Leftrightarrow \qquad \left\{ \text{ previous calculation } \right\}$$

$$g \subseteq f$$

2 2010.02.11

Exercise 9. Recalling universal properties (Galois connections)

$$X \subseteq R \cap S \iff X \subseteq R \land X \subseteq S \tag{7}$$

$$R \cup S \subseteq X \Leftrightarrow R \subseteq X \land S \subseteq X$$
 (8)

$$X \cdot R \subseteq Y \Leftrightarrow X \subseteq Y / R$$
 (9)

resort to the *indirect equality* (IE) rule to calculate the following property of relation (right) division:

$$U/(R \cup S) = (U/R) \cap (U/S) \tag{10}$$

Moreover, resort to

$$\langle \forall b : a R b : c S b \rangle \quad C \stackrel{S/R}{\longleftarrow} A$$

$$S \supseteq \bigwedge_{R}$$

$$B$$
(11)

in converting (10) to PW-notation. Which rule of universal quantification have you calculated?

Proposed solution: calculation of (10) is as follows

Literally, the PW conversion of this is, for all suitably typed a and c:

$$\langle \forall \, b \, : \, a \, R \, b \vee a \, S \, b : \, c \, U \, b \rangle \Leftrightarrow \langle \forall \, b \, : \, a \, R \, b : \, c \, U \, b \rangle \, \wedge \, \langle \forall \, b \, : \, a \, S \, b : \, c \, U \, b \rangle$$

This is known as the \forall -Splitting rule, usually written as

$$\langle \forall b : R \lor S : U \rangle \iff \langle \forall b : R : U \rangle \land \langle \forall b : S : U \rangle$$

regarding R, S and U as predicate expressions and assuming dummies a,b,c implicit. \square

Exercise 10. Resort to

$$\Phi_q \stackrel{R}{\longleftarrow} \Phi_p \quad \Leftrightarrow \quad R \cdot \Phi_p \subseteq \Phi_q \cdot \top$$
(12)

in calculating the **split by conjunction** rule of the PO calculus of [3]:

$$\Phi_{q_1} \cdot \Phi_{q_2} \stackrel{R}{\longleftarrow} \Phi_p \quad \Leftrightarrow \quad \Phi_{q_1} \stackrel{R}{\longleftarrow} \Phi_p \quad \wedge \quad \Phi_{q_2} \stackrel{R}{\longleftarrow} \Phi_p \tag{13}$$

NB: you will need the following distribution property,

$$(\Phi \cap \Psi) \cdot \top = (\Phi \cdot \top) \cap (\Psi \cdot \top) \tag{14}$$

easy to prove using indirect equality and GC $(f = \rho, g = (\cdot \top))$ — do it.

Proposed solution:

$$\begin{split} & \varPhi_{q_{1}} \cdot \varPhi_{q_{2}} \xleftarrow{R} \varPhi_{p} \\ \Leftrightarrow & \left\{ \begin{array}{l} (12) \, ; \, ([3] : 60) \end{array} \right\} \\ & R \cdot \varPhi_{p} \subseteq \left(\varPhi_{q_{1}} \cap \varPhi_{q_{2}} \right) \cdot \top \\ \Leftrightarrow & \left\{ \begin{array}{l} (14) \, ; \, (7) \end{array} \right\} \\ & R \cdot \varPhi_{p} \subseteq \varPhi_{q_{1}} \cdot \top \ \land \ R \cdot \varPhi_{p} \subseteq \varPhi_{q_{2}} \cdot \top \\ \Leftrightarrow & \left\{ \begin{array}{l} (12) \, \text{twice} \end{array} \right\} \\ & \varPhi_{q_{1}} \xleftarrow{R} \varPhi_{p} \ \land \ \varPhi_{q_{2}} \xleftarrow{R} \varPhi_{p} \end{split}$$

Exercise 11. (This is exercise [3]:10.) From the free theorem of $1 \leftarrow A$ and fact ker! = T infer

$$f \cdot R \subseteq \top \cdot S \Leftrightarrow R \subseteq \top \cdot S \tag{15}$$

Proposed solution: FT of $1 \stackrel{!}{\longleftarrow} A$ first:

$$\begin{array}{ll} !(\ 1 \longleftarrow A\)! \\ \Leftrightarrow & \left\{ \ \text{clause} \left([3] \text{:} 105 \right) \ \right\} \\ & \left. ! \cdot R_A \subseteq R_1 \cdot ! \right. \\ \Leftrightarrow & \left\{ \ R_1 = id \ (1 \text{ is a constant type) and abbreviating } R_A \text{ by } R \ \right\} \\ & \left. ! \cdot R \subseteq ! \end{array}$$

For functions:

$$! \cdot f = ! \tag{16}$$

recall (6). Then we calculate (15):

$$\begin{split} f \cdot R &\subseteq \top \cdot S \\ \Leftrightarrow & \left\{ \begin{array}{l} \top = ker! \end{array} \right\} \\ f \cdot R &\subseteq !^{\circ} \cdot ! \cdot S \\ \Leftrightarrow & \left\{ \text{ shunting on } ! \ ([3]:67) \text{ followed by (16)} \end{array} \right\} \\ ! \cdot R &\subseteq ! \cdot S \\ \Leftrightarrow & \left\{ \text{ shunting on } ! \ ([3]:67) \text{ ; } \top = ker! \end{array} \right\} \\ R &\subseteq \top \cdot S \end{split}$$

Exercise 12. (This is the second part of exercise [3]:8.) A relation S is said to satisfy functional dependency $g \to f$ wherever projection $f \cdot S \cdot g^{\circ}$ is simple, that is, iff

$$ker(g \cdot S^{\circ}) \subseteq ker f$$
 (17)

holds [2]. Resort to ([3]:86), (17) and to the rules of both the PF-transform and the Eindhoven quantifier calculus to show that healthiness condition (17) imposed on mapping comprehension ([3]:88) is equivalent to

$$\langle \forall b, a : b, a \in dom \ S \land g \ b = g \ a : f(S \ b) = f(S \ a) \rangle$$

Proposed solution: The following rule, taken from [2]

Given two binary relations $B \stackrel{R,S}{\longleftarrow} A$ and two predicates $2 \stackrel{\psi}{\longleftarrow} A$ and $2 \stackrel{\phi}{\longleftarrow} B$ (coreflexively denoted by Ψ and Φ , respectively), then

$$\Phi \cdot R \cdot \Psi \subseteq S \iff \langle \forall b, a : \phi b \land \psi a \land b R a : b S a \rangle$$
 (18)

saves some steps in the calculation:

$$ker(g \cdot S^{\circ}) \subseteq ker f$$

$$\Leftrightarrow \qquad \big\{ \text{ kernel (twice) ; converses } \big\}$$

$$S \cdot g^{\circ} \cdot g \cdot S^{\circ} \subseteq f^{\circ} \cdot f$$

$$\Leftrightarrow \qquad \big\{ ([3]:82, [3]:83) \text{ since } S \text{ is assumed simple } \big\}$$

$$\delta S \cdot g^{\circ} \cdot g \cdot \delta S \subseteq S^{\circ} \cdot f^{\circ} \cdot f \cdot S$$

$$\Leftrightarrow \qquad \big\{ (18) \text{ ; abbreviating notation } \big\}$$

$$\langle \forall b, a : b, a \in dom \ S \land g \ b = g \ a : b(S^{\circ} \cdot f^{\circ} \cdot f \cdot S)a \rangle$$

$$\Leftrightarrow \qquad \big\{ (18) \text{ ; compressing notation } \big\}$$

$$\langle \forall b, a : b, a \in dom \ S \land g \ b = g \ a : b(S^{\circ} \cdot f^{\circ} \cdot f \cdot S)a \rangle$$

$$\Leftrightarrow \qquad \big\{ \text{ see expansion of } b(S^{\circ} \cdot f^{\circ} \cdot f \cdot S)a \text{ below } \big\}$$

$$\langle \forall b, a : b, a \in dom \ S \land g \ b = g \ a : b, a \in dom \ S \land f(S \ b) = f(S \ a) \rangle$$

$$\Leftrightarrow \qquad \big\{ \text{ trading (31) on } b, a \in dom \ S \land g \ b = g \ a : f(S \ b) = f(S \ a) \rangle$$

```
Expansion of b(S^{\circ} \cdot f^{\circ} \cdot f \cdot S)a: b(S^{\circ} \cdot f^{\circ} \cdot f \cdot S)a \Leftrightarrow \{ ([3]:12) \text{ twice } ; \text{ compressing notation } \} \langle \exists \, y, x \, :: \, bS^{\circ}y \, \wedge \, f \, y = f \, x \, \wedge \, xSa \rangle \Leftrightarrow \{ ([3]:86) \text{ twice } ; \text{ converses } \} \langle \exists \, y, x \, :: \, b \in dom \, S \, \wedge \, y = S \, b \, \wedge \, f \, y = f \, x \, \wedge \, a \in dom \, S \, \wedge \, x = S \, a \rangle \Leftrightarrow \{ \text{ quantifier calculus } \} b, a \in dom \, S \, \wedge \, \langle \exists \, y, x \, : \, y = S \, b \, \wedge \, x = S \, a : \, f \, y = f \, x \rangle \Leftrightarrow \{ \text{ quantifier calculus } ([3]:176) \} b, a \in dom \, S \, \wedge \, f(S \, b) = f(S \, a)
```

Exercise 13. Calculating with Alloy sequences, cf. eg. sequence.als:

```
 \begin{array}{l} \textbf{sig Seq } \{ \\ \textbf{seqElems: SeqIdx} \rightarrow \textbf{lone} \ \textbf{elem} \\ \} \end{array}
```

that is, sequences are \mathbb{N} to A simple relations $(0 \notin \mathbb{N})$:

$$Seq A = \mathbb{N} \longrightarrow A$$

inv $L \triangle noHoles L$

where

$$noHoles\ L \triangleq L \cdot succ \subseteq \top \cdot L$$
 (19)

Operators:

$$tail \ L \triangleq L \cdot succ$$
 (20)

$$head L \triangleq L \cdot img \underline{1}$$
 (21)

$$c: L \triangleq \underline{c} \cdot \underline{1}^{\circ} \cup L \cdot succ^{\circ}$$
 (22)

1. Transform (19) to PW-notation and check which of the following sequences represent sequence [a, b, a]:

Proposed solution:

(19)

$$\Leftrightarrow \quad \{ \ ([3]:13); ([3]:27) \ \}$$

$$noHoles \ L \Leftrightarrow \langle \forall \ a, n : a \ L \ (succ \ n) : a(\top \cdot L)n \rangle$$

$$\Leftrightarrow \quad \{ \ succ \ n \triangleq n+1; \text{ composition and } y \top x = true \ \}$$

$$noHoles \ L \Leftrightarrow \langle \forall \ a, n : a \ L \ (n+1) : \langle \exists \ a' :: a' \ L \ n \rangle \rangle$$
(23)

Right-case, as mid-case violates (23) for n=1 and left-case corresponds to [b,a,a].

2. Knowing that

$$img \ \underline{1} \cup img \ succ = id$$
 (24)

show that $L = head \ L \cup (tail \ L) \cdot succ^{\circ}$.

NB: add variables to (24) beforehand just to see what it means.

Proposed solution: conversion of (24) to PW-notation:

```
(24) \Leftrightarrow \qquad \{ \text{ adding variables } ; b(R \cup S)a \Leftrightarrow bRa \vee bSa \} 
\langle \forall \ n, m \ :: \ n(img \ \underline{1})m \vee n(img \ succ)m \Leftrightarrow n = m \rangle
\Leftrightarrow \qquad \{ \text{ substitution } m := n \text{ ; composition (twice) } ; \text{ converses of functions } \} 
\langle \forall \ n \ :: \ \langle \exists \ a \ :: \ n = \ \underline{1} \ k \wedge n = \ \underline{1} \ k \rangle \vee \langle \exists \ k \ :: \ n = succ \ k \wedge = succ \ k \rangle \rangle
\Leftrightarrow \qquad \{ \text{ constant functions } ; \text{ predicate logic } ; succ \ k \triangleq k + 1 \} 
\langle \forall \ n \ :: \ \langle \exists \ k \ :: \ n = 1 \rangle \vee \langle \exists \ k \ :: \ n = k + 1 \rangle \rangle
\Leftrightarrow \qquad \{ \text{ drop redundant quantifier } \} 
\langle \forall \ n \ :: \ n = 1 \vee \langle \exists \ k \ :: \ n = k + 1 \rangle \rangle
```

(Cf. Peano algebra for the natural numbers.) Now the main part of the exercise:

```
\begin{split} L &= head \ L \cup (tail \ L) \cdot succ^{\circ} \\ \Leftrightarrow &\qquad \big\{ \ \ \text{definitions of } head \ \text{and } tail \ \big\} \\ L &= L \cdot img \ \underline{1} \cup (L \cdot succ) \cdot succ^{\circ} \\ \Leftrightarrow &\qquad \big\{ \ \ \text{associativity of composition } ; \ \text{distribution of lower-adjoint } (L \cdot) \ \big\} \\ L &= L \cdot (img \ \underline{1} \cup succ \cdot succ^{\circ}) \\ \Leftrightarrow &\qquad \big\{ \ \ (24) \ ; \ id\text{-natural} \ \big\} \\ L &= L \end{split}
```

Exercise 14. Show that $\Phi_{noHoles} \stackrel{tail}{\longleftarrow} \Phi_{noHoles}$ holds, that is, $tail\ L$ preserves invariant noHoles, that is, complete:

```
\begin{split} & \varPhi_{noHoles} \lessdot \stackrel{tail}{\longleftarrow} \varPhi_{noHoles} \\ \Leftrightarrow & \left\{ \text{ go pointwise } (tail \text{ is a function) } \right\} \\ & \langle \forall \ L : \ noHoles \ L : \ noHoles(tail \ L) \rangle \\ \Leftrightarrow & \left\{ \text{ inline } (19) \text{ ; trading } 091125 \text{b' } (\ref{eq:tail L}) \right\} \\ & L \cdot succ \subseteq \top \cdot L \Rightarrow \ldots \\ & \ldots & \left\{ \ldots \right\} \end{split}
```

Proposed solution:

```
\Leftrightarrow \qquad \{ \ \text{definition (20) twice} \ \} \\ L \cdot succ \subseteq \top \cdot L \ \Rightarrow \ (L \cdot succ) \cdot succ \subseteq \top \cdot (L \cdot succ) \\ \Leftrightarrow \qquad \{ \ \text{associativity of composition} \ \} \\ L \cdot succ \subseteq \top \cdot L \ \Rightarrow \ (L \cdot succ) \cdot succ \subseteq (\top \cdot L) \cdot succ) \\ \Leftrightarrow \qquad \{ \ \text{monotonicity of lower-adjoint } (\cdot succ) \ \} \\ L \cdot succ \subseteq \top \cdot L \ \Rightarrow \ (L \cdot succ) \cdot succ \subseteq (\top \cdot L) \cdot succ) \\ \end{cases}
```

Exercise 15. Complete the proof below so as to show that $\Phi_{noHoles} \stackrel{(c:)}{\leftarrow} \Phi_{noHoles}$ holds:

$$L \cdot succ \subseteq \top \cdot L \ \Rightarrow \ (c:L) \cdot succ \subseteq \top \cdot (c:L)$$

We show that consequent $(c:L) \cdot succ \subseteq \top \cdot (c:L)$ is entailed by antecedent $L \cdot succ \subseteq \top \cdot L$:

```
(c:L) \cdot succ \subseteq \top \cdot (c:L)
\Leftrightarrow { definition (22) }
         (c \cdot 1^{\circ} \cup L \cdot succ^{\circ}) \cdot succ \subseteq \top \cdot (c : L)
                 \{ distribution of lower-adjoint (\cdot succ) \}
        \underline{c} \cdot \underline{1}^{\circ} \cdot succ \cup L \cdot succ^{\circ} \cdot succ \subseteq \top \cdot (c : L)
                      { (8) followed by (15) }
        \begin{cases} \underline{1}^{\circ} \cdot succ \subseteq \top \cdot (c:L) \\ L \cdot succ^{\circ} \cdot succ \subseteq \top \cdot (c:L) \end{cases}
                      \{ succ \text{ and } \underline{1} \text{ have disjoint images (there is no } n \in \mathbb{N} \text{ such that } 1 = n + 1) ; (24) \}
         \left\{ \begin{aligned} &\bot \subseteq \top \cdot (c:L) \\ &L \cdot (\mathit{img}\, \underline{1} \cup \mathit{img}\, \mathit{succ}) \subseteq \top \cdot (c:L) \end{aligned} \right.
\Leftrightarrow { \bot is below anything; (8); (22) }
         \left\{ \begin{array}{l} L \cdot \mathit{img}\,\underline{1} \subseteq \top \cdot (\underline{c} \cdot \underline{1}^\circ \cup L \cdot succ^\circ) \\ L \cdot (\mathit{img}\,succ) \subseteq \top \cdot (\underline{c} \cdot \underline{1}^\circ \cup L \cdot succ^\circ) \end{array} \right.
                      \big\{ \text{ distribution of } (\top \cdot) \text{ ; } R \subseteq X \text{ implies } R \subseteq X \cup Y \text{ (twice) } \big\}
         \left\{ \begin{aligned} L \cdot \operatorname{img} \underline{1} &\subseteq \top \cdot \underline{1}^{\circ} \\ L \cdot (\operatorname{img} \operatorname{succ}) &\subseteq \top \cdot L \cdot \operatorname{succ}^{\circ} \end{aligned} \right.
                 \{ \text{ shunting on } \underline{1}^{\circ} ([3]:68) ; \text{ kernel of } ! ; succ \text{ is simple } \}
         \begin{cases} L \cdot \underline{1} \cdot \subseteq \top \cdot \top \\ L \cdot (\rho \, succ) \subseteq \top \cdot L \cdot succ^{\circ} \end{cases}
              \{ \top \cdot \top = \top ; \text{domain / range duality } \}
```

```
\begin{cases} L \cdot \underline{1} \cdot \subseteq \top \\ L \cdot (\delta (succ^{\circ})) \subseteq \top \cdot L \cdot succ^{\circ} \end{cases}
\Leftrightarrow \qquad \{ \top \text{ is above anything }; ([3]:83) \}
L \cdot succ \subseteq \top \cdot L
```

Proposed solution: the calculation above is an improvement over that given in the classroom — only one strengthening (implication) step is needed. \Box

Exercise 16. Consider the definition of a new relation operator

$$slice(R, S) \triangleq R \cap S/R^{\circ}$$
 (25)

1. Add variables to this definition and check the following encoding of this combinator in Alloy:

2. Check the outcome of $slice(R, \leq)$ for R the relation

$$\begin{array}{c|c} \mathbb{N} & A \\ \hline 10 & John \\ 11 & Mary \\ 12 & John \\ 15 & Arthur \\ \end{array}$$

NB: The aim of the *slice* combinator is to convert a given relation R into a simple relation by looking at particular (eg. maximal) elements of its range relative to some ordering (eg. \leq).

3. Use indirect equality to show that definition (25) is equivalent to the universal property (Galois connection)

$$X \subseteq slice(R, S) \Leftrightarrow X \subseteq R \land X \cdot R^{\circ} \subseteq S$$
 (26)

- 4. Resort to (26) in showing that
 - (a) $slice(R, \top) = R$ for all R.
 - (b) slice(R, id) = R if R is simple.

Proposed solution:

1. PF to PW transform of (25) is as follows:

$$b(slice(R,S))a \Leftrightarrow b R a \wedge b(S/R^{\circ})a$$

$$\Leftrightarrow \qquad \{ \ (11) \ \}$$

$$b(slice(R,S))a \Leftrightarrow b R a \wedge \langle \forall \ b' : a \ R^{\circ} \ b' : b \ S \ b' \rangle$$

$$\Leftrightarrow \qquad \{ \ \text{converse} \ \}$$

$$b(slice(R,S))a \Leftrightarrow b R a \wedge \langle \forall \ b' : b' \ R \ a : b \ S \ b' \rangle$$

In Alloy, b:a.r (resp. b' :a.r) encodes bRa (resp. b'Ra); moreover, b' in s.b encodes b'S b.

2. Only *John* concerns us, since for the other entries the relation is univocal. Let us calculate:

$$b(slice(R, \leq)) John$$

$$\Leftrightarrow \qquad \{ \ \}$$

$$b \ R \ John \ \land \ \langle \forall \ b' \ : \ b' = 10 \lor b = 12 : \ b \leq b' \rangle$$

$$\Leftrightarrow \qquad \{ \ \}$$

$$(b = 10 \lor b = 12) \ \land \ b \leq 10 \ \land \ b \leq 12$$

$$\Leftrightarrow \qquad \{ \ \}$$

$$b = 10$$

So,

$$slice(R, \leq) \ = \ \begin{array}{c|c} \mathbb{N} & A \\ \hline 10 & John \\ 11 & Mary \\ 15 & Arthur \end{array}$$

3. We calculate:

$$slice(R,S) = R \cap S/R^{\circ}$$

$$\Leftrightarrow \qquad \{ \text{ IE ([3]:15) } \}$$

$$\langle \forall X :: X \subseteq slice(R,S) \Leftrightarrow X \subseteq R \cap S/R^{\circ} \rangle$$

$$\Leftrightarrow \qquad \{ \text{ (7) } \}$$

$$\langle \forall X :: X \subseteq slice(R,S) \Leftrightarrow X \subseteq R \wedge X \subseteq S/R^{\circ} \rangle$$

$$\Leftrightarrow \qquad \{ \text{ (9) } \}$$

$$\langle \forall X :: X \subseteq slice(R,S) \Leftrightarrow X \subseteq R \wedge X \cdot R^{\circ} \subseteq S \rangle$$

4. Concerning (a):

$$X \subseteq slice(R, \top) \Leftrightarrow X \subseteq R \ \land \ X \cdot R^{\circ} \subseteq \top$$

$$\Leftrightarrow \qquad \{ \text{ everything is below } \top \}$$

$$X \subseteq slice(R, \top) \Leftrightarrow X \subseteq R$$

$$\Leftrightarrow \qquad \{ \text{ IE ([3]:15) } \}$$

$$slice(R, \top) = R$$

Concerning (b), fill in what's missing:

$$\Leftrightarrow \qquad \{ \\ X \subseteq slice(R, \top) \Leftrightarrow X \subseteq R \ \land \ R \cdot R^{\circ} \subseteq id \\ \Leftrightarrow \qquad \{ \\ X \subseteq slice(R, \top) \Leftrightarrow X \subseteq R \\ \Leftrightarrow \qquad \{ \ \text{IE ([3]:15), R is simple assumed } \} \\ slice(R, id) = R \\ \end{cases}$$

Exercise 17. Suppose you want to adapt slice so as to work over lists of pairs:

slice ::
$$[(b,a)] \rightarrow ((b,b) \rightarrow Bool) \rightarrow [(b,a)]$$

Calculate the FT of slice.

Exercise 18. Consider the definition which follows,

$$f \stackrel{\cdot}{\leq} g \triangleq f \subseteq (\leq) \cdot g \tag{27}$$

where \leq is a partial order.

- Convert this definition to pointwise notation and check its meaning.
- Show that $f \leq g$ means the same as $f(\leq \leftarrow id)g$

Exercise 19. Consider the following requirements for a \mathbb{N} to \mathbb{N} function:

Given a set $S \subseteq \mathbb{N}$, $\mathbb{N} \xrightarrow{reindex S} \mathbb{N}$ is the least function, in the sense of (27), which maps all numbers in S to an initial segment of \mathbb{N} .

Consider the following specification of reindex S (universal property): for all k, S

$$k \text{ monotone } \wedge k \cdot \Phi_S \text{ injective} \Leftrightarrow reindex \ S \stackrel{\cdot}{\leq} k$$
 (28)

- 1. Spell out "k monotone" and " $k\cdot \Phi_S$ injective" using relational algebra notation.
- 2. From (28) show that, for all S, function $reindex\ S$ is a subrelation of the \leq ordering on \mathbb{N} , that is, for all $n \in \mathbb{N}$, $(reindex\ S)n \leq n$.
- 3. Using an informal drawing, sketch function $reindex\{2,3,6\}$.
- 4. Show that $reindex \emptyset = reindex\{i\} = \underline{1}$.

Nesting:

$$\langle \forall \ a,b \ : \ R \ \land \ S : \ T \rangle = \langle \forall \ a \ : \ R : \ \langle \forall \ b \ : \ S : \ T \rangle \rangle \tag{29}$$

$$\langle \exists a, b : R \land S : T \rangle = \langle \exists a : R : \langle \exists b : S : T \rangle \rangle \tag{30}$$

Trading:

$$\langle \forall i : R \land S : T \rangle = \langle \forall i : R : S \Rightarrow T \rangle \tag{31}$$

$$\langle \exists i : R \land S : T \rangle = \langle \exists i : R : S \land T \rangle \tag{32}$$

Splitting:

$$\langle \forall j : R : \langle \forall k : S : T \rangle \rangle = \langle \forall k : \langle \exists j : R : S \rangle : T \rangle \tag{33}$$

$$\langle \exists j : R : \langle \exists k : S : T \rangle \rangle = \langle \exists k : \langle \exists j : R : S \rangle : T \rangle \tag{34}$$

References

- 1. C.B. Jones. *Systematic Software Development Using VDM*. Series in Computer Science. Prentice-Hall Int., 1990. 1st edition (1986).
- 2. J.N. Oliveira. Functional dependency theory made 'simpler'. Technical Report DI-PURe-05.01.01, DI/CCTC, University of Minho, Gualtar Campus, Braga, 2005. PUReCafé, 2005.01.18 [talk]; available from http://wiki.di.uminho.pt/twiki/bin/view/Research/PURe/PUReCafe.
- J.N. Oliveira. Extended Static Checking by Calculation using the Pointfree Transform. In A. Bove et al., editor, LerNet ALFA Summer School 2008, volume 5520 of LNCS, pages 195–251. Springer-Verlag, 2009.