
68 S C I E N T I F I C A M E R I C A N J U N E 2 0 0 6

C
R

E
D

IT

“ONLY A S STRONG A S THE WE AKEST LINK” describes the
construction of a bridge as well as that of a computer
program. Like bridges, software programs are key
components of the critical infrastructure of modern society—
but researchers only recently have invented effective ways
to pretest the soundness of software designs.

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 69

Dependable

Design
Software

by

Computers fly our airliners and run most of the
world’s banking, communications, retail and
manufacturing systems. Now powerful analysis
tools will at last help software engineers ensure
the reliability of their designs

By Daniel Jackson

G
E

O
R

G
E

 R
E

TS
E

C
K

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

70 S C I E N T I F I C A M E R I C A N J U N E 2 0 0 6

A n architectural marvel when it
opened 11 years ago, the new
Denver International Airport’s
high-tech jewel was to be its au-

tomated baggage handler. It would au-
tonomously route luggage around 26
miles of conveyors for rapid, seamless
delivery to planes and passengers. But
software problems dogged the system,
delaying the airport’s opening by 16
months and adding hundreds of millions
of dollars in cost overruns. Despite years
of tweaking, it never ran reliably. Last
summer airport managers finally pulled
the plug—reverting to traditional manu-
ally loaded baggage carts and tugs with
human drivers. The mechanized han-
dler’s designer, BAE Automated Systems,
was liquidated, and United Airlines, its
principal user, slipped into bankruptcy,
in part because of the mess.

The high price of poor software de-
sign is paid daily by millions of frustrat-
ed users. Other notorious cases include
costly debacles at the U.S. Internal Rev-
enue Service (a failed $4-billion modern-
ization effort in 1997, followed by an
equally troubled $8-billion updating

project); the Federal Bureau of Investiga-
tion (a $170-million virtual case-file
management system was scrapped in
2005); and the Federal Aviation Admin-
istration (a lingering and still unsuccess-
ful attempt to renovate its aging air-traf-
fic control system).

Such massive failures occur because
crucial design flaws are discovered too
late. Only after programmers began
building the code—the instructions a
computer uses to execute a program—

do they discover the inadequacy of their
designs. Sometimes a fatal inconsisten-
cy or omission is at fault, but more often
the overall design is vague and poorly
thought out. As the code grows with the
addition of piecemeal fixes, a detailed
design structure indeed emerges—but it
is a design full of special cases and loop-
holes, without coherent principles. As in
a building, when the software’s founda-
tion is unsound, the resulting structure
is unstable.

Managers involved in high-profile
software blowouts could claim in their
defense that they followed standard in-
dustry practices, and unfortunately they

would be right. Developers rarely ar-
ticulate their designs precisely and ana-
lyze them to check that they embody the
desired properties. But with computers
now flying airplanes, driving trains and
cars, and running most of the financial,
communications, trading and pro-
duction machinery of the world, society
has an urgent need to improve software
dependability.

Now a new generation of software
design tools is emerging [see box on page
74]. Their analysis engines are similar in
principle to tools that engineers increas-
ingly use to check computer hardware
designs. A developer models a software
design using a high-level (summary)
coding notation and then applies a tool
that explores billions of possible execu-
tions of the system, looking for unusual
conditions that would cause it to behave
in an unexpected way. This process
catches subtle flaws in the design before
it is even coded, but more important, it
results in a design that is precise, robust
and thoroughly exercised. One example
of such a tool is Alloy, which my research
group and I constructed. Alloy (which is
freely available on the Web) has proved
useful in applications as varied as avion-
ics software, telephony, cryptographic
systems and the design of machines used
in cancer therapy [see box on page 73].

Alloy and related design-checking
tools build on a quarter of a century of
existing research into ways to prove
mathematically whether programs are
correct. But rather than requiring proofs
to be done by hand, they employ auto-
mated reasoning techniques that treat a
software design problem as a giant puz-
zle to be solved. These analyzers operate
on designs, not program code, so they

■ Despite the ever increasing importance of computer software in our daily
lives, software engineers rarely analyze their designs to ensure reliability.
That situation is starting to change with the recent development of software
design checking tools such as Alloy.

■ Alloy combines a language that eases the modeling of complex software
designs with an analysis engine that checks extensively for conceptual and
structural flaws in an automated fashion, treating designs as huge puzzles
to be solved.

■ In the relatively near future, tools similar to Alloy will greatly improve the
dependability of software by basing program development on more robust
and constructive design practices.

Overview/Software Design Checkers

Almost all grave software
problems can be traced to
conceptual mistakes made
before programming started.

Failed automated baggage system at Denver International Airport.

C
H

R
IS

 C
A

R
TE

R
 D

e
n

ve
r

In
te

rn
a

ti
o

n
a

l
A

ir
p

o
rt

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 71

ALLOY IN ACTION

d r s: se t D i r,
f i le s: se t Fi le
Fi le:
conta i ns: d i r - >
(d i r s + f i le s)

d i r
(f s, f s ’ : d, to :oo
d + to i n f s
. d i r s

module filesystem

abstract sig Object {}
sig File, Dir extends Object {}

sig FS {
 dirs: set Dir,
 files: set File,
 contains: dirs -> (dirs + files)
 }

pred move_dir (fs, fs': FS, d, to: Dir) {
d + to in fs.dirs
fs'.contains = fs.contains - Dir->d + to->d
fs'.files = fs.files and fs'.dirs = fs.dirs
 }

check move_OK

Dirs

Files

Define objects

Move operation

Evaluate all states

All files must
be reachable

New constraint
disallows bad move

Alloy

File

File

Contains

STATE 8
STATE 9
STATE 10

STATE 11

STATE 2

ALLOY CODE

STATE 3
STATE 4
STATE 5
STATE 6
STATE 7

File
File

 to i n f
o

ns:
e s

d
oosigFs{ drs set S

ig
 F

S {

sigFs{ drs set Sig
 F

S{ si
gF

s{
 d

rs
 snn ttt

S ig F S {

(
+

t i

(
+ to i n f

o

ta i ns:
e s

d
ooooooF

on
(

on
(

ttnnnnntttt File
File

FileFile

Problem: directory cannot move
to itself

Map of relations

File

File

pred reachable (fs: FS) {
 some root: fs.dirs | fs.(dirs+files) in root.*(fs.contains)
 }

assert move_OK {
 all fs, fs': FS, d, to: Dir |
 reachable (fs) and move_dir (fs, fs', d, to) implies reachable (fs')
 }

BLUEPRINT

Contains
STATE1

EFFECT

File

STATE 12
File File

File

File

Alloy helps software designers fi nd and fi x design fl aws by
providing both a language that clarifi es a program’s structure
and an automated analyzer that searches the vast numbers
of possible executions of a system for a “counterexample”
that shows how it could fail to behave as desired. In the
simplifi ed example below, an engineer uses Alloy to evaluate

the design of a fi le system—the software that organizes your
computer fi les into folders and stores them on a disk. A crucial
task for Alloy is to work out the effects various operations
would have on the fi le structure. Here is how a designer might
model and check the operation that moves a folder, or

“directory,” from one location in the fi le hierarchy to another.

STEP 4: FIND AND FIX THE FL AW
Alloy executes “check move–OK” by generating all
possible states of the system (up to a certain size)
and checking the assertion for each—thus
simulating possible moves as they might occur when
the software is run. Alloy fi nds a counterexample to
the assertion—a directory that can be moved to
itself. The action would disconnect the directory
from a root, making it unreachable. As a remedy, a
designer could add a new con straint disallowing a
directory to move to itself or any of its descendants.

STEP 3: SPECIF Y REQUIREMENTS
The designer then formulates a crucial
requirement: every fi le and directory should be
“reachable” (have a pathway) from some root. This
is recorded in the Alloy model as an “assertion”
(called “move–OK”), which says that executing the
move operation does not make a fi le or directory
unreachable from a root.

STEP 2: MODEL THE OPERATION
Next, the designer models the move (“move–dir”)
of the fi le system before (“fs”) to a fi le system after
(“fs'”). The operation involves two directories: “d,”
the directory being moved, and “to,” the place it is
being moved to—its new parent. Three constraints
follow, which describe the intended effect, on three
separate lines: First, both the moved object and its
new location are directories of the fi le system.
Second comes the essence of the operation: it says
that the new containment mapping is the old one,
with every mapping from a directory to “d” removed,
and the mapping from “to” to “d” added. The third
line says that nothing else changes.

STEP 1: DEFINE THE OBJECTS
The designer identifi es the system’s objects—
fi les, directories and the fi le system as a whole—
and their relations with one another. The Alloy
model says the fi le system (FS) has three
components: “fi les” (its set of fi les), “dirs” (its set
of directories) and “contains” (a mapping that
gives, for each directory, the set of fi les and
directories it contains).

L
U

C
Y

R
E

A
D

IN
G

-I
K

K
A

N
D

A

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

72 S C I E N T I F I C A M E R I C A N J U N E 2 0 0 6

cannot guarantee that a program will
not crash. But they potentially offer soft-
ware engineers the first practical tools to
ensure that designs are robust and free
from conceptual flaws and thus provide
a firm foundation on which to build reli-
able software systems.

Evaluating Designs
bad soft ware is not a new problem.
Warnings of a software crisis go back to
the 1960s and have only intensified as
computers have been woven into the fab-
ric of society [see “Software’s Chronic
Crisis,” by W. Wayt Gibbs; Scientific
American, September 1994].

Today most software typically is de-
bugged and refined by testing. Human
engineers run the program using a wide
range of starting conditions (or inputs)
to see if it operates as expected. Al-
though the practice catches a raft of
small flaws, it often overlooks faults in
the basic design of the software. In some
sense, these test procedures miss the
(diseased) forest for the (rotting) trees.

What is worse, bugs “fixed” during
the testing process often exacerbate de-
sign problems. As programmers debug
the code and insert new features, the
software invariably grows barnacles of
complexity, creating more opportunities
for errors and inefficient operation. This
situation is reminiscent of the (incorrect)
Ptolemaic theory of planetary motion

first developed by the ancient Greeks. In
the Middle Ages, as observations showed
the predictions to be inaccurate, astron-
omers adjusted Ptolemy’s system, which
relied on epicycles. When that proved
insufficient, they resorted to adding epi-
cycles to the epicycles. Further fine-tun-
ing over the centuries never solved the
problem, because the initial concept was
fatally flawed.

Similarly, bad software tends to get
more and more complicated and less and
less reliable, however much time and
money are poured into improving it. It is
well known that serious problems with
software systems rarely arise from pro-
gramming errors; almost all grave diffi-
culties can be traced back to conceptual
mistakes made before programming
even started. In contrast, a small amount
of modeling and analysis during the ini-
tial determination of requirements, spec-
ifications, or program design costs only
a tiny fraction of the price tag of checking
all the code but provides a large part of
the benefit gained from an exhaustive
analysis. Focusing on design early saves
costly headaches down the road.

Design tools for software have been
slow in coming because software does
not obey physical laws. Because com-
puter programs are in essence mathe-
matical objects whose values are con-
structed from bits, software programs
are discrete (particlelike) rather than

continuous. A mechanical engineer can
stress a component with a large force
and assume that if it survives it will not
fail when subjected to a slightly smaller
force. When an object is subject to the
(mostly continuous) principles of the
physical world, a small change in one
quantity generally produces a small
change in another. Unfortunately, no
such generalities apply to software: one
cannot extrapolate between test cases. If
one chunk of software works, that fact
says nothing about the operations of a
similar chunk of code; they are discrete
and separate.

In the early days of computer science,
researchers hoped that programmers
might prove their codings were correct in
the same way that mathematicians prove
their theorems. With no way to automate
the many steps involved, however, a hu-
man expert had to do much of the work.
These so-called heavy-duty formal meth-
ods were impractical except for relatively
modest but especially critical pieces of
software, such as an algorithm for con-
trolling railroad intersections.

More recently, researchers have ad-
opted a very different approach, one that
harnesses the power of today’s faster
processors to test every possible scenar-
io. This method, known as model check-
ing, is now used extensively to verify in-
tegrated-circuit designs. The idea is to
simulate every possible sequence of
states (the conditions of the system at
specific times) that might arise in prac-
tice and to determine that none leads to
a failure. For a microchip design, the
number of states to evaluate is often
huge: 10100 or more. The challenge is far
more stringent for software. But clever
encoding techniques (by which large sets

DANIEL JACKSON leads the Computer Science and Artificial Intelligence Laboratory’s
Software Design Group at the Massachusetts Institute of Technology. His main research
interest is software engineering, with a focus on software design, specification and
analysis, particularly of critical systems. Jackson received an M.A. from the University
of Oxford in physics, and his S.M. and Ph.D. from M.I.T. in computer science. Before his
professorship at M.I.T., he taught at Carnegie Mellon University. An avid photographer,
Jackson recently exhibited his work at the Newton Free Library outside of Boston.

TH
E

 A
U

TH
O

R

The idea is to simulate
every state that the software
can take to determine that
none leads to a failure.

Alloy helped to make an avionics system hacker-proof.

G
R

E
G

 R
IC

H
TE

R
 B

lu
e

M
o

u
n

ta
in

 A
vi

o
n

ic
s

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 73

of software states can be represented
very compactly) make it possible to
check every state by considering these
large sets simultaneously.

Model checking alone regrettably
cannot handle states with complex struc-
tures, which is characteristic of most
software designs. My research colleagues
and I have developed an approach that
shares the same spirit yet employs a dif-
ferent mechanism. Like model checking,
it considers all possible scenarios (al-
though in truth, some bounds need to be
introduced to keep the problem finite,
because software is not restricted by the
physical limitations imposed by hard-
ware). Unlike model checking, however,
our technique does not examine scenar-
ios in their entirety, one at a time. In-
stead it searches for a bad scenario—one
that results in failure—by filling in each
state in an automated fashion, one bit at
a time, in no particular order.

The process is in some sense compa-
rable to a robotic arm fitting each piece
of a jigsaw puzzle into place one by one
until the completed image finally emerg-
es. If that image corresponds to a bad
scenario, Alloy would have done its job.
Alloy thus treats design analysis as if it
were a puzzle to be solved. Some other
recently developed software model
checkers work this way as well.

The Solution Is a Puzzle
to understa nd how Alloy solves
software design puzzles, it helps to con-
sider an old riddle: A farmer goes to
market where he buys a fox, a goose and
a bag of corn. On his way home, he has
to carry his goods across a river by boat.
The skiff will hold only the man and one
purchase at a time, however. Herein lies
a problem: if left unsupervised, the fox
would eat the goose and the goose would
eat the corn. So how does the farmer get
all of his goods to the far bank intact?

This variety of puzzle involves find-
ing scenarios that satisfy a collection of
constraints. Mentally we do this task by
imagining a series of steps: The farmer
transports the goose first; on the next
trip, he takes the fox, whereupon he
brings back the goose and then, leaving
it behind, crosses with the corn; he then

returns to fetch the goose. By checking
whether each step satisfies the con-
straints, we ensure that each item re-
mains safe.

A successful software design impos-
es a similar, though much more compli-
cated, array of rules. To be useful, a de-
sign-checking tool must be able to find
counterexamples: solutions to the puz-

zle that meet all the “good” constraints
(and thus could occur when the pro-
gram is run) and an additional “bad”
constraint (and thus yield an unaccept-
able outcome). If any such counterex-
amples turn up, they will reveal flaws in
the design. So whereas the puzzle solver
is happy to find a solution to the “farm-
er’s dilemma,” a solution to a software

Debugging Cancer Therapy Machines
Modern medical devices rely on software for almost every aspect of their operation.
In a machine used for cancer therapy, even the “emergency stop” button is not an
actual electrical switch but a software program: hitting it causes about 15,000
lines of code to execute and shut the system down—unless, of course, there is a
bug or design flaw in the software. That is where Alloy comes in—it analyzes
programs to find the design problems.

Working with the developers of a cancer-therapy system, for example, we have
used Alloy to explore the design of some of its features. In one case, we took a
design for a new scheduling system that determines the treatment room to which
the beam is sent. We set Alloy to look for scenarios in which interactions between
the operator in the main control room and the therapists in the treatment rooms
would produce unexpected results. Alloy found various scenarios that had not been
anticipated originally.

In another case, we applied Alloy to the design of an elaborate protocol for
positioning the patient under the proton beam, which turned out to have a subtle
and unexpected consequence: the angle of the gantry crept around over time, even
when it was not being intentionally adjusted. With a small Alloy model we showed
how, by choosing the right abstractions, this problem could be reduced to the same,
rather simple problem as that for designing a car accessory system that
remembers driver-seat positions. In fact, the therapy system has many safeguards
and the gantry movement was not a dangerous problem. But if the correct
abstractions had been used from the start, the design would have been much
simpler and operating the software considerably easier. —D.J.

CORRECT POSITION of a patient—controlled by software—is critical to control radiation dosage
in a cancer therapy machine. Alloy helped to improve the software design for a similar machine.

C
O

U
R

TE
S

Y
O

F
L

O
M

A
L

IN
D

A
U

N
IV

E
R

S
IT

Y
M

E
D

IC
A

L
C

E
N

TE
R

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

74 S C I E N T I F I C A M E R I C A N J U N E 2 0 0 6

design puzzle is bad news: it means that
an undesirable scenario exists and the
design is defective. In practice, the coun-
terexample might not itself lead to any
problems. It may instead reveal a dis-
crepancy in how the designer originally
characterized the unacceptable out-
comes. Either way something needs to
be fixed—the design or the designer’s
expectations.

The great difficulty in searching for
counterexamples is that the number of
potential scenarios in a software design
of even moderate complexity is typically
vast, but only a tiny proportion corre-
spond to counterexamples. Imagine try-

ing to plan who sits next to whom at a
wedding reception. If all attendees get
along, the solution is trivial. Throw in a
few ex-spouses who require separation,
and the problem gets trickier. Now con-
sider the seating chart for Romeo and
Juliet’s reception. If there are 20 seats
and any of 10 guests can sit in each, that
makes 1020 possible combinations. Even
checking a billion scenarios per second,
a computer would take 3,000 years to
explore them all.

In the 1980s, researchers identified
problems of this form as a special class
of problems that, in the worst case, can
be solved only by enumerating all pos-

sible scenarios. But in the past decade,
with new search strategies and algo-
rithms and by building on ever increas-
ing computational power, researchers
have developed tools called SAT (satisfi-
ability) solvers that can handle these
problems fairly easily. Many are now
freely available and can often solve prob-
lems with millions of constraints.

Importance of Abstraction
as its name suggests, Alloy melds
two elements that help make software
designs more robust. One is a new lan-
guage that helps to elucidate the struc-
ture and behavior of the software design.
The other is an automated analyzer
(which incorporates a SAT solver) to
hash through a multitude of possible
scenarios.

The first step in applying Alloy is to
create a model of the design: not the
rough sketch or flowchart typical in
software engineering but a precise mod-
el that spells out the “moving parts” and
specific behaviors, both desired and un-
desired, of the system and its compo-
nents. A software engineer first writes
down definitions of the various kinds of
objects in the design, then groups those
objects into mathematical sets: collec-
tions of things that are alike in their
structure and behavior (for example, the
set of all Capulets) and linked by math-
ematical relations (such as the relation
that associates guests sitting next to one
another).

Next come facts that constrain these
sets and relations. In a software design,
the facts include the mechanism of the
software system and assumptions about
other components (say, statements about
how human users are expected to be-
have). Some of these facts are simple as-
sumptions—for example, that nobody is
both a Capulet and a Montague and that
every guest sits next to exactly two other
guests. Some of them reflect the design
itself: in our seating planner, for in-
stance, the rule that each table, with the
exception of the top table, is assigned ei-
ther to one family or the other.

Finally, there are assertions, which
are constraints that are expected to fol-
low from the facts. In our example, with

Tools for Checking Software Designs
Computer scientists have developed a new generation of software design checking
tools (in addition to Alloy) that programmers can use to analyze and test their
codings for structural and conceptual inconsistencies that could lead to system
failure. In general, these commercial and open-source design-evaluation tools
are based on specialized high-level languages (notations that summarize blocks
of code) that researchers have developed to ease the specification, modeling and
simulation of different types of software schemes.

Such tools incorporate automated analysis engines that explore the huge
number of potential executions of systems for subtle design flaws that would
cause them to behave in undesirable ways (an instance of which is called a
counterexample). These software design tools often include facilities that can help
designers visualize counterexamples or relations between blocks of code.

LANGUAGE TOOL SOURCE WEB SITE

B B-Toolkit B-Core www.b-core.com

Atelier-B Steria www.atelierb.societe.com

Pro-B University of
Southampton

www.ecs.soton.ac.uk/˜mal/systems/
prob.html

CSP FDR Formal Systems
Europe

www.fsel.com

FSP LTSA Imperial College
London

www.doc.ic.ac.uk/˜jnm/book/ltsa/LTSA.
html

Lotos CADP INRIA Research
Institute

www.inrialpes.fr/vasy/cadp/

OCL USE University of
Bremen

www.db.informatik.uni-bremen.de/
projects/USE/

PROMELA Spin Bell
Laboratories

spinroot.com/

Statecharts Statemate I-Logix www.ilogix.com

VDM VDMTools CSK Corp. www.csk.com/support–e/vdm/

www.vdmbook.com/tools.php

Z Jaza University of
Waikato

www.cs.waikato.ac.nz/˜marku/jaza/

Zing Zing Microsoft
Research

research.microsoft.com/zing/

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

w w w. s c i a m . c o m S C I E N T I F I C A M E R I C A N 75

the exception of Romeo and Juliet, no
Capulet should be seated next to a Mon-
tague. The assertions say that the system
can never get into certain undesirable
states and that specific bad sequences of
events can never occur.

The analyzer component of Alloy
harnesses a SAT solver to search for
counterexamples—possible scenarios of
the software system that are permitted
by its design but that fail a sanity check
(which is accomplished by writing asser-
tions that must be true if the model is
correctly designed). In other words, the
tool attempts to construct situations that
satisfy the facts but violate a stated as-
sertion. In our case, it would generate a
seating plan in which a Capulet (other
than Juliet) sits next to a Montague (oth-
er than Romeo) at the top table. To fix
the seating rule, we can add a new fact:
that Romeo and Juliet occupy the top
table alone. Now Alloy would find no
counterexample.

Together the declarations of the sets
and relations, the facts, and the asser-
tions make up an abstraction that cap-
tures the essence of the software design.
Writing all this out makes the limita-
tions of the design explicit and forces
engineers to think hard about exactly
which abstractions will work best. Bad
abstraction choices lie at the root of
many unnecessarily complicated or un-
reliable systems.

Systems that rely on software built
on simple and robust abstractions should
also be easier to use. Consider how
e-ticketing simplified air travel, how uni-
versal product codes made shopping
easier or how 800-number-based con-
ference calls made teleconferencing more
feasible. Each of these innovations

stemmed from a transformation in the
basic abstractions embodied in the un-
derlying software.

The Road to Reliability
tools akin to alloy are currently
used primarily in research and in cut-
ting-edge industrial settings. The tech-
nology has been employed to explore
new architectures for telephone switch-
ing systems, to design avionics proces-
sors that are secure against hackers and
to describe access-control policies for
communications networks. We have used
it to check widely used and robust soft-
ware devices, such as protocols for find-
ing printers on networks and tools for
synchronizing files across machines.

In addition, Alloy has uncovered se-
rious deficiencies in published software
designs—such as a key management pro-
tocol that was supposed to enforce spe-
cial-access rules based on membership
in a group but turned out to grant access
to former members who should have
been rejected. It is noteworthy that many
programmers who have used Alloy have

been surprised by the number of flaws
that the tool turns up in the designs for
even their simplest applications.

It is most likely only a matter of time
until tools resembling Alloy are adopted
more widely in industry. Improvements
in the underlying SAT solvers will make
analysis tools faster and better able to
handle very large systems. Meanwhile a
new generation of software designers,
educated in these methods, will incorpo-
rate them into their work. Modeling is
growing in popularity, particularly
among managers desperate to see some
description of a software system’s design
beyond the code itself.

At some point, there may come a
time when software becomes so essen-
tial to our day-to-day infrastructure
that society will no longer tolerate bad
software. As a result, governments may
even establish inspection and licensing
regulations that enforce high-quality
program construction techniques. One
day, perhaps, software systems will be
truly robust, predictable and easy to
use—by design.

M O R E T O E X P L O R E
Exploring the Design of an Intentional Naming Scheme with an Automatic Constraint
Analyzer. Sarfraz Khurshid and Daniel Jackson in Proceedings of the 15th IEEE International
Conference on Automated Software Engineering, Grenoble, France. IEEE, September 2000.
(Describes application of Alloy to the design of a system for finding resources on a network.)
Automating First-Order Relational Logic. Daniel Jackson in Proceedings of the 8th ACM SIGSOFT
International Symposium on Foundations of Software Engineering: Twenty-First Century
Applications. ACM Press, 2000. (Explains Alloy’s analysis.)
A Micromodularity Mechanism. Daniel Jackson, Ilya Shlyakhter and Manu Sridharan in
Proceedings of the Joint 8th European Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT Symposium on the Foundations of Software Engineering. ACM Press, 2001. (Explains
key concept in the latest version of Alloy language.)
Alloy: A Lightweight Object Modeling Notation. Daniel Jackson in ACM Transactions on Software
Engineering and Methodology, Vol. 11, Issue 2, pages 256–290; April 2002. (Original description
of Alloy.)
Software Abstractions: Logic, Language, and Analysis. Daniel Jackson. MIT Press, 2006.
Daniel Jackson’s Web site: http://people.csail.mit.edu/dnj/
Alloy Web site: http://alloy.mit.edu

Alloy has uncovered
serious deficiencies

in published
software designs.

Alloy checked a software program that finds printers on wireless networks.

E
M

IL
Y

H
A

R
R

IS
O

N

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

