
Arent Janszoon Ernststraat 595-H
NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

January 2009
Joost Visser

Software Analysis and Testing
Métodos Formais em Engenharia de Software

2 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Me

CV
• Technical University of Delft, Computer Science, MSc 1997

• University of Leiden, Philosophy, MA 1997

• CWI (Center for Mathematics and Informatics), PhD 2003

• Software Improvement Group, developer, consultant, etc, 2002-2003

• Universidade do Minho, Post-doc, 2004-2007

• Software Improvement Group, head R&D, 2007-…

Research

• Grammars, traversal, transformation, generation

• Functional programming, rewriting strategies

• Software quality, metrics, reverse engineering

3 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Improvement Group

Company
• Spin-off from CWI in 2000, self-owned, independent

• Management consultancy grounded in source code analysis

• Winner of the Innovator Award 2007

Services

• Software Risk Assessments (snapshot) and Software Monitoring (continuous)

• Toolset enables to analyze source code in an automated manner

• Experienced staff transforms analysis data into recommendations

• We analyze over 50 systems annually

• Focus on technical quality, primarily maintainability / evolvability

4 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Who is using our services?

Government Logistical IT OtherFinancials / Insurance companies

5 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Our services

Software Risk
Assessment

Remeasurement

Monitor

Portfolio Monitor
Software
Analysis
Toolkit Benchmark

6 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Risk Assessment

D
ocum

entation

Interview
s

Facts

Interpretation, reconciliation, evaluation

Presentation

Facts

Automated
analysis

Report

“Facts”

Benchmark Source code

7 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Quality Monitor

Quarterly Report

Annual Report

Source code

Web portal

Board

IT Management

Software EngineersMonitor

Interpretation
by SIG experts

8 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

• Introduction SIG

• General overview of software analysis and testing

• Testing

• Patterns

• Quality & metrics

• Reverse engineering

9 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Engineering

requirements analysis
design, code, compile

configure, install

Create Change Analyze

refactor, fix, patch
maintain, renovate

evolve, update, improve

understand, assess
evaluate, test

measure, audit

10 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Analysis
(and Testing)

Analysis

Static
Analysis

Dynamic
Analysis

syntax checking
type checking
code metrics

style checking
verification

reverse engineering
decompilation

testing
debugging

program spectra
instrumentation

profiling
benchmarking

log analysis

11 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,
 but never to show their absence!”
Notes On Structured Programming, 1970

• “Program testing can be a very effective way to show the presence of bugs,
 but is hopelessly inadequate for showing their absence.”
The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”

12 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Is testing un-cool?

Industry
• Testers earn less then developers

• Testing is “mechanical”, developing is “creative”

• Testing is done with what remains of the budget in what remains of the time

Academia

• Testing is not part of the curriculum, or very minor part

• Verification is superior to testing

• Verification is more challenging than testing

13 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Analysis. How much?

50 - 75%

14 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Analysis. Enough?

 $60 × 109

15 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Analysis. More?

high profile
low frequency

16 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Analysis
Room for improvement?

Standish Group, “The CHAOS Report”

1994

Succeeded
16%

Challenged
53%

Failed
31%

2004

Succeeded
29%

Challenged
53%

Failed
18%

17 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

So

• Testing ⊂ Dynamic analysis ⊂ Analysis ⊂ S.E.

• Analysis is a major and essential part of software engineering

• Inadequate analysis costs billions

⇒
• More effective and more efficient methods are needed

• Interest will keep growing in both industry and research

18 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

19 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

TESTING

20 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing

Kinds
• Conformance
• Interoperability
• Performance
• Functional
• White-box
• Black-box
• Acceptance
• Integration
• Unit
• Component
• System
• Smoke
• Stress

Ways
• Manual
• Automated
• Randomized
• Independent
• User
• Developer

With
• Plans
• Harness
• Data
• Method
• Frameworks

21 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing
V-model

V-model =
 waterfall-1 • waterfall

No testing while
programming!

22 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing
Eliminate waste

Waste
• Coding and debugging go hand-in-hand

• Coding effort materializes in the delivered program

• Debugging effort? Evaporates!

Automated tests

• Small programs that capture debugging effort.

• Invested effort is consolidated …

• … and can be re-used without effort ad-infinitum

Unit testing

23 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

What is unit testing?

A unit test is …
• fully automated and repeatable
• easy to write and maintain
• non-intrusive
• documenting
• applies to the simplest piece of software

Tool support
• JUnit and friends

TestCase

public void testMyMethod {
 X x = …;
 Y y = myMethod(x);
 Y yy = …;
 assertEquals(“WRONG”,yy,y)
}

24 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing goals

Unit testing has the following goals:
• Improve quality
• Test as specification
• Test as bug repellent
• Test as defect localization

• Help to understand
• Test as documentation

• Reduce risk
• Test as a safety net
• Remove fear of change

25 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Observing unit-testing maturity in the wild
(characterization of the population)

Organization
• public, financial, logistics
• under contract, in house, product software
• with test departments, without test departments

Architecture & Process
• under architecture, using software factories
• model driven, handwritten
• open source frameworks, other frameworks
• using use-cases/requirements
• with blackbox tools, t-map

Technology
• information systems, embedded
• webbased, desktop apps
• java, c#, 4GL’s, legacy
• latest trend: in-code asserts (java.spring)

26 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 1
No unit testing

Observations:
• Very few organizations use unit testing
• Also brand new OO systems without any unit tests
• Small software shops and internal IT departments
• In legacy environments: programmers describe in words what tests they have

done.

Symptoms:
• Code is instable and error-prone
• Lots of effort in post-development testing phases

27 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 1
No unit testing

Excuses:
• “It is just additional code to maintain”
• “The code is changing too much”
• “We have a testing department”
• “Testing can never prove the absence of errors”
• “Testing is too expensive, the customer does not want to pay for it”
• “We have black-box testing”

Action
• Provide standardized framework to lower

threshold
• Pay for unit tests as deliverable, not as effort

28 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 2
Unit test but no coverage measurement

Observations
• Contract requires unit testing, not enforced
• Revealed during conflicts
• Unit testing receives low priority
• Developers relapse into debugging practices without unit testing
• Good initial intentions, bad execution
• Large service providers

Symptoms:
• Some unit tests available
• Excluded from daily build
• No indication when unit testing is sufficient
• Producing unit test is an option, not a requirement

29 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 2
Unit test but no coverage measurement

Excuses:
• “There is no time, we are under pressure”
• “We are constantly stopped to fix bugs”

Actions
• Start measuring coverage
• Include coverage measurement into nightly build
• Include coverage result reports into process

30 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 3
Coverage, not approaching 100%

Observations
• Coverage is measured but gets stuck at 20%-50%
• Ambitious teams, lacking experience
• Code is not structured to be easily unit-testable

Symptoms:
• Complex code in GUI layer
• Libraries in daily build, custom code not in daily build

31 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 3
Coverage, not approaching 100%

Excuses
• “we test our libraries thoroughly, that affects more customers”

Actions:
• Refactor code to make it more easily testable
• Teach advance unit testing patterns
• Invest in set-up and mock-up

32 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 4
Approaching 100%, but no test quality

Observations
• Formal compliance with contract
• Gaming the metrics
• Off-shored, certified, bureaucratic software factories

Symptoms:
• Empty tests
• Tests without asserts.
• Tests on high-level methods, rather than basic units

• Need unit tests to test unit tests

33 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 4
Approaching 100%, but no test quality

Anecdotes:
• Tell me how you measure me, and I tell you how I behave
• We have generated our unit tests (at first this seems a stupid idea)

Action:
• Measure test quality
• Number of asserts per unit test
• Number of statements tested per unit test
• Ratio of number of execution paths versus number of tests

34 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 5
Measuring test quality

Enlightenment:
• Only one organization: a Swiss company
• Measure:
• Production code incorporated in tests
• number of assert and fail statements
• low complexity (not too many ifs)

• The process
• part of daily build
• “stop the line process”, fix bugs first by adding more tests
• happy path and exceptions
• code first, test first, either way

35 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing
Intermediate conclusion

Enormous potential for improvement:
• Do unit testing
• Measure coverage
• Measure test quality

• May not help Ariane 5
• Does increase success ratio for “normal” projects

36 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Randomized Testing
(quickcheck)

Randomized testing:
• QuickCheck: initially developed for Haskell
• Parameterize tests in the test data
• Property = parameterized test
• Generate test data randomly
• Test each property in 100 different ways each time

Test generation

Model-driven testing

Fault-injection

-- | Range of inverse is domain.
prop_RngInvDom r
 = rng (inv r) == dom r
 where
 types = r::Rel Int Integer

37 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,
 but never to show their absence!”

Martin Fowler
• “Don’t let the fear that testing can’t catch all bugs stop you

from writing the tests that will catch most bugs.”

38 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Simple test metrics

Line coverage
• Nr of test lines / nr of tested lines

Decision coverage
• Nr of test methods / Sum of McCabe complexity index

Test granularity
• Nr of test lines / nr of tests

Test efficiency
• Decision coverage / line coverage

39 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

40 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

PATTERNS

41 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns

Coding style and coding standards
• E.g. layout, identifiers, method length, …

Secure coding guidelines

• E.g. SQL injection, stack trace visibility

Bug patterns

• E.g. null pointer dereferencing, bounds checking

Code smells

• E.g. “god class”, “greedy class”, ..

42 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns
Style and standards

Checking coding style and coding standards

• Layout rules (boring)

• Identifier conventions

• Length of methods

• Depth of conditionals

Aim

• Consistency across different developers

• Ensure maintainability

Tools

• E.g. CheckStyle, PMD, …

• Integrated into IDE, into nightly build

• Can be customized

43 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns
Secure coding

Checking secure coding guidelines
• SQL injection attack

• Storing and sending passwords

• Stack-trace leaking

• Cross-site scripting

Aim

• Ensure security

• Security = Confidentiality + Integrity + Availability

Tools

• E.g. Fortify, Coverity

44 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns
Bugs

Detecting bug patterns

• Null-dereferencing

• Lack of array bounds checking

• Buffer overflow

Aim

• Correctness

• Compensate for weak type checks

Tools:

• e.g. FindBugs

• Esp. for C, C++

45 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

46 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

METRICS & QUALITY

47 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software analysis
What?

performance

complexity

defects

reliability

security
correctness

size

adaptability

usability

Quality

48 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

The bermuda triangle of software quality

Process
(organizational)

Project
(individual)

People
(individual)

Product

CMMI
(Scampi)

Prince2

Siebel
(Oracle)

ITIL

SAS70

J2EE
(IBM)

MCP
(Microsoft)

COBIT Security
ISO17799
ISO27001
BS7799

Six Sigma

ISO 20000

DSDM

TickIT
ISO9001:2000

TMap
ISTQB RUP

(IBM)

PMI

49 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Quality
Process

Capability Maturity Model® Integration (CMMI®)
• “… is a process improvement approach that provides organizations with the

essential elements of effective processes..” (SEI)
• CMMI for Development (CMMI-DEV), Version 1.2, August 2006.
• consists of 22 process areas with capability or maturity levels.
• CMMI was created and is maintained by a team consisting of members from

industry, government, and the Software Engineering Institute (SEI)
• http://www.sei.cmu.edu/cmmi

The Standard CMMI Appraisal Method
for Process Improvement (SCAMPI)
• “… is the official SEI method to provide

benchmark-quality ratings relative to CMMI models.”

50 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Quality
Process

http://sas.sei.cm
u.edu/pars/

51 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Quality
Process

Levels
• L1: Initial
• L2: Managed
• L3: Defined
• L4: Quantitatively Managed
• L5: Optimizing

http://www.cmmi.de
(browser)

Process Areas
• Causal Analysis and Resolution
• Configuration Management
• Decision Analysis and Resolution
• Integrated Project Management
• Measurement and Analysis
• Organizational Innovation and Deployment
• Organizational Process Definition
• Organizational Process Focus
• Organizational Process Performance
• Organizational Training
• Product Integration
• Project Monitoring and Control
• CMMI Project Planning
• Process and Product Quality Assurance
• Quantitative Project Management
• Requirements Development
• Requirements Management
• Risk Management
• Supplier Agreement Management
• Technical Solution
• Validation
• Verification

52 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

The bermuda triangle of software quality

Process
(organizational)

Project
(individual)

People
(individual)

Product

CMMI
(Scampi)

Prince2

Siebel
(Oracle)

ITIL

SAS70

J2EE
(IBM)

MCP
(Microsoft)

COBIT Security
ISO17799
ISO27001
BS7799

Six Sigma

ISO 20000

DSDM

TickIT
ISO9001:2000

TMap
ISTQB RUP

(IBM)

PMI

ISO 9126
ISO 14598

53 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

But …

What is software quality?

What are the technical and functional aspects of quality?

How can technical and functional quality be measured?

54 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software product quality standards

ISO/IEC 9126
Software engineering -- Product quality

1. Quality model
2. External metrics
3. Internal metrics
4. Quality in use metrics

ISO/IEC 14598
Information technology -- Software product evaluation

1. General overview
2. Planning and management
3. Process for developers
4. Process for acquirers
5. Process for evaluators
6. Documentation of evaluation modules

55 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1
Quality perspectives

external quality

internal quality

quality in use
effect of
software
product

software
product

build

test

deploy

9126, Part 3

9126, Part 2

9126, Part 4

metricsphase

56 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1
Product quality model: internal and external

ISO/IEC 9126
Internal/External Quality

reliability usability efficiency portability
maintainability

analysability
changeability
stability
testability

functionality

suitability
accuracy
interoperability
security

maturity
fault-tolerance
recoverability

understandability
learnability
operability
attractiveness

time behavior

resource
 utilisation

adaptability
installability
co-existence
replaceability

57 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO 9126, Part 1
Maintainability (= evolvability)

Maintain

Analyze Change Stabilize Test

Maintainability =
• Analyzability: easy to understand where and how to modify?
• Changeability: easy to perform modification?
• Stability: easy to keep coherent when modifying?
• Testability: easy to test after modification?

58 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO 9126, Part 1
Reliability

Degree of failure

Prevent Tolerate Recover

Reliability =
• Maturity: how much has been done to prevent failures?
• Fault tolerance: when failure occurs, is it fatal?
• Recoverability: when fatal failure occurs, how much effort to restart?

59 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1
Product quality model: quality-in-use

ISO/IEC 9126
Quality in Use

effectiveness productivity satisfactionsafety

60 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO 9126
Part 2,3: metrics

External metrics, e.g.:
• Changeability: “change implementation elapse time”,

time between diagnosis and correction

• Testability: “re-test efficiency”, time between correction and conclusion of test

Internal metrics, e.g.:
• Analysability: “activity recording”,

ratio between actual and required number of logged data items
• Changeability: “change impact”,

number of modifications and problems introduced by them

Critique

• Not pure product measures, rather product in its environment

• Measure after the fact

• No clear distinction between functional and technical quality

61 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

The issue

• Companies innovate and change

• Software systems need to adapt in the same pace as the business changes

• Software systems that do not adapt lose their value

• The technical quality of software systems is a key element

Clients

Business

IT

62 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Functional vs technical quality

Functional quality

Technical
quality

low cost & risk

high cost & risk

Software with high technical quality can evolve with low cost and
risk to keep meeting functional and non-functional requirements.

63 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1
Product quality model: technical quality

ISO/IEC 9126
Software Product Quality

reliability usability efficiency portability
maintainability

analysability
changeability
stability
testability

functionality

suitability
accuracy
interoperability
security

maturity
fault-tolerance
recoverability

understandability
learnability
operability
attractiveness

time behavior

resource
 utilisation

adaptability
installability
co-existence
replaceability

64 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

So …

What is software quality?

What are the functional and technical aspects of quality?

How can technical quality be measured?

65 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

A Challenge

Use source code metrics to measure technical quality?

Plenty of metrics defined in literature
• LOC, cyclomatic complexity, fan in/out, coupling,

cohesion, …
• Halstead, Chidamber-Kemener, Shepperd, …

Plenty of tools available
• Variations on Lint, PMD, FindBugs, …
• Coverity, FxCop, Fortify, QA-C, Understand, …
• Integrated into IDEs

But:
• Do they measure technical quality of a system?

66 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics
Lines of code (LOC)

• Easy! Or …

• SLOC = Source Lines of Code
• Physical (≈ newlines)
• Logical (≈ statements)

• Blank lines, comment lines, lines with only “}”
• Generated versus manually written

• Measure effort / productivity: specific to programming language

67 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics
Function Point Analysis (FPA)

• A.J. Albrecht - IBM - 1979
• Objective measure of functional size

• Counted manually
• IFPUG, Nesma, Cocomo
• Large error margins

• Backfiring
• Per language correlated with LOC
• SPR, QSM

• Problematic, but popular for estimation

68 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics
Cyclomatic complexity

• T. McCabe, IEEE Trans. on Sw Engineering, 1976
• Accepted in the software community
• Number of independent, non-circular paths per method
• Intuitive: number of decisions made in a method
• 1 + the number of if statements (and while, for, ...)

if

if

while

69 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Code duplication
Definition

Code duplication measurement

0: abc
1: def
2: ghi
3: jkl
4: mno
5: pqr
6: stu
7: vwx
8: yz

34: xxxxx
35: def
36: ghi
37: jkl
38: mno
39: pqr
40: stu
41: vwx
42: xxxxxx

Number of
duplicated lines:
14

70 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Code duplication

A B C D

71 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics
Coupling

• Efferent Coupling (Ce)
• How many classes do I depend on?

• Afferent Coupling (Ca)
• How many classes depend on me?

• Instability = Ce/(Ca+Ce) ∈ [0,1]
• Ratio of efferent versus total coupling
• 0 = very stable = hard to change
• 1 = very instable = easy to change

72 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

A Challenge
Do metrics measure technical quality?

500.000 LOC Java code source code analyzer

+

=

73 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

A Challenge

500.000 LOC Java code source code analyzer

+

=

74 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Wealth of technical data at code level

must be translated into:

• Quality information

• Business risks

• Decisions

at system level.

75 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics
Cyclomatic complexity

• T. McCabe, IEEE Trans. on Sw Engineering, 1976
• Accepted in the software community
• Academic: number of independent paths per method
• Intuitive: number of decisions made in a method
• Really, the number of if statements (and while, for, ...)
• Software Engineering Institute:

76 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Complexity per unit
Quality profiles

Aggregation by averaging is fundamentally flawed

77 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Quality profiles, in general

Input
• type Input metric = Map x (metric,LOC)

Risk groups
• type Risk = Low | Moderate | High | Very High
• risk :: metric → Risk

Output
• type ProfileAbs = Map Risk LOC
• type Profile = Map Risk Percentage

Aggregation
• profile :: Input metric → Profile

78 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Combining metrics
The SIG approach

ISO 9126 quality sub-characteristics
e.g. changeability

source code properties
e.g. complexity

source code measures
e.g. cyclomatic complexity

influences

indicates

can be caused by

can be measured by

79 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Mapping source code properties onto quality
sub-characteristics

Volume

Complexity

Unit size

Duplication

Unit testing

Analysability X X X
Changeability X X
Stability X
Testability X X X

80 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code properties and metrics

Volume
• LOC, within the context of a single language
• Man years via backfiring function points

Complexity per unit
• McCabe’s cyclomatic complexity, SEI risk categories, %LOC for each category

Duplication
• Duplicated blocks, threshold 6 lines, %LOC

Unit size
• LOC, risk categories, %LOC for each category

Unit testing
• Unit test coverage
• Number of assert statements (as validation)

81 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Duplication

Volume

Complexity

Unit size

Duplication

Unit testing

Analysability X X X
Changeability X X
Stability X
Testability X X X

20-100%
10-20%
5-10%
3-5%
0-3%

duplicationRank

Duplicate blocks
• Over 6 lines
• String comparison
• Remove leading spaces

82 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Complexity

Volume

Complexity

Unit size

Duplication

Unit testing

Analysability X X X
Changeability X X
Stability X
Testability X X X

5%15%50%
0%10%40%

0%5%30%
0%0%25%

very highhighmoderateRank
Maximum relative LOC

very high>50

high21-50

medium11-20

low1-10

riskcomplexity
Software Engineering Institute

83 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Rating example

Volume

Complexity

Unit size

Duplication

Unit testing

Analysability X X X
Changeability X X
Stability X
Testability X X X

84 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

That’s all?

Practical
• Fast, repeatable, technology independent

• Sufficiently accurate for our purposes

• Explainable

Beyond core model …

• Only one instrument in Software Risk Assessments and Software Monitor

• Weighting schemes

• Dynamic analysis

• Quality of process, people, project

85 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

See
I. Heitlager, T. Kuipers, J. Visser.
A pragmatic model for measuring maintainability.
QUATIC 2007.

Further reading

86 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

What is software quality?

What are the technical aspects of quality?

How can technical quality be measured?

87 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 1
Curbing Erosion

System
• About 15 years old
• Automates primary business process
• Maintenance has passed through various organizations
• New feature requests at regular intervals

Questions
• Improve management’s control over quality and associated costs

Metrics in this example
• Volume
• Duplication

88 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 1
Curbing Erosion

89 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 1
Curbing erosion

• All growth is caused by
duplication
• There is no “real”

productivity

90 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 2
Systems accounting from code churn

System
• 1.5 MLOC divided over 7000 files
• Estimated 240 people divided over 25 subcontractors

Questions
• Is staffing justified?

Metrics in this example
• Code churn = number of added, changed, deleted LOC

91 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 2
Systems accounting from code churn

92 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 2
Systems accounting from code churn

93 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 2
System accounting from code churn

94 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 3
Learn from failure

System
• Electronic commerce
• Replacement for functionally identical system which failed in rollout
• Outsourced development

Questions
• Monitor productivity and quality delivered by the developer

Metrics in this example
• Volume
• Complexity

95 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 3
Learn from failure

96 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

What should you remember (so far)
from this lecture?

Testing
• Automated unit testing!

Patterns
• Run tools!

Quality and metrics
• Technical quality matters in the long run
• A few simple metrics are sufficient
• If aggregated in well-chosen, meaningful ways
• The simultaneous use of distinct metrics allows zooming in on root

causes

97 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

98 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

REVERSE ENGINEERING

99 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

abstract
concrete

Models / Specifications
UML, ER, VDM, …

Programs
Java, SQL, Perl, …

Reverse
engineering

Re-engineering

Terminology

100 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Reverse engineering

Dependencies and graphs
• Extraction, manipulation, presentation
• Graph metrics
• Slicing

Advanced
• Type reconstruction
• Concept analysis
• Programmatic join extraction

101 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Extraction

From program sources, extract basic information into an initial
source model.

Manipulation

Combine, condense, aggregate, or otherwise process the basic
information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

Reverse engineering trinity

102 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Green oval = module
Blue oval = table

Purple arrow = select operation
Yellow arrow = insert/update operation
Brown arrow = delete operation

Example

103 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Example

Tables used by multiple modules. Tables used by a single module.

104 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Relation

type Rel a b = Set (a,b) set of pairs

Graph

type Gph a = Rel a a endo-relation

Labeled relation

type LRel a b l = Map (a,b) l map from pairs

Note

Rel a b = Set(a,b)= Map(a,b)()= LRel a b ()

Relations and graphs

105 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Slicing (forward)

106 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Slicing (backward)

107 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Chop
 = Forward ∩ Backward

108 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

abstract
concrete

Java
program Excel

spreadsheet System
architecture

slice
(interactive)

Graph
(control flow,

data flow,
structure, …)

extract

new program
/ spreadsheet
/ architecture

transform

Generic slicing

109 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

See
Arun Lakhotia.
Graph theoretic foundations of program slicing and integration.
The Center for Advanced Computer Studies, University of Southwestern Louisiana.
Technical Report CACS TR-91-5-5, 1991.

Further reading

110 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

See
• Arie van Deursen and Leon Moonen. An empirical Study Into Cobol Type

Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)
- assign: ex. a := b
- expression: ex. a <= b
- arrayIndex: ex. A[i]

2. Compute derived relations
- typeEquiv: variables belong to the same type
- subtypeOf: variables belong to super/subtype
- extensional notion of type: set of variables

Type reconstruction
(from type-less legacy code)

111 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Pseudo code from paper

Type reconstruction
(from type-less legacy code)

112 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Type reconstruction
(from type-less legacy code)

Data
type VariableGraph v array
 = (Rel v v, Rel v array, Rel v v)

type TypeGraph x
 = (Rel x x, Rel x x) -- subtypes and type equiv

Operation
typeInference
 :: (Ord v, Ord array) =>
 VariableGraph v array -> TypeGraph v

113 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

See
• Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working

with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
 - matrix of objects vs. properties

2. Compute concept lattice
 - a concept = (extent,intent)
 - ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Formal concept analysis

114 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Note that _’ operation denotes computation of intent from extent, or
vice versa, implicitly given a context.

Formal concept analysis
pseudo-code (1/2)

115 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Transposition to Haskell?

Formal concept analysis
pseudo-code (2/2)

116 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Representation

type Context g m = Rel g m
type Concept g m = (Set g, Set m)
type ConceptLattice g m

= Rel (Concept g m) (Concept g m)

Algorithm
neighbors :: (Ord g, Ord m)
 => Set g -- extent of concept
 -> Context g m -- formal context
 -> [Concept g m] -- list of neighbors

lattice :: (Ord g, Ord m)
 => Context g m -- formal context
 -> ConceptLattice g m -- concept lattice

Formal concept analysis

117 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Ongoing projects at SIG

Reverse engineering
• Java library for binary relational algebra (+ slicing + fork)

Repository mining
• Analyze relationships between code/commits/issues through time
• Clustering and decision trees

Quality and metrics
• Generalized method for derivation of quality profiles
• Metrics for architectural quality and evolution
• Benchmarking commercial and open source software

118 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Possible MFES projects at SIG

Java library binary relational algebra
• Extend to “labeled” relations
• Extend with advanced algorithms (e.g. concept analysis)

Randomized testing for Java
• Study existing approaches
• Build / extend tool

119 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

More info? Feel free to contact…

Dr. ir. Joost Visser
 E: j.visser@sig.nl
 W: www.sig.nl
 T: +31 20 3140950

120 I 118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

