PF transform: when everything becomes a relation

J.N. Oliveira

Dept. Informática, Universidade do Minho

Braga, Portugal

DI/UM, 2007

Pairs

Consider assertions

0	\leq	π
John	IsFatherOf	Mary
3	$=(1+)$	2

- They are statements of fact concerning various kinds of object - real numbers, people, natural numbers, etc
- They involve two such objects, that is, pairs

$$
\begin{gathered}
(0, \pi) \\
(\text { John, Mary }) \\
(3,2)
\end{gathered}
$$

respectively.

Sets of pairs

So, we might have written

$$
\begin{aligned}
(0, \pi) & \in \leq \\
(\text { John, Mary }) & \in \text { IsFatherOf } \\
(3,2) & \in(1+)
\end{aligned}
$$

What are (\leq), IsFatherOf, $(1+)$?

- they are sets of pairs
- they are binary relations

Therefore,

- partial orders - eg. (\leq) - are special cases of relations
- functions - eg. succ $\triangleq(1+)$ - are special cases of relations

Binary Relations

Binary relations are typed:
Arrow notation
Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).
A, B are types. Writing $B \stackrel{R}{\longleftrightarrow} A$ means the same as $A \xrightarrow{R} B$.

arbitrary $B \ll R A$: we write
to denote that $(b, a) \in R$.

Binary Relations

Binary relations are typed:
Arrow notation
Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).
A, B are types. Writing $B \stackrel{R}{\longleftrightarrow} A$ means the same as $A \xrightarrow{R} B$. Infix notation
The usual infix notation used in natural language - eg. John IsFatherOf Mary - and in maths - eg. $0 \leq \pi$ - extends to arbitrary $B \stackrel{R}{\longleftarrow} A$: we write

$$
b R a
$$

to denote that $(b, a) \in R$.

Functions are relations

- Lowercase letters (or identifiers starting by one such letter) will denote special relations known as functions, eg. f, g, succ, etc.
- We regard function $f: A \longrightarrow B$ as the binary relation which relates b to a iff $b=f a$. So, $b f$ a literally means $b=f a$.
- Therefore, we generalize

Composition

Recall function composition

$$
\begin{align*}
& B \underset{f \cdot g}{\stackrel{f}{\rightleftarrows}} A \tag{1}\\
& b=f(g c)
\end{align*}
$$

and extend $f \cdot g$ to $R \cdot S$ in the obvious way:

$$
\begin{equation*}
b(R \cdot S) c \equiv\langle\exists a:: b R a \wedge a S c\rangle \tag{2}
\end{equation*}
$$

Note how this rule of the PF-transform removes \exists when applied from right to left

Check generalization

Back to functions, (2) becomes

$$
\begin{aligned}
b(f \cdot g) c \equiv & \langle\exists a:: b f a \wedge a g c\rangle \\
\equiv & \{a g \subset \text { means } a=g c\} \\
& \langle\exists a:: b f a \wedge a=g c\rangle \\
\equiv & \quad\{\exists \text {-trading;bfa means } b=f a\} \\
& \langle\exists a: a=g c: b=f a\rangle \\
\equiv & \quad\{\text { one-point rule }(\exists)\} \\
& b=f(g c)
\end{aligned}
$$

So, we easily recover what we had before (1).

Inclusion generalizes equality

- Equality on functions

$$
f=g \equiv\left\langle\forall a: a \in A: f a={ }_{B} \quad g a\right\rangle
$$

generalizes to inclusion on relations:

$$
\begin{equation*}
R \subseteq S \equiv\langle\forall b, a:: b R a \Rightarrow b S a\rangle \tag{3}
\end{equation*}
$$

(read $R \subseteq S$ as " R is at most S ")

- For $R \subseteq S$ to hold both need to be of the same type, say $B \stackrel{R, S}{\rightleftarrows} A$

Exercises

Exercise 1: We want to compare

$$
\begin{align*}
& \text { IsPrefixOf : }\left(s: A^{\star}\right) \rightarrow\left(r: A^{\star}\right) \tag{4}\\
& \text { post length } r \leq \text { length } s \wedge\langle\forall i: i \leq \text { length } r: r i=s i\rangle
\end{align*}
$$

with

```
Permutes: \(\left(s: A^{\star}\right) \rightarrow\left(r: A^{\star}\right)\)
post \(\langle\forall e: e \in\) elems \(s \cup\) elems \(r\) : count e \(s=\) count e \(r\rangle\)
```

and with function tail, all of type $A^{\star} \longleftarrow A^{\star}$. Check which of the following hold:

- tail \subseteq IsPrefixOf
- IsPrefixOf \subseteq Permutes

Special relations

Every type $B \longleftarrow \subset A$ has its

- bottom relation $B \stackrel{\perp}{\longleftarrow} A$, which is such that, for all b, a, $b \perp a \equiv$ FALSE
- topmost relation $B \Vdash^{\top} A$, which is such that, for all b, a, $b \top a \equiv$ TRUE
Type $A \longleftarrow A$ has the
- identity relation $A \stackrel{i d}{\longleftarrow} A$ which is function id $a \triangle a$.

Clearly, for every R,

$$
\begin{equation*}
\perp \subseteq R \subseteq \top \tag{6}
\end{equation*}
$$

Exercises

Exercise 2: Resort to PF-transform rule (2) and to the Eindhoven quantifier calculus to show that

$$
\begin{align*}
& R \cdot i d=R=i d \cdot R \tag{7}\\
& R \cdot \perp=\perp=\perp \cdot R \tag{8}
\end{align*}
$$

hold and that composition is associative:

$$
\begin{equation*}
R \cdot(S \cdot T)=(R \cdot S) \cdot T \tag{9}
\end{equation*}
$$

Converses

Every relation $B<{ }^{R} A$ has a converse $B \xrightarrow{R^{\circ}} A$ which is such that, for all a, b,

$$
\begin{equation*}
a\left(R^{\circ}\right) b \equiv b R a \tag{10}
\end{equation*}
$$

Note that converse commutes with composition

$$
\begin{equation*}
(R \cdot S)^{\circ}=S^{\circ} \cdot R^{\circ} \tag{11}
\end{equation*}
$$

and with itself:

$$
\begin{equation*}
\left(R^{\circ}\right)^{\circ}=R \tag{12}
\end{equation*}
$$

Function converses

Function converses f°, g° etc. always exist (as relations) and enjoy the following (very useful) PF-transform property:

$$
\begin{equation*}
(f b) R(g \quad a) \equiv b\left(f^{\circ} \cdot R \cdot g\right) a \tag{13}
\end{equation*}
$$

cf. diagram:

Let us see an example of its use.

PF-transform at work

Transforming a well-known PW-formula:
f is injective

$$
\left.\begin{array}{lc}
\equiv & \{\text { recall definition from discrete maths }\} \\
& \langle\forall y, x::(f y)=(f x) \Rightarrow y=x\rangle \\
\equiv & \{\text { introduce id (twice) }\} \\
& \langle\forall y, x::(f \text { f }) \text { id }(f x) \Rightarrow y(i d) x\rangle \\
\equiv & \left\{\text { rule }(f b) R(g \text { a }) \equiv b\left(f^{\circ} \cdot R \cdot g\right) a(13)\right\} \\
& \left\langle\forall y, x:: y\left(f^{\circ} \cdot i d \cdot f\right) x \Rightarrow y(i d) x\right\rangle \\
\equiv & \{(7) \text {; then go pointfree via (3) \}}
\end{array}\right\}
$$

The other way round

Let us now see what $i d \subseteq f \cdot f^{\circ}$ means:

$$
\begin{aligned}
& i d \subseteq f \cdot f^{\circ} \\
& \equiv \quad\{\text { relational inclusion (3) \} } \\
& \left\langle\forall y, x:: y(i d) x \Rightarrow y\left(f \cdot f^{\circ}\right) x\right\rangle \\
& \equiv \quad\{\text { identity relation; composition (2) \}} \\
& \left\langle\forall y, x:: y=x \Rightarrow\left\langle\exists z:: y f z \wedge z f^{\circ} x\right\rangle\right\rangle \\
& \equiv \quad\{\forall \text {-trading ; converse (10) }\} \\
& \langle\forall y, x: y=x:\langle\exists z:: y f z \wedge x f z\rangle\rangle \\
& \equiv \quad\{\forall \text {-one point ; trivia; function } f \text { \} } \\
& \langle\forall x::\langle\exists z:: x=f z\rangle\rangle \\
& \equiv \quad\{\text { recalling definition from maths }\} \\
& f \text { is surjective }
\end{aligned}
$$

Why id (really) matters

Terminology:

- Say R is reflexive iff id $\subseteq R$ pointwise: $\quad\langle\forall a:: a R a\rangle \quad$ (check as homework);
- Say R is coreflexive iff $R \subseteq i d$ pointwise: $\langle\forall a:: b R a \Rightarrow b=a\rangle \quad$ (check as homework).

Define, for $B \Vdash^{R} A$:

Kernel of R	Image of R
$A \stackrel{\text { ker } R}{\leftrightarrows} A$	$B \stackrel{\text { img } R}{\leftrightarrows} B$
$\operatorname{ker} R \stackrel{\text { def }}{=} R^{\circ} \cdot R$	$\operatorname{img} R \stackrel{\text { def }}{=} R \cdot R^{\circ}$

Example: kernels of functions

$$
\begin{array}{ll}
& \begin{array}{c}
a^{\prime}(\operatorname{ker} f) a \\
\equiv
\end{array} \quad\{\text { substitution }\} \\
& a^{\prime}\left(f f^{\circ} \cdot f\right) a \\
\equiv & \{\text { PF-transform rule (13) }\}
\end{array}
$$

In words: $a^{\prime}(\operatorname{ker} f) a$ means a^{\prime} and a "have the same f-image"
Exercise 3: Let C be a nonempty data domain and let and $c \in C$. Let \underline{c} be the "everywhere c " function:

$$
\begin{array}{r}
\underline{c}: A \longrightarrow C \tag{14}\\
\underline{c} a \geq c
\end{array}
$$

Compute which relations are defined by the following PF-expressions:

$$
\begin{equation*}
\operatorname{ker} \underline{c}, \underline{b} \cdot \underline{c}^{\circ}, \quad \operatorname{img} \underline{c} \tag{15}
\end{equation*}
$$

Binary relation taxonomy

Topmost criteria:

Definitions:

	Reflexive	Coreflexive
$\operatorname{ker} R$	entire R	injective R
$\operatorname{img} R$	surjective R	simple R

Facts:

$$
\begin{align*}
\operatorname{ker}\left(R^{\circ}\right) & =\operatorname{img} R \tag{17}\\
\operatorname{img}\left(R^{\circ}\right) & =\operatorname{ker} R \tag{18}
\end{align*}
$$

Binary relation taxonomy

The whole picture:

Exercise 4: Resort to $(17,18)$ and (16) to prove the following four rules of thumb:

- converse of injective is simple (and vice-versa)
- converse of entire is surjective (and vice-versa)
- smaller than injective (simple) is injective (simple)
- larger than entire (surjective) is entire (surjective)

Functions in one slide

A function f is a binary relation such that

Relation taxonomy — orders

Orders are endo-relations $A \longleftarrow_{R}^{R} A$ classified as

(Criteria definitions: next slide)

Orders and their taxonomy

Besides

$$
\begin{array}{ll}
\text { reflexive: } & \text { iff } i d_{A} \subseteq R \\
\text { coreflexive: } & \text { iff } R \subseteq i d_{A}
\end{array}
$$

an order (or endo-relation) $A \not{ }_{R}^{R} A$ can be

```
transitive: iff R}R\quadR\subseteq
anti-symmetric: iff R\cap R}\subseteqid\mp@subsup{d}{A}{
symmetric: iff R\subseteq\mp@subsup{R}{}{\circ}(\equivR=\mp@subsup{R}{}{\circ})
connected: iff R\cup R}=
```


Orders and their taxonomy

Therefore:

- Preorders are reflexive and transitive orders.

Example: y IsAtMostAsOldAs x

- Partial orders are anti-symmetric preorders Example: $y \subseteq x$
- Linear orders are connected partial orders Example: $y \leq x$
- Equivalences are symmetric preorders Example: y Permutes x
- Pers are partial equivalences Example: y IsBrotherOf x

Exercises

Exercise 5: Expand all criteria in the previous slides to pointwise notation.

Exercise 6: A relation R is said to be co-transitive iff the following holds:

$$
\begin{equation*}
\langle\forall b, a: b R a:\langle\exists c: b R c: c R a\rangle\rangle \tag{20}
\end{equation*}
$$

Compute the PF-transform of the formula above. Find a relation (eg. over numbers) which is co-transitive and another which is not.

Meet and join

Meet (intersection) and join (union) internalize conjunction and disjunction, respectively,

$$
\begin{align*}
b(R \cap S) a & \equiv b R a \wedge b S a \tag{21}\\
b(R \cup S) a & \equiv b R a \vee b S a \tag{22}
\end{align*}
$$

for R, S of the same type. Their meaning is captured by the following universal properties:

$$
\begin{align*}
& X \subseteq R \cap S \equiv X \subseteq R \wedge X \subseteq S \tag{23}\\
& R \cup S \subseteq X \equiv R \subseteq X \wedge S \subseteq X \tag{24}
\end{align*}
$$

In summary

Type $B \longleftarrow A$ forms a lattice:

All (data structures) in one (PF notation)

Products
where

Clearly: $R \times S=\left\langle R \cdot \pi_{1}, S \cdot \pi_{2}\right\rangle$

Sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Sums

Example (Haskell):
data X = Boo Bool | Err String

PF-transforms to

where

$$
\begin{array}{ll}
{[R, S]=\left(R \cdot i_{1}^{\circ}\right) \cup\left(S \cdot i_{2}^{\circ}\right) \quad \text { cf. }} & A \xrightarrow{i_{1}} A+B \stackrel{i_{2}}{\longrightarrow} B \\
\text { Dually: } R+S=\left[i_{1} \cdot R, i_{2} \cdot S\right]
\end{array}
$$

Last but not least: relational equality

- Pointwise equality:

$$
R=S \equiv\langle\forall b, a:: b R a \equiv b S a\rangle
$$

- Pointfree equality:
- Cyclic inclusion ("ping-pong") rule:

$$
\begin{equation*}
R=S \equiv R \subseteq S \wedge S \subseteq R \tag{28}
\end{equation*}
$$

- Indirect equality rules ${ }^{1}$:

$$
\begin{align*}
R=S & \equiv\langle\forall X::(X \subseteq R \equiv X \subseteq S)\rangle \tag{29}\\
& \equiv\langle\forall X:(R \subseteq X \equiv S \subseteq X)\rangle \tag{30}
\end{align*}
$$

Example of indirect proof

$$
\begin{array}{cc}
& X \subseteq(R \cap S) \cap T \\
\equiv & \{\cap \text {-universal (23) }\} \\
& X \subseteq(R \cap S) \wedge X \subseteq T \\
\equiv & \{\cap \text {-universal (23) }\} \\
& (X \subseteq R \wedge X \subseteq S) \wedge X \subseteq T \\
\equiv & \{\wedge \text { is associative }\} \\
& X \subseteq R \wedge(X \subseteq S \wedge X \subseteq T) \\
\equiv & \{\cap \text {-universal (23) twice }\} \\
& X \subseteq R \cap(S \cap T) \\
: & \{\text { indirection }\} \\
& (R \cap S) \cap T=R \cap(S \cap T) \tag{31}
\end{array}
$$

Last but not least: monotonicity

All relational combinators seen so far are \subseteq-monotonic, for instance:

$$
\begin{aligned}
R \subseteq S & \Rightarrow R^{\circ} \subseteq S^{\circ} \\
R \subseteq S \wedge U \subseteq V & \Rightarrow R \cdot U \subseteq S \cdot V \\
R \subseteq S \wedge U \subseteq V & \Rightarrow R \cap U \subseteq S \cap V \\
R \subseteq S \wedge U \subseteq V & \Rightarrow R \cup U \subseteq S \cup V
\end{aligned}
$$

etc

Exercises

Exercise 7: Show that (13) holds.

Exercise 8: Check which of the following hold:

- If relations R and S are simple, then so is $R \cap S$
- If relations R and S are injective, then so is $R \cup S$
- If relations R and S are entire, then so is $R \cap S$

Exercise 9: Prove that relational composition preserves all relational classes in the taxonomy of (19).

Exercises

Exercise 10: Prove the following fact

$$
\begin{equation*}
\text { A function } f \text { is a bijection iff its converse } f^{\circ} \text { is a function } \tag{32}
\end{equation*}
$$

by completing:

$$
\begin{aligned}
& \\
& \equiv \begin{array}{c}
f \text { and } f^{\circ} \text { are functions } \\
\{\ldots\}
\end{array} \\
& \equiv \begin{array}{c}
(i d \subseteq \operatorname{ker} f \wedge \operatorname{img} f \subseteq i d) \wedge\left(i d \subseteq \operatorname{ker} f^{\circ} \wedge \operatorname{img} f^{\circ} \subseteq i d\right)
\end{array} \\
& \begin{array}{c}
\{\ldots\}
\end{array} \\
& \equiv \\
& \quad \begin{array}{l}
\quad\{\ldots\}
\end{array} \\
& \\
& f \text { is a bijection }
\end{aligned}
$$

Summary

Rules of the PF-transform seen so far:

R R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall International, 1997. C.A.R. Hoare, series editor.

