PF transform: when everything becomes a
relation

J.N. Oliveira

Dept. Informatica,
Universidade do Minho
Braga, Portugal

DI/UM, 2007

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Pairs
Consider assertions
0 < T
John [sFatherOf Mary
3 = (1+) 2

e They are statements of fact concerning various kinds of object
— real numbers, people, natural numbers, etc

e They involve two such objects, that is, pairs

(0,7)
(John, Mary)
(3,2)

respectively.

Motivation Binary Relations Composition Inclusion Converse All'in one

Sets of pairs

So, we might have written

(0,7) € <
(John,Mary) € IsFatherOf
3,2) € (1+)

What are (<), IsFatherOf, (1+)?
e they are sets of pairs
e they are binary relations
Therefore,

e partial orders — eg. (<) — are special cases of relations

Summary

e functions — eg. succ £ (1+) — are special cases of relations

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Binary Relations

Binary relations are typed:

Arrow notation
Arrow A—2~ B denotes a binary relation from A (source) to B
(target).

A, B are types. Writing B R A means the same as A L B.

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Binary Relations

Binary relations are typed:

Arrow notation
Arrow A—2~ B denotes a binary relation from A (source) to B
(target).

A, B are types. Writing B R A means the same as A L B.

Infix notation
The usual infix notation used in natural language — eg.
John [sFatherOf Mary — and in maths — eg. 0 < m — extends to

arbitrary B R A we write
bRa

to denote that (b, a) € R.

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Functions are relations

e Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f, g, succ, etc.

e We regard function f : A — B as the binary relation which relates
bto aiff b=1f a. So, b f a literally means b = f a.

o Therefore, we generalize

B<—A to B<—A
b=fa bRa

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Composition

Recall function composition

B—' A% ¢ (1)
_/

fg

b="f(g c)

and extend f - g to R - S in the obvious way:
b(R-S)c = (3a : bRanaSc) (2)

Note how this rule of the PF-transform removes 3 when applied
from right to left

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Check generalization

Back to functions, (2) becomes

b(f - g)c (Ja :: bfanagc

{ agcmeansa=gc}

(Ja:: bfana=gc)
{ F-trading ; b f ameansb="f a}

(Hda:a=gc: b=fa)

{ one-point rule (3) }
b=1f(gc)

So, we easily recover what we had before (1).

Motivation Binary Relations Composition Inclusion Converse All'in one

Inclusion generalizes equality

e Equality on functions
f=g = (Va:acA: fa=p ga)
generalizes to inclusion on relations:
RCS = (Vba: bRa=bS a)

(read R C S as “R is at most S")

e For R C S to hold both need to be of the same type, say

R,S
B=——-2A

Summary

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Exercises

Exercise 1: We want to compare

IsPrefixOf : (s : A*) — (r : A%) (4)
post length r < length s AN (N i : i <lengthr: ri=s/i)
with

Permutes : (s : A*) — (r: AY) (5)

post (Ve : e€ elems sUelems r: count e s = count e r)

and with function tail, all of type A* <—— A* . Check which of the
following hold:

o tail C [sPrefixOf

o [sPrefixOf C Permutes

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Special relations

Every type B<—— A has its

e bottom relation B P A, which is such that, for all b, a,
bla = FALSE

e topmost relation B - A, which is such that, for all b, a,
bTa = TRUE

Type A<—— A has the

e identity relation A <9 A which is function id a & a.
Clearly, for every R,

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Exercises

Exercise 2: Resort to PF-transform rule (2) and to the Eindhoven
quantifier calculus to show that

R.id =R = id-R (7)
R-1L=1=L1-R (8)

hold and that composition is associative:

R-(§-T) = (R-S)-T (9)

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Converses

Every relation B <R A has a converse B LA which is
such that, for all a, b,

a(R°)b = bRa (10)
Note that converse commutes with composition
(R-S)°=S5"-R° (11)
and with itself:

(R°)°=R (12)

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Function converses

Function converses °, g° etc. always exist (as relations) and
enjoy the following (very useful) PF-transform property:

(f b)R(g a) = b(f°-R-g)a (13)

cf. diagram:

Let us see an example of its use.

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

PF-transform at work

Transforming a well-known PW-formula:

f is injective

{ recall definition from discrete maths }
Ny x = (fy)=(fx)=y=x)

{ introduce id (twice) }
(Vy,x = (f y)id(f x)=y(id)x)

{ rule (f b)R(g a) =b(f°-R-g)a (13) }
Vy,x = y(f°-id- f)x = y(id)x)

{ (7) ; then go pointfree via (3) }
fe-fCid

Motivation Binary Relations Composition Inclusion Converse All'in one

The other way round

Let us now see what id C f - f° means:

idCf-f°
{ relational inclusion (3) }
(Vy,x = y(id)x = y(f - °)x)
{ identity relation ; composition (2) }
NVy,x my=x=3z = yfzAzf°x))
{ V-trading ; converse (10) }
NVy,x:y=x: 3z yfzAxfz)
{ V-one point ; trivia ; function f }
(Vx = (Fz 2 x=f12)
{ recalling definition from maths }

f is surjective

Summary

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Why id (really) matters

Terminology:
e Say R is reflexive iff id C R
pointwise: (Va:: aRa) (check as homework);
e Say R is coreflexive iff R C id
pointwise: (Va :: bR a=b=a) (check as homework).

Define, for B . A:

Kernel of R Image of R

2 ker R 2 B img R B
kerRY R.R | imgRY R. R

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Example: kernels of functions

a'(kerf)a

= { substitution }
a(f°-fa

= { PF-transform rule (13) }
(f a')=(f a)

In words: a’(ker f)a means &’ and a “have the same f-image”

Exercise 3: Let C be a nonempty data domain and let and c € C. Let
¢ be the “everywhere c¢” function:

A—=C

L c

[Re)

(14)

<
Compute which relations are defined by the following PF-expressions:
kerc , b-c® , imgc (15)

Motivation Binary Relations Composition Inclusion Converse All in one Summary

Binary relation taxonomy

Topmost criteria:

relation
injective entire simple surjective
Definitions:
| || Reflexive | Coreflexive |

ker R entire R injective R (16)

img R surjective R simple R
Facts:

ker(R°) = imgR (17)

img(R°) = kerR (18)

Converse

Binary relation taxonomy

The whole picture:

binary relation
— ~
injective entire simple surjective
representation function abstraction
~ — ~ —
injection surjection
~ —
bijection

(19)

Exercise 4: Resort to (17,18) and (16) to prove the following four rules
of thumb:

e converse of injective is simple (and vice-versa)
e converse of entire is surjective (and vice-versa)
e smaller than injective (simple) is injective (simple)

e larger than entire (surjective) is entire (surjective)

Converse

Functions in one slide

A function f is a binary relation such that

Pointwise | Pointfree

“Left” Uniqueness
bfanb fa = b=V imgf C id | (f is simple)
Leibniz principle
a=a = fa=fad | id C kerf | (fis entire)

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Relation taxonomy — orders

. R .
Orders are endo-relations A <—— A classified as

endosrelation

symmetric transitive reflexive anti-symmetric connected
per preorder

coreflexive

equivalence partial order

id linear order

(Criteria definitions: next slide)

Motivation Binary Relations Composition Inclusion Converse All'in one

Orders and their taxonomy

Besides

reflexive: iff idy C R
coreflexive: iff R C ida

. R
an order (or endo-relation) A<—— A can be

transitive: ffR-RCR
anti-symmetric: iff RNR° Cidy
symmetric: iff RC R°(= R =R")

connected: iff RUR° =T

Summary

Motivation Binary Relations Composition Inclusion Converse All'in one
Orders and their taxonomy
Therefore:

e Preorders are reflexive and transitive orders.
Example: y IsAtMostAsOIdAs x

e Partial orders are anti-symmetric preorders
Example: y C x

e Linear orders are connected partial orders
Example: y < x

e Equivalences are symmetric preorders
Example: y Permutes x

e Pers are partial equivalences

Example: y IsBrotherOf x

Summary

Converse

Exercises

Exercise 5: Expand all criteria in the previous slides to pointwise
notation.
O

Exercise 6: A relation R is said to be co-transitive iff the following
holds:

(Vbya: bRa: (dc : bRc: cRa)) (20)

Compute the PF-transform of the formula above. Find a relation (eg.
over numbers) which is co-transitive and another which is not.

O

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Meet and join

Meet (intersection) and join (union) internalize conjunction and
disjunction, respectively,

b(RNS)a = bRaAbSa (21)
b(RuS)a = bRaVvbSa (22)

for R, S of the same type. Their meaning is captured by the
following universal properties:

X C RNS = XCRAXCS (23)
RUS C X = RCX ASCX (24)

Motivation Binary Relations Composition Inclusion Converse All'in one

In summary

Type B<—— A forms a lattice:

T “top”
R U S join, lub (“least upper bound")
R \ / 5

RNS meet, glb (“greatest lower bound”)

1 “bottom”

Summary

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

All (data structures) in one (PF notation)

Products

A<— AxB—2>B (25)

N@T /

where C

Y \ PF 4
aRcAbSc (a, b)(R,S)c (26)
bRandS c|(b,d)R xS)(a,c)

Clearly: Rx S=(R-m,S-m)

Motivation Binary Relations Composition Inclusion Converse All'in one Summary
Sums
Example (Haskell):

data X = Boo Bool | Err String

Motivation Binary Relations Composition Inclusion Converse All'in one Summary
Sums
Example (Haskell):
data X = Boo Bool | Err String

PF-transforms to

Bool ", Bool + String ~—2 String (27)
l[Boo JErr]
Boo Err
X

where

R.S] = (R-iU(S-) of A—opatB<" B

R l[R > S

Dually: R+S=1[i-R ,i>- 5] C

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Last but not least: relational equality

e Pointwise equality:

R=S = (Vbja:: bRa=bSa
o Pointfree equality:

e Cyclic inclusion (“ping-pong”) rule:

R=S = RCSASCR (28)
e Indirect equality rules !:

R=S = (VX :: (XCR=XCYS)) (29)

= (VX :: (RCX=SCX (30)

ICf. [1], p. 82.

Motivation Binary Relations Composition Inclusion Converse All'in one Summary

Example of indirect proof

XC(RNS)NT

{ N-universal (23) }
XC(RNS)AXCT

{ N-universal (23) }
(XCRAXCS)AXCT

{ Ais associative }
XCRAXCSAXCT)

{ N-universal (23) twice }
XCRN(SNT)

{ indirection }

(RNS)NT=RN(SNT) (31)

Motivation Binary Relations Composition

Inclusion Converse All'in one

Last but not least: monotonicity

All relational combinators seen so far are C-monotonic, for

instance:

RCS
RCSAUCV
RCSAUCV
RCSAUCV

etc

=
=
=
=

R° C S°

R-UCS-V
RhucCsSnV
RuUUCSUV

Summary

All'in one

Exercises

Exercise 7: Show that (13) holds.
U

Exercise 8: Check which of the following hold:
o |[f relations R and S are simple, then sois RN S
o |[f relations R and S are injective, then sois RU S

e |f relations R and S are entire, thensois RN S

O

Exercise 9: Prove that relational composition preserves all relational
classes in the taxonomy of (19).

O

All'in one

Exercises

Exercise 10: Prove the following fact
A function f is a bijection iff its converse f° is a function (32)

by completing:

f and f° are functions

- (.}
(id Ckerf ANimgf C id) A (id C ker f° Aimg f° C id)
- (.}

f is a bijection

Summary

Summary

Rules of the PF-transform seen so far:

¢ | PF ¢
(Ja : bRanaSc) b(R-S)c
(Wa,b :: bRa=bS a) RCS
(Va : aRa) id CR
bRaAcS§S a (b,c)(R,S)a
bRaANndS c (b,d)(R x S)(a,c¢)
bRaAbS a b(RNS) a
bRavb$a b(RUS) a
(f b) R (g a) b(f°-R-g)a
TRUE bTa
FALSE bl a

Motivation Binary Relations Composition

R. Bird and O. de Moor.
Algebra of Programming.

Series in Computer Science. Prentice-Hall International, 1997.
C.A.R. Hoare, series editor.

Inclusion Converse All'in one Summary

http://www.phptr.com/ptrbooks/ptr_013507245x.html

	Motivation
	Binary Relations
	Composition
	Inclusion
	Converse
	All in one
	Summary

