PF transform: when everything becomes a relation

J.N. Oliveira

Dept. Informática, Universidade do Minho Braga, Portugal

DI/UM, 2007

Pairs

Consider assertions

$$0 \leq \pi$$
John IsFatherOf Mary
 $3 = (1+) 2$

- They are statements of fact concerning various kinds of object
 real numbers, people, natural numbers, etc
- They involve two such objects, that is, pairs

$$(0,\pi)$$
 (John, Mary) $(3,2)$

respectively.

Sets of pairs

So, we might have written

$$egin{array}{lll} (0,\pi) &\in& \leq \ (ext{John}, ext{Mary}) &\in& ext{\it lsFatherOf} \ (3,2) &\in& (1+) \end{array}$$

What are (\leq) , *IsFatherOf*, (1+)?

- they are sets of pairs
- they are binary relations

Therefore,

- partial **orders** eg. (\leq) are special cases of relations
- functions eg. $succ \triangle (1+)$ are special cases of relations

Binary Relations

Binary relations are typed:

Arrow notation

Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).

A, B are types. Writing $B \stackrel{R}{\longleftarrow} A$ means the same as $A \stackrel{R}{\longrightarrow} B$.

Infix notation

The usual infix notation used in natural language — eg. John *IsFatherOf* Mary — and in maths — eg. $0 \le \pi$ — extends to arbitrary $B \stackrel{R}{\longleftarrow} A$: we write

b R a

to denote that $(b, a) \in R$

Binary Relations

Binary relations are typed:

Arrow notation

Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).

A, B are types. Writing $B \stackrel{R}{\longleftarrow} A$ means the same as $A \stackrel{R}{\longrightarrow} B$.

Infix notation

The usual infix notation used in natural language — eg. John *IsFatherOf* Mary — and in maths — eg. $0 \le \pi$ — extends to arbitrary $B \xleftarrow{R} A$: we write

b R a

to denote that $(b, a) \in R$.

Functions are relations

denote special relations known as **functions**, eg. *f* , *g* , *succ* , etc.

Lowercase letters (or identifiers starting by one such letter) will

- We regard function $f: A \longrightarrow B$ as the binary relation which relates b to a iff b = f a. So, b f a literally means b = f a.
- Therefore, we generalize

$$B \xleftarrow{f} A$$
$$b = f \ a$$

to

$$B \stackrel{R}{\longleftarrow} A$$

Composition

Recall function composition

$$B = A = C$$

$$f \cdot g$$

$$b = f(g \ c)$$
(1)

and extend $f \cdot g$ to $R \cdot S$ in the obvious way:

$$b(R \cdot S)c \equiv \langle \exists a :: b R a \wedge a S c \rangle \qquad (2)$$

Note how this rule of the PF-transform $removes \exists$ when applied from right to left

Check generalization

Back to functions, (2) becomes

$$b(f \cdot g)c \equiv \langle \exists \ a :: \ b \ f \ a \land a \ g \ c \rangle$$

$$\equiv \qquad \left\{ \begin{array}{r} a \ g \ c \ \text{means} \ a = g \ c \right\}$$

$$\langle \exists \ a :: \ b \ f \ a \land a = g \ c \rangle$$

$$\equiv \qquad \left\{ \begin{array}{r} \exists \text{-trading} \ ; \ b \ f \ a \ \text{means} \ b = f \ a \right\}$$

$$\langle \exists \ a : \ a = g \ c : \ b = f \ a \rangle$$

$$\equiv \qquad \left\{ \begin{array}{r} \text{one-point rule} \ (\exists) \ \right\}$$

$$b = f(g \ c)$$

So, we easily recover what we had before (1).

Inclusion generalizes equality

• **Equality** on functions

$$f = g \equiv \langle \forall a : a \in A : f a =_B g a \rangle$$

generalizes to inclusion on relations:

$$R \subseteq S \equiv \langle \forall b, a :: b R a \Rightarrow b S a \rangle \tag{3}$$

(read $R \subseteq S$ as "R is at most S")

• For $R \subseteq S$ to hold both need to be of the same type, say $B \stackrel{R,S}{\longleftarrow} A$

Exercises

Exercise 1: We want to compare

$$IsPrefixOf: (s: A^*) \rightarrow (r: A^*)$$
post $length \ r \leq length \ s \land \langle \forall \ i : i \leq length \ r : r \ i = s \ i \rangle$
(4)

with

Permutes:
$$(s: A^*) \rightarrow (r: A^*)$$
 (5)
post $\forall e: e \in elems \ s \cup elems \ r: count \ es = count \ er \rangle$

and with function tail, all of type $A^* \leftarrow A^*$. Check which of the following hold:

- tail ⊆ IsPrefixOf
- IsPrefixOf ⊂ Permutes

Special relations

Every type $B \leftarrow A$ has its

- bottom relation $B \stackrel{\perp}{\longleftarrow} A$, which is such that, for all b, a, $b \mid a = \text{FALSE}$
- topmost relation $B \stackrel{\top}{\longleftarrow} A$, which is such that, for all b, a, $b \top a \equiv \text{True}$

Type $A \leftarrow A$ has the

• identity relation $A \stackrel{id}{\longleftarrow} A$ which is function $id \ a \triangle \ a$.

Clearly, for every R,

$$\perp \subseteq R \subseteq \top$$
 (6)

Exercises

Exercise 2: Resort to PF-transform rule (2) and to the Eindhoven quantifier calculus to show that

$$R \cdot id = R = id \cdot R \tag{7}$$

$$R \cdot \bot = \bot = \bot \cdot R \tag{8}$$

hold and that composition is associative:

$$R \cdot (S \cdot T) = (R \cdot S) \cdot T \tag{9}$$

Converses

Every relation $B \stackrel{R}{\longleftarrow} A$ has a **converse** $B \stackrel{R^{\circ}}{\longrightarrow} A$ which is such that, for all a, b,

$$a(R^{\circ})b \equiv b R a \tag{10}$$

Note that converse commutes with composition

$$(R \cdot S)^{\circ} = S^{\circ} \cdot R^{\circ} \tag{11}$$

and with itself:

$$(R^{\circ})^{\circ} = R \tag{12}$$

Function converses

Function converses f°, g° etc. always exist (as **relations**) and enjoy the following (very useful) PF-transform property:

$$(f b)R(g a) \equiv b(f^{\circ} \cdot R \cdot g)a \tag{13}$$

cf. diagram:

$$\begin{array}{c|c}
B \stackrel{R}{\longleftarrow} A \\
f^{\circ} \downarrow & \uparrow g \\
C \stackrel{E}{\longleftarrow} B \stackrel{R}{\longrightarrow} D
\end{array}$$

Let us see an example of its use.

PF-transform at work

Transforming a well-known PW-formula:

```
f is injective
       { recall definition from discrete maths }
\langle \forall \ y, x :: (f \ y) = (f \ x) \Rightarrow y = x \rangle
       { introduce id (twice) }
\langle \forall v, x :: (f v) id(f x) \Rightarrow v(id)x \rangle
       { rule (f \ b)R(g \ a) \equiv b(f^{\circ} \cdot R \cdot g)a (13) }
\langle \forall v, x :: v(f^{\circ} \cdot id \cdot f)x \Rightarrow v(id)x \rangle
       { (7); then go pointfree via (3) }
f^{\circ} \cdot f \subseteq id
```

The other way round

Let us now see what $id \subseteq f \cdot f^{\circ}$ means:

```
id \subseteq f \cdot f^{\circ}
               { relational inclusion (3) }
       \langle \forall y, x :: y(id)x \Rightarrow y(f \cdot f^{\circ})x \rangle
               { identity relation; composition (2) }
       \langle \forall y, x :: y = x \Rightarrow \langle \exists z :: y f z \land z f^{\circ}x \rangle \rangle
\equiv { \forall-trading; converse (10) }
       \langle \forall v, x : y = x : \langle \exists z :: y f z \land x f z \rangle \rangle
               \{ \forall \text{-one point } ; \text{ trivia } ; \text{ function } f \}
       \langle \forall x :: \langle \exists z :: x = f z \rangle \rangle
               { recalling definition from maths }
       f is surjective
```

Why id (really) matters

Terminology:

• Say R is <u>reflexive</u> iff $id \subseteq R$ pointwise: $(\forall a :: a R a)$ (check as homework);

• Say R is <u>coreflexive</u> iff $R \subseteq id$ pointwise: $\langle \forall a :: b \ R \ a \Rightarrow b = a \rangle$ (check as homework).

Define, for $B \stackrel{R}{\longleftarrow} A$:

Kernel of R	Image of R
$A \stackrel{\ker R}{\longleftarrow} A$ $\ker R \stackrel{\operatorname{def}}{=} R^{\circ} \cdot R$	$B \stackrel{\operatorname{img} R}{\longleftarrow} B$ $\operatorname{img} R \stackrel{\operatorname{def}}{=} R \cdot R^{\circ}$

Example: kernels of functions

```
a'(\ker f)a
\equiv \{ \text{ substitution } \}
a'(f^{\circ} \cdot f)a
\equiv \{ \text{ PF-transform rule (13) } \}
(f a') = (f a)
```

In words: $a'(\ker f)a$ means a' and a "have the same f-image"

Exercise 3: Let C be a nonempty data domain and let and $c \in C$. Let \underline{c} be the "everywhere c" function:

$$\begin{array}{ccc} \underline{c} & : & A \longrightarrow C \\ ca & \triangleq & c \end{array} \tag{14}$$

Compute which relations are defined by the following PF-expressions:

$$\ker \underline{c}$$
 , $\underline{b} \cdot \underline{c}^{\circ}$, $\operatorname{img} \underline{c}$ (15)

Binary relation taxonomy

Definitions:

		Reflexive	Coreflexive	
ke	r <i>R</i>	entire <i>R</i>	injective <i>R</i>	(16)
im	g R	surjective <i>R</i>	simple <i>R</i>	

Facts:

$$\ker\left(R^{\circ}\right) = \operatorname{img}R \tag{17}$$

$$img(R^{\circ}) = \ker R \tag{18}$$

Binary relation taxonomy

The whole picture:

Exercise 4: Resort to (17,18) and (16) to prove the following four rules of thumb:

- converse of injective is simple (and vice-versa)
- converse of entire is surjective (and vice-versa)
- smaller than injective (simple) is injective (simple)
- larger than entire (surjective) is entire (surjective)

Functions in one slide

A function f is a binary relation such that

Pointwise	Pointfree	
"Left" Uniquene		
$b f a \wedge b' f a \Rightarrow b = b'$	$img f \subseteq id$	(f is simple)
Leibniz principl		
$a = a' \Rightarrow f a = f a'$	<i>id</i> ⊆ ker <i>f</i>	(f is entire)

Relation taxonomy — orders

Orders are endo-relations $A \stackrel{R}{\longleftarrow} A$ classified as

(Criteria definitions: next slide)

Orders and their taxonomy

Besides

reflexive: iff $id_A \subseteq R$ coreflexive: iff $R \subseteq id_A$

an order (or endo-relation) $A \stackrel{R}{\longleftarrow} A$ can be

transitive: iff $R \cdot R \subseteq R$

anti-symmetric: iff $R \cap R^{\circ} \subseteq id_A$

symmetric: iff $R \subseteq R^{\circ} (\equiv R = R^{\circ})$

connected: iff $R \cup R^{\circ} = \top$

Orders and their taxonomy

Therefore:

- Preorders are reflexive and transitive orders.
 Example: y IsAtMostAsOldAs x
- Partial orders are anti-symmetric preorders
 Example: y ⊂ x
- Linear orders are connected partial orders
 Example: y ≤ x
- Equivalences are symmetric preorders
 Example: y Permutes x
- Pers are partial equivalences
 Example: y IsBrotherOf x

Exercises

Exercise 5: Expand all criteria in the previous slides to pointwise notation.

Exercise 6: A relation *R* is said to be *co-transitive* iff the following holds:

$$\langle \forall b, a : b R a : \langle \exists c : b R c : c R a \rangle \rangle \tag{20}$$

Compute the PF-transform of the formula above. Find a relation (eg. over numbers) which is co-transitive and another which is not.

Meet and join

Meet (intersection) and join (union) internalize conjunction and disjunction, respectively,

$$b(R \cap S) a \equiv bR a \wedge bS a \tag{21}$$

$$b(R \cup S) a \equiv bR a \lor bS a \tag{22}$$

for R, S of the same type. Their meaning is captured by the following universal properties:

$$X \subseteq R \cap S \equiv X \subseteq R \land X \subseteq S \tag{23}$$

$$R \cup S \subseteq X \equiv R \subseteq X \land S \subseteq X \tag{24}$$

In summary

Type $B \leftarrow A$ forms a lattice:

All (data structures) in one (PF notation)

Products

where

$$\begin{array}{c|cccc}
\psi & PF \psi \\
\hline
a R c \wedge b S c & (a,b)\langle R,S\rangle c \\
b R a \wedge d S c & (b,d)(R \times S)(a,c)
\end{array} (26)$$

Clearly: $R \times S = \langle R \cdot \pi_1, S \cdot \pi_2 \rangle$

Sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

$$Bool \xrightarrow{i_1} Bool + String \xleftarrow{i_2} String$$

$$[Boo, Err] Err$$

$$X = String$$

$$(27)$$

where

$$[R,S] = (R \cdot i_1^{\circ}) \cup (S \cdot i_2^{\circ}) \quad \text{cf.} \quad A \xrightarrow{i_1} A + B \xrightarrow{i_2} B$$

$$[R,S] = [i_1 \cdot R, i_2 \cdot S]$$
Dually: $R + S = [i_1 \cdot R, i_2 \cdot S]$

Sums

Example (Haskell):

PF-transforms to

$$Bool \xrightarrow{i_1} Bool + String \xleftarrow{i_2} String$$

$$\downarrow [Boo, Err] Err$$
(27)

where

$$[R,S] = (R \cdot i_1^{\circ}) \cup (S \cdot i_2^{\circ}) \quad \text{cf.} \quad A \xrightarrow{i_1} A + B \xleftarrow{i_2} B$$

$$\downarrow [R,S] S$$
Dually: $R + S = [i_1 \cdot R, i_2 \cdot S]$

Last but not least: relational equality

• Pointwise equality:

$$R = S \equiv \langle \forall b, a :: b R a \equiv b S a \rangle$$

- Pointfree equality:
 - Cyclic inclusion ("ping-pong") rule:

$$R = S \equiv R \subseteq S \land S \subseteq R \tag{28}$$

• Indirect equality rules 1:

$$R = S \equiv \langle \forall X :: (X \subseteq R \equiv X \subseteq S) \rangle$$
 (29)

$$\equiv \langle \forall X :: (R \subset X \equiv S \subset X) \rangle$$
 (30)

Example of indirect proof

```
X \subseteq (R \cap S) \cap T
       \{ \cap \text{-universal } (23) \}
X \subset (R \cap S) \land X \subset T
        \{ \cap \text{-universal } (23) \}
(X \subseteq R \land X \subseteq S) \land X \subseteq T
       \{ \land \text{ is associative } \}
X \subseteq R \land (X \subseteq S \land X \subseteq T)
        \{ \cap \text{-universal (23) twice } \}
X \subseteq R \cap (S \cap T)
        { indirection }
(R \cap S) \cap T = R \cap (S \cap T)
                                                                          (31)
```

Last but not least: monotonicity

All relational combinators seen so far are ⊆-monotonic, for instance:

$$R \subseteq S \quad \Rightarrow \quad R^{\circ} \subseteq S^{\circ}$$

$$R \subseteq S \land U \subseteq V \quad \Rightarrow \quad R \cdot U \subseteq S \cdot V$$

$$R \subseteq S \land U \subseteq V \quad \Rightarrow \quad R \cap U \subseteq S \cap V$$

$$R \subseteq S \land U \subseteq V \quad \Rightarrow \quad R \cup U \subseteq S \cup V$$

etc

Exercises

Exercise 7: Show that (13) holds.

Exercise 8: Check which of the following hold:

- If relations R and S are simple, then so is $R \cap S$
- If relations R and S are injective, then so is $R \cup S$
- If relations R and S are entire, then so is $R \cap S$

L

Exercise 9: Prove that relational composition preserves *all* relational classes in the taxonomy of (19).

Exercises

Exercise 10: Prove the following fact

A function f is a bijection iff its converse f° is a function (32) by completing:

```
f and f^{\circ} are functions \equiv \{ \dots \}
 (id \subseteq \ker f \wedge \operatorname{img} f \subseteq id) \wedge (id \subseteq \ker f^{\circ} \wedge \operatorname{img} f^{\circ} \subseteq id)
\equiv \{ \dots \}
\vdots
\equiv \{ \dots \}
f is a bijection
```

Summary

Rules of the PF-transform seen so far:

ϕ	PF ϕ
(∃a::bRa∧aSc)	$b(R \cdot S)c$
$\langle \forall a, b :: b R a \Rightarrow b S a \rangle$	$R \subseteq S$
$\langle \forall \ a :: \ a \ R \ a \rangle$	$id \subseteq R$
b R a∧c S a	$(b,c)\langle R,S\rangle a$
b R a∧d S c	$(b,d)(R \times S)(a,c)$
b R a∧bS a	$b(R \cap S)$ a
b R a∨bS a	b (R ∪ S) a
(f b) R (g a)	$b(f^{\circ} \cdot R \cdot g)a$
True	b⊤a
FALSE	b⊥ a

R. Bird and O. de Moor.

Algebra of Programming.

Series in Computer Science. Prentice-Hall International, 1997. C.A.R. Hoare, series editor.