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Recalling...

Monotonicity:

All operations are monotonic, eg.

R ⊆ S

T ⊆ U

(R · T ) ⊆ (S · U)

R ⊆ S

R◦ ⊆ S◦

Composition:

• Composition is associative: R · (S · T ) = (R · S) · T

• Identity: R · id = id · R = R

• Empty relation: R · ⊥ = ⊥ · R = ⊥



Recalling...

Pointfree Relational Equality:

• Cyclic inclusion (“ping-pong”) rule:

R = S ≡ R ⊆ S ∧ S ⊆ R

• Indirect equality rules:

R = S ≡ 〈∀ X : : (X ⊆ R ≡ X ⊆ S)〉

≡ 〈∀ X : : (R ⊆ X ≡ S ⊆ X )〉



Relational algebra: converse

Properties:

◦-universal: X ◦ ⊆ Y ≡ X ⊆ Y ◦ (1)
◦-monotonicity: R ⊆ S ≡ R◦ ⊆ S◦ (2)

Then:

Involution : (R◦)◦ = R (3)

Contravariance : (R · S)◦ = S◦ · R◦ (4)

These can be proved from ◦-universal by (elegant) indirect proofs
(cf. exercises later on):



Relation algebra: meet and join

Properties:

∩-universal: X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S) (5)

∪-universal: R ∪ S ⊆ X ≡ (R ⊆ X ) ∧ (S ⊆ X ) (6)

Then

• Converse distributes over ∩:

(R ∩ S)◦ = R◦ ∩ S◦ (7)

• Converse distributes over ∪:

(R ∪ S)◦ = R◦ ∪ S◦ (8)

(sample calculational proof follows)



Relation algebra: proofs by calculation

Exercise 1: Complete the following calculation by indirect equality:

X ⊆ R◦ ∩ S◦

≡ { . . . }

(X ⊆ R◦) ∧ (X ⊆ S◦)

≡ { . . . }

(X ◦ ⊆ R) ∧ (X ◦ ⊆ S)

≡ { . . . }

X ◦ ⊆ R ∩ S

≡ { . . . }

X ⊆ (R ∩ S)◦

:: { indirection }

R◦ ∩ S◦ = (R ∩ S)◦



Relational calculus: functions

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (9)

R · f ◦ ⊆ S ≡ R ⊆ S · f (10)

Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g (11)

“Cyclic inclusion” calculation of the equality rule (11) follows.



Proof of functional equality

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f ◦ · g

≡ { shunting on g }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f



Adding structure to the calculus

Note a recurrent pattern in several laws above:

X ◦

︸︷︷︸

f X

⊆ Y ≡ X ⊆ Y ◦

︸︷︷︸

g Y

(h·)X
︸ ︷︷ ︸

f X

⊆ Y ≡ X ⊆ (h◦·)Y
︸ ︷︷ ︸

g Y

X (·h◦)
︸ ︷︷ ︸

f X

⊆ Y ≡ X ⊆ Y (·h)
︸ ︷︷ ︸

g Y

as well as in

(d×)q
︸ ︷︷ ︸

f q

≤ n ≡ q ≤ n(/d)
︸ ︷︷ ︸

g n

where (/d) denotes integral division (in IN0).



Back to the primary school desk

The integral division algorithm

7 2
1 3

2 × 3 + 1 = 7 , “ie.” 3 = 7/2

However

7 2
3 2

2 × 2 + 3 = 7 ∧ 2 6= 7/2

7 2
5 1

2 × 1 + 5 = 7 ∧ 1 6= 7/2

In fact:

n d

r q
q = n/d ≡ d × q + r = n

provided q is the
largest such q (r
smallest)



Back to the primary school desk
So:

• Quotient is a supremum:

n/d = 〈
∨

q :: 〈∃ r :: d × q + r = n〉〉

= 〈
∨

q :: d × q ≤ n〉

• Maths teachers tell: it takes a while before children master the “
∨

semantics ”!

• What about you? Can you easily reason about n/d in this format?

• Challenge: Try and prove (n/m)/d = n/(d × m).

Proposed alternative: al-djabr rule

q × d ≤ n ≡ q ≤ n/d

“universal”
property of
integral division

(12)



“Al-djabr” calculation instead

q ≤ (n/m)/d

≡ { “al-djabr” (12) }

q × d ≤ n/m

≡ { “al-djabr” (12) }

(q × d) × m ≤ n

≡ { × is associative }

q × (d × m) ≤ n

≡ { “al-djabr” (12) }

q ≤ n/(d × m)

:: { indirection }

(n/m)/d = n/(d × m)



(Generic) indirect equality

Note the use of indirect equality rule

(q ≤ x ≡ q ≤ y) ≡ (x = y)

in fact valid for ≤ any partial order.

Exercise 2: Derive from (12) the two cancellation laws

q ≤ (q × d)/d (13)

(n/d) × d ≤ n (14)

and reflexion law:

n/d ≥ 1 ≡ d ≤ n (15)

�



Galois connections

n/d is an example of operation involved in a Galois connection:

q×d
︸︷︷︸

f q

≤ n ≡ q ≤ n/d
︸︷︷︸

g n

In general, for preorders (A,≤) and (B ,⊑) and

(A,≤)

g
**
(B ,⊑)

f

jj (16)

(f , g) are Galois connected iff. . .



Galois adjoints

f
︸︷︷︸

lower adjoint

b ≤ a ≡ b ⊑ g
︸︷︷︸

upper adjoint

a

that is

f ◦· ≤ = ⊑ ·g

Remarks:

• Galois (connected) adjoints enjoy a number of interesting generic

properties

• Very elegant — calculational — way of performing equational

reasoning (including logical deduction)



Basic properties

Cancellation:

(f · g)a ≤ a and b ⊑ (g · f )b

Distribution (in case of lattice structures):

f (a ⊔ a′) = (f a) ∨ (f a′)

g(b ∧ b′) = (g b) ⊓ (g b′)

Conversely,

• If f distributes over ⊔ then it has an upper adjoint g (f #)

• If g distributes over ∧ then it has a lower adjoint f (g ♭)



Other properties

If (f , g) are Galois connected,

• f (g) uniquely determines g (f ) — thus the ♭, ♯ notations

• f and g are monotonic

• (g , f ) are also Galois connected — just reverse the orderings

• f = f · g · f and g = g · f · g

etc



Summary

(f b) ≤ a ≡ b ⊑ (g a)

Description f = g ♭ g = f ♯

Definition f b =
∧
{a : b ⊑ g a} g a =

⊔
{b : f b ≤ a}

Cancellation f (g a) ≤ a b ⊑ g(f b)
Distribution f (b ⊔ b′) = (f b) ∨ (f b′) g(a′ ⊓ a) = (g a′) ⊓ (g a)
Monotonicity b ⊑ b′ ⇒ f b ≤ f b′ a ≤ a′ ⇒ g a ⊑ g a′

In the sequel we will re-interpret the relational operators we’ve seen so far

as Galois adjoints.



Converse

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g ♭ g = f ♯ Obs.

converse ( )◦ ( )◦ bR◦a ≡ aRb

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦



Functions

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g ♭ g = f ♯ Obs.

shunting rule (h·) (h◦·) NB: h is a function
“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: h◦ · R = h \ R

Question: what does h \ R mean?



Relational division

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g ♭ g = f ♯ Obs.

left-division (R ·) (R \ ) left-factor
right-division (·R) ( / R) right-factor

that is,

R · X ⊆ Y ≡ X ⊆ R \ Y (17)

X · R ⊆ Y ≡ X ⊆ Y / R (18)

Immediate: (R ·) and (·R) distribute over union:

R · (S ∪ T ) = (R · S) ∪ (R · T )

(S ∪ T ) · R = (S · R) ∪ (T · R)

Some intuition about relational division operators follows.



Relational (left) division

Left division abstracts a (pointwise) universal quantification

A

R
��/

//
//

//
C

S
����
��
��
�

R\Soo

⊆

B

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (19)

Example:

b R a = flight b carries passenger a

b S c = flight b belongs to air-company c

a (R \ S) c = passenger a is faithful to company c , that is,
(s)he only flies company c .



Relational (right) division

By taking converses we arrive at S / R = (R◦ \ S◦)◦:

X ⊆ S / R

≡ { Galois connection ((·R), (/R)) }

X · R ⊆ S

≡ { converses }

R◦ · X ◦ ⊆ S◦

≡ { Galois connection ((R ·), (R\)) }

X ◦ ⊆ R◦ \ S◦

≡ { converses }

X ⊆ (R◦ \ S◦)◦

:: { indirection }

S / R = (R◦ \ S◦)◦



Relational (right) division

Therefore:

c(S / R)a

≡ { above }

a(R◦ \ S◦)c

≡ { (19) }

〈∀ b : b R◦a : b S◦c〉

≡ { converses }

〈∀ b : a R b : c S b〉 C A
S/Roo

⊇

B

R

GG�������
S

WW///////



Domain and range

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g ♭ g = f ♯ Obs.

domain δ (⊤·) lower ⊆ restricted to coreflexives
range ρ (·⊤) lower ⊆ restricted to coreflexives

Thus

δ R ⊆ Φ ≡ R ⊆ R · Φ (20)

ρR ⊆ Φ ≡ R ⊆ Φ · ⊤ (21)

etc.



Domain and split

The following fact holds:

〈R ,S〉◦ · 〈X ,Y 〉 = (R◦ · X ) ∩ (S◦ · Y )

Corollary:

δ R = ker 〈id ,R〉

Another consequence of the fact above:

ker R ⊆ ker (S · R) ⇐ S entire

Corollary:

ker R ⊆ ker (f · R)



Modular law

Dedekind’s rule, also known as the modular law:

R · S ∩ T ⊆ R · (S ∩ R◦ · T )

cf. analogy with ab + c ≤ a(b + a−1c) . Dually (apply converses
and rename):

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · S

Symmetrical equivalent statement:

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · (S ∩ (R◦ · T ))

= “weak right-distribution of meet over composition”.


