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Recalling...

Monotonicity:
All operations are monotonic, eg.

-
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Composition:
e Composition is associative: R-(§-T)=(R-S)- T
o |dentity: R-id=id-R=R

e Empty relation: R-1=1-R=1



Recalling...

Pointfree Relational Equality:
e Cyclic inclusion (“ping-pong”) rule:

R=S = RCSASCR

¢ Indirect equality rules:

R=S

VX :: (XCR=XCYS))
= (VX :: (RSCX=S5CX))



Relational algebra: converse

Properties:
°_universal: X°CY = XCyYye (1)
°-monotonicity: RCS=R°CS° (2)
Then:
Involution : (R)° =R (3)
Contravariance : (R-S)°=5°-R° (4)

These can be proved from °-universal by (elegant) indirect proofs
(cf. exercises later on):



Relation algebra: meet and join

Properties:
N-universal: XC(RNS) = (XCR)A(XCS) (5)
U-universal: RUSCX = (RCX)A(SCX) (6)
Then
e Converse distributes over N:
(RNS)*=R°NS° (7)
e Converse distributes over U:
(RUS)*=R°US® (8)

(sample calculational proof follows)



Relation algebra: proofs by calculation

Exercise 1: Complete the following calculation by indirect equality:
XCR°NS°
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{ indirection }
R°NS°=(RNS)°



Relational calculus: functions

Shunting rules:

Equality:

“Cyclic inclusion” calculation of the equality rule (11) follows.



Proof of functional equality

fCg

{ identity }
f-idCg

{ shunting on f }

idCf°.-g

{ shunting on g }
id-g° C f°

{ converses; identity }

gCf



Adding structure to the calculus

Note a recurrent pattern in several laws above:

X CY = XCY°
~~ ~—

f X g Y
(h)XCY = XC(h)Y
—— ——
f X g Y
X()CY = XCY(h)
——

£ X gY

as well as in

(dx)g<n = q<n(/d)
—— ——

fq gn

where (/d) denotes integral division (in INp).



Back to the primary school desk

The integral division algorithm

712 v B
1}? 2x3+41=7 ,%e” 3=7/2

However
;}% 2x243=7 A 247/
;}% 2x145=7 A 1#7/2
In fact:

d provided q is the
H}T g=n/d = dxq+r=n | largest such g (r

smallest)




Back to the primary school desk
So:
e Quotient is a supremum:
nfd = (\/ g @r:dxqg+r=n)
(\/ 9 = dxqg<n)

e Maths teachers tell: it takes a while before children master the “\/
semantics "!

e What about you? Can you easily reason about n/d in this format?
e Challenge: Try and prove (n/m)/d = n/(d x m).

Proposed alternative: al-djabr rule

“universal"”
gxd<n = g<n/d | property of (12)
integral division




“Al-djabr” calculation instead

a < (n/m)/d

{ “al-djabr’ (12) }
gxd<n/m

{ “al-djabr" (12) }
(gxd)xm<n

{ x is associative }
gx(dxm)y<n

{ “al-djabr" (12) }
q < n/(d x m)

{ indirection }

(n/m)/d = n/(d x m)



(Generic) indirect equality

Note the use of indirect equality rule

(g<x=qg<y)=(x=y)

in fact valid for < any partial order.

Exercise 2: Derive from (12) the two cancellation laws

g < (gxd)/d (13)
(n/d)xd < n (14)

and reflexion law:
n/d>1 = d<n (15)



Galois connections

n/d is an example of operation involved in a Galois connection:

gxd<n = qg<n/d
~—~— ~—
fq gn

In general, for preorders (A, <) and (B,C) and

g
— T

(A <) (B,5) (16)
f

(f,g) are Galois connected iff. ..



Galois adjoints

f b<a = bL g a
~ ~—
lower adjoint upper adjoint
that is
Remarks:

e Galois (connected) adjoints enjoy a number of interesting generic
properties

o Very elegant — calculational — way of performing equational
reasoning (including logical deduction)



Basic properties

Cancellation:
(f-gla<a and bLC (g-f)b
Distribution (in case of lattice structures):
flauad) = (fa)Vv(fa)
glbnb) = (gb)r(gb)
Conversely,

e If f distributes over LI then it has an upper adjoint g (f7)

e If g distributes over A then it has a lower adjoint f (g”)



Other properties

If (f,g) are Galois connected,
o f (g) uniquely determines g (f) — thus the _°, _f notations
e f and g are monotonic
e (g, f) are also Galois connected — just reverse the orderings
e f=f.g-fandg=g-f-g

etc



Summary

| (Fb)<a=bC (g a)

| Description | f=g | g=f*t
Definition fb=A{a:bC g a} ga=||{b:fb<a}
Cancellation flga)<a b C g(f b)
Distribution | f(bUb)=(f B)V(f b) | g(a’Na)=(g a)MN(g a)
Monotonicity bChH=Ffb<fb a<d=galgad

In the sequel we will re-interpret the relational operators we've seen so far
as Galois adjoints.




Converse

| (FX)C
| Description | f =

o 0 | ~<

‘ converse ‘ ‘b,"\’O = aRb

Thus:

Cancellation (R°)°=R
Monotonicity RCS=R°CS°
Distributions (RNS)°=R°NS°,(RUS)°=R°US°



Functions

UMngXg( Y) |
f | g=

| Description | =g ft | Obs. |
shunting rule (h) (h°-) | NB: his a function
“converse” shunting rule | (-h°) (-h) | NB: his a function
Consequences:
Functional equality: hCg= h=k =h2Dk
Functional division: h°-R=h\R

Question: what does h\ R mean?



Relational division

| (f X) C YEXQ(gY) |
g g |

Description | f = Obs.
| | |

f
left-division (R) | (R\ )| left-factor
right-division | (-R) | ( / R) | right-factor
that is,
R-XCY=XCR\Y (17)
X-RCY=XCY/R (18)

Immediate: (R-) and (-R) distribute over union:

R-(SUT) = (R-S)U(R-T)
(SUT)-R = (S-R)U(T-R)

Some intuition about relational division operators follows.



Relational (left) division

Left division abstracts a (pointwise) universal quantification

R\S
A<D
,&g/;
B

Example:

a(R\S)c = (Yb: bRa: bSc) (19)

b R a = flight b carries passenger a
b S ¢ = flight b belongs to air-company ¢

a (R\'S) ¢ = passenger a is faithful to company c, that is,
(s)he only flies company c.



Relational (right) division

By taking converses we arrive at S/ R = (R°\ §°)°:

XCS/R

= { Galois connection ((-R),(/R)) }
X-RCS

= { converses }
R°.-X° CS°

= { Galois connection ((R-),(R\)) }
X° C R°\ §°

{ converses }
X g (RO \ SO)O
{ indirection }

S/R=(R°\S°)°



Relational (right) division

Therefore:
c(S/R)a
{ above }
a(R°\ S°)c
{ (19) }
(Vb : bR°a: bS°)

{ converses }

Wb:aRb:cSb c<LF 4

NY;

B



Domain and range

| (FX)CY=XcC(gV) |

| Description | f =g" | g =fF | Obs. |
domain 0 (T-) | lower C restricted to coreflexives
range p (-T) | lower C restricted to coreflexives
Thus
JRC® = RCR-o (20)
pRCO = RCO.T (21)

etc.



Domain and split

The following fact holds:
(R,S)°-(X,Y) = (R°-X)N(S°-Y)
Corollary:
O0R = ker(id,R)
Another consequence of the fact above:
ker R C ker (S-R) <« S entire
Corollary:

kerR C ker(f-R)



Modular law

Dedekind'’s rule, also known as the modular law:
R-SNT C R-(SNR°-T)

cf. analogy with ab+c < a(b+a 'c) . Dually (apply converses
and rename):

(R-S)NT C (RN(T-5°)-S
Symmetrical equivalent statement:
(R-S)NT < (RN(T-S°))-(SNn(R°-T))

= “weak right-distribution of meet over composition”.



