Foundations of the PF relational calculus

J.N. Oliveira
Dept. Informática,
Universidade do Minho
Braga, Portugal

DI/UM, 2008

Recalling...

Monotonicity:
All operations are monotonic, eg.

Composition:

- Composition is associative:

$$
\begin{aligned}
R \cdot(S \cdot T) & =(R \cdot S) \cdot T \\
R \cdot i d & =i d \cdot R=R \\
R \cdot \perp & =\perp \cdot R=\perp
\end{aligned}
$$

- Empty relation:

Recalling...

Pointfree Relational Equality:

- Cyclic inclusion ("ping-pong") rule:

$$
R=S \equiv R \subseteq S \wedge S \subseteq R
$$

- Indirect equality rules:

$$
\begin{aligned}
R=S & \equiv\langle\forall X:(X \subseteq R \equiv X \subseteq S)\rangle \\
& \equiv\langle\forall X:(R \subseteq X \equiv S \subseteq X)\rangle
\end{aligned}
$$

Relational algebra: converse

Properties:

$$
\begin{array}{ll}
\circ & X^{\circ} \subseteq Y \equiv Y \subseteq Y^{\circ} \\
\circ & \equiv \text {-monotonicity: } \tag{2}
\end{array} \quad R \subseteq S \equiv R^{\circ} \subseteq S^{\circ} .
$$

Then:

$$
\begin{array}{ll}
\text { Involution : } & \left(R^{\circ}\right)^{\circ}=R \\
\text { Contravariance : } & (R \cdot S)^{\circ}=S^{\circ} \cdot R^{\circ} \tag{4}
\end{array}
$$

These can be proved from ${ }^{\circ}$-universal by (elegant) indirect proofs (cf. exercises later on):

Relation algebra: meet and join

Properties:

$$
\begin{array}{ll}
\cap \text {-universal: } & X \subseteq(R \cap S) \equiv(X \subseteq R) \wedge(X \subseteq S) \\
\cup \text {-universal: } & R \cup S \subseteq X \equiv(R \subseteq X) \wedge(S \subseteq X)
\end{array}
$$

Then

- Converse distributes over \cap :

$$
\begin{equation*}
(R \cap S)^{\circ}=R^{\circ} \cap S^{\circ} \tag{7}
\end{equation*}
$$

- Converse distributes over U:

$$
\begin{equation*}
(R \cup S)^{\circ}=R^{\circ} \cup S^{\circ} \tag{8}
\end{equation*}
$$

(sample calculational proof follows)

Relation algebra: proofs by calculation

Exercise 1: Complete the following calculation by indirect equality:

$$
\begin{aligned}
& X \subseteq R^{\circ} \cap S^{\circ} \\
& \equiv \quad\{\ldots\} \\
& \left(X \subseteq R^{\circ}\right) \wedge\left(X \subseteq S^{\circ}\right) \\
& \equiv \quad\{\ldots\} \\
& \left(X^{\circ} \subseteq R\right) \wedge\left(X^{\circ} \subseteq S\right) \\
& \equiv \quad\{\ldots\} \\
& X^{\circ} \subseteq R \cap S \\
& \equiv \quad\{\ldots\} \\
& X \subseteq(R \cap S)^{\circ} \\
& :: \quad\{\text { indirection }\} \\
& R^{\circ} \cap S^{\circ}=(R \cap S)^{\circ}
\end{aligned}
$$

Relational calculus: functions

Shunting rules:

$$
\begin{align*}
f \cdot R \subseteq S & \equiv R \subseteq f^{\circ} \cdot S \tag{9}\\
R \cdot f^{\circ} \subseteq S & \equiv R \subseteq S \cdot f \tag{10}
\end{align*}
$$

Equality:

$$
\begin{equation*}
f \subseteq g \equiv f=g \equiv f \supseteq g \tag{11}
\end{equation*}
$$

"Cyclic inclusion" calculation of the equality rule (11) follows.

Proof of functional equality

$$
\begin{array}{cc}
& f \subseteq g \\
\equiv & \{\text { identity }\} \\
& f \cdot i d \subseteq g \\
\equiv & \{\text { shunting on } f\} \\
& i d \subseteq f^{\circ} \cdot g \\
\equiv & \{\text { shunting on } g\} \\
& i d \cdot g^{\circ} \subseteq f^{\circ} \\
\equiv & \{\text { converses; identity }\} \\
& g \subseteq f
\end{array}
$$

Adding structure to the calculus

Note a recurrent pattern in several laws above:

$$
\begin{aligned}
\underbrace{X^{\circ}}_{f X} \subseteq Y & \equiv X \subseteq \underbrace{Y^{\circ}}_{g Y} \\
\underbrace{(h \cdot) X}_{f X} \subseteq Y & \equiv X \subseteq \underbrace{\left(h^{\circ} \cdot\right) Y}_{g Y} \\
\underbrace{X\left(\cdot h^{\circ}\right)}_{f X} \subseteq Y & \equiv X \subseteq \underbrace{Y(\cdot h)}_{g Y}
\end{aligned}
$$

as well as in

$$
\underbrace{(d \times) q}_{f q} \leq n \equiv q \leq \underbrace{n(/ d)}_{g n}
$$

where $(/ d)$ denotes integral division (in \mathbb{N}_{0}).

Back to the primary school desk

The integral division algorithm

$$
\begin{array}{l|lll}
7 & 2 \\
1 & 3
\end{array} 2 \times 3+1=7, \text { "ie." } \quad 3=7 / 2
$$

However

$$
\begin{array}{l|llll}
7 & 2 & & 2 \times 2+3=7 & \wedge \\
3 & 2 & 2 \neq 7 / 2 \\
7 & 2 & & \\
5 & 1 & 2 \times 1+5=7 & \wedge & 1 \neq 7 / 2
\end{array}
$$

In fact:

$$
\begin{array}{l|l}
n & d \\
& q
\end{array} \quad q=n / d \equiv d \times q+r=n
$$

provided q is the
largest such $q(r$
smallest)

Back to the primary school desk

So:

- Quotient is a supremum:

$$
\begin{aligned}
n / d & =\langle\bigvee q::\langle\exists r:: d \times q+r=n\rangle\rangle \\
& =\langle\bigvee q:: d \times q \leq n\rangle
\end{aligned}
$$

- Maths teachers tell: it takes a while before children master the semantics "!
- What about you? Can you easily reason about n / d in this format?
- Challenge: Try and prove $(n / m) / d=n /(d \times m)$.

Proposed alternative: al-djabr rule

$$
q \times d \leq n \equiv q \leq n / d \quad \begin{align*}
& \text { "universal" } \tag{12}\\
& \text { property of } \\
& \text { integral division }
\end{align*}
$$

"Al-djabr" calculation instead

$$
\begin{aligned}
& q \leq(n / m) / d \\
& \equiv \quad\{\quad \text { "al-djabr" (12) \}} \\
& q \times d \leq n / m \\
& \equiv \quad\{\text { "al-djabr" (12) \} } \\
& (q \times d) \times m \leq n \\
& \equiv \quad\{\times \text { is associative }\} \\
& q \times(d \times m) \leq n \\
& \equiv \quad\{\text { "al-djabr" (12) \} } \\
& q \leq n /(d \times m) \\
& \text { \{ indirection \} } \\
& (n / m) / d=n /(d \times m)
\end{aligned}
$$

(Generic) indirect equality

Note the use of indirect equality rule

$$
(q \leq x \equiv q \leq y) \equiv(x=y)
$$

in fact valid for \leq any partial order.
Exercise 2: Derive from (12) the two cancellation laws

$$
\begin{align*}
q & \leq(q \times d) / d \tag{13}\\
(n / d) \times d & \leq n \tag{14}
\end{align*}
$$

and reflexion law:

$$
\begin{equation*}
n / d \geq 1 \equiv d \leq n \tag{15}
\end{equation*}
$$

Galois connections

n / d is an example of operation involved in a Galois connection:

$$
\underbrace{q \times d}_{f q} \leq n \equiv q \leq \underbrace{n / d}_{g n}
$$

In general, for preorders (A, \leq) and (B, \sqsubseteq) and

(f, g) are Galois connected iff. . .

Galois adjoints

$$
\underbrace{f}_{\text {Mer adjoint }} b \leq a \equiv b \sqsubseteq \underbrace{g}_{\text {upper adjoint }} a
$$

that is

$$
f^{\circ} \cdot \leq=\sqsubseteq \cdot g
$$

Remarks:

- Galois (connected) adjoints enjoy a number of interesting generic properties
- Very elegant - calculational - way of performing equational reasoning (including logical deduction)

Basic properties

Cancellation:

$$
(f \cdot g) a \leq a \quad \text { and } \quad b \sqsubseteq(g \cdot f) b
$$

Distribution (in case of lattice structures):

$$
\begin{aligned}
f\left(a \sqcup a^{\prime}\right) & =(f a) \vee\left(f a^{\prime}\right) \\
g\left(b \wedge b^{\prime}\right) & =(g b) \sqcap\left(g b^{\prime}\right)
\end{aligned}
$$

Conversely,

- If f distributes over \sqcup then it has an upper adjoint $g\left(f^{\#}\right)$
- If g distributes over \wedge then it has a lower adjoint $f\left(g^{b}\right)$

Other properties

If (f, g) are Galois connected,

- $f(g)$ uniquely determines $g(f)$ - thus the $__{-}, _^{\sharp}$ notations
- f and g are monotonic
- (g, f) are also Galois connected - just reverse the orderings
- $f=f \cdot g \cdot f$ and $g=g \cdot f \cdot g$
etc

Summary

$(f b) \leq a \equiv b \sqsubseteq(g a)$		
Description	$f=g^{b}$	$g=f^{\sharp}$
Definition	$f b=\bigwedge\{a: b \sqsubseteq g a\}$	$g a=\bigsqcup\{b: f \quad b \leq a\}$
Cancellation	$f(g a) \leq a$	$b \sqsubseteq g(f \quad b)$
Distribution	$f\left(b \sqcup b^{\prime}\right)=(f \quad b) \vee\left(f b^{\prime}\right)$	$g\left(a^{\prime} \sqcap a\right)=\left(g \quad a^{\prime}\right) \sqcap(g a)(g)$
Monotonicity	$b \sqsubseteq b^{\prime} \Rightarrow f b \leq f b^{\prime}$	$a \leq a^{\prime} \Rightarrow g a \sqsubseteq g a^{\prime}$

In the sequel we will re-interpret the relational operators we've seen so far as Galois adjoints.

Converse

$(f X) \subseteq Y \equiv X \subseteq\binom{g}{$}			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
converse	$(-)^{\circ}$	$(-)^{\circ}$	$b R^{\circ} a \equiv a R b$

Thus:

Cancellation
$\left(R^{\circ}\right)^{\circ}=R$
Monotonicity $R \subseteq S \equiv R^{\circ} \subseteq S^{\circ}$
Distributions $(R \cap S)^{\circ}=R^{\circ} \cap S^{\circ},(R \cup S)^{\circ}=R^{\circ} \cup S^{\circ}$

Functions

$(f X) \subseteq Y \equiv X \subseteq(g Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
shunting rule	$(h \cdot)$	$\left(h^{\circ}\right)$	NB: h is a function
"converse" shunting rule	$\left(\cdot h^{\circ}\right)$	$(\cdot h)$	NB: h is a function

Consequences:
Functional equality:

$$
h \subseteq g \equiv h=k \quad \equiv h \supseteq k
$$

Functional division: $\quad h^{\circ} \cdot R=h \backslash R$
Question: what does $h \backslash R$ mean?

Relational division

$(f X) \subseteq Y \equiv X \subseteq(g \quad Y)$			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
left-division	$(R \cdot)$	$(R \backslash)$	left-factor
right-division	$(\cdot R)$	$(/ R)$	right-factor

that is,

$$
\begin{align*}
& R \cdot X \subseteq Y \equiv X \subseteq R \backslash Y \tag{17}\\
& X \cdot R \subseteq Y \equiv X \subseteq Y / R \tag{18}
\end{align*}
$$

Immediate: $(R \cdot)$ and $(\cdot R)$ distribute over union:

$$
\begin{aligned}
& R \cdot(S \cup T)=(R \cdot S) \cup(R \cdot T) \\
& (S \cup T) \cdot R=(S \cdot R) \cup(T \cdot R)
\end{aligned}
$$

Some intuition about relational division operators follows.

Relational (left) division

Left division abstracts a (pointwise) universal quantification

$$
\begin{align*}
& \begin{array}{c}
A \stackrel{R \backslash S}{\leftrightarrows} C \\
R \backslash / S \\
B
\end{array} \tag{19}\\
& a(R \backslash S) c \equiv\langle\forall b: b R a: b S c\rangle
\end{align*}
$$

Example:
$b R a=$ flight b carries passenger a
$b S c=$ flight b belongs to air-company c
$a(R \backslash S) c=$ passenger a is faithful to company c, that is,
(s)he only flies company c.

Relational (right) division

By taking converses we arrive at $S / R=\left(R^{\circ} \backslash S^{\circ}\right)^{\circ}$:

$$
\begin{array}{cc}
& X \subseteq S / R \\
\equiv & \{\text { Galois connection }((\cdot R),(/ R))\} \\
& X \cdot R \subseteq S \\
\equiv & \{\text { converses }\} \\
& R^{\circ} \cdot X^{\circ} \subseteq S^{\circ} \\
\equiv & \{\text { Galois connection }((R \cdot),(R \backslash))\} \\
& X^{\circ} \subseteq R^{\circ} \backslash S^{\circ} \\
\equiv & \{\text { converses }\} \\
& X \subseteq\left(R^{\circ} \backslash S^{\circ}\right)^{\circ} \\
: & \{\text { indirection }\} \\
& S / R=\left(R^{\circ} \backslash S^{\circ}\right)^{\circ}
\end{array}
$$

Relational (right) division

Therefore:

$$
\left.\begin{array}{rl}
& \begin{array}{c}
c(S / R) a \\
\equiv \\
\{\text { above }\}
\end{array} \\
\equiv & \begin{array}{c}
a\left(R^{\circ} \backslash S^{\circ}\right) c
\end{array} \\
\equiv & \{(19)\} \\
\equiv & \{\text { converses }\}
\end{array}\right\}
$$

Domain and range

$(f X) \subseteq Y \equiv X \subseteq\binom{g}{$}			
Description	$f=g^{b}$	$g=f^{\sharp}$	Obs.
domain	δ	$(T \cdot)$	lower \subseteq restricted to coreflexives
range	ρ	$(\cdot \top)$	lower \subseteq restricted to coreflexives

Thus

$$
\begin{align*}
\delta R \subseteq \Phi & \equiv R \subseteq R \cdot \phi \tag{20}\\
\rho R \subseteq \Phi & \equiv R \subseteq \phi \cdot T \tag{21}
\end{align*}
$$

etc.

Domain and split

The following fact holds:

$$
\langle R, S\rangle^{\circ} \cdot\langle X, Y\rangle=\left(R^{\circ} \cdot X\right) \cap\left(S^{\circ} \cdot Y\right)
$$

Corollary:

$$
\delta R=\operatorname{ker}\langle i d, R\rangle
$$

Another consequence of the fact above:

$$
\operatorname{ker} R \subseteq \operatorname{ker}(S \cdot R) \Leftarrow S \text { entire }
$$

Corollary:

$$
\operatorname{ker} R \subseteq \operatorname{ker}(f \cdot R)
$$

Modular law

Dedekind's rule, also known as the modular law:

$$
R \cdot S \cap T \subseteq R \cdot\left(S \cap R^{\circ} \cdot T\right)
$$

cf. analogy with $a b+c \leq a\left(b+a^{-1} c\right.$). Dually (apply converses and rename):

$$
(R \cdot S) \cap T \subseteq\left(R \cap\left(T \cdot S^{\circ}\right)\right) \cdot S
$$

Symmetrical equivalent statement:

$$
(R \cdot S) \cap T \subseteq\left(R \cap\left(T \cdot S^{\circ}\right)\right) \cdot\left(S \cap\left(R^{\circ} \cdot T\right)\right)
$$

$=$ "weak right-distribution of meet over composition".

