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Basic rules of the PF-transform

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a

b R a ∨ b S a b (R ∪ S) a

(f b) R (g a) b(f ◦ · R · g)a
True b ⊤ a

False b ⊥ a
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Question

• The PF-transform seems applicable to transforming binary

predicates only, easily converted to binary relations, eg.
φ(y , x) △ y − 1 = 2x which transforms to function
y = 2x + 1, etc.

• What about transforming predicates such as the following

〈∀ x , y : y = 2x ∧ even x : even y〉 (1)

expressing the fact that function y = 2x preserves even
numbers, where even x △ rem(x , 2) = 0 is a unary predicate?
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Observation

• As already noted, (1) is a proposition stating that function
y = 2x preserves even numbers.

• In general, a function A A
foo is said to preserve a given

predicate φ iff the following holds:

〈∀ x : φ x : φ (f x)〉 (2)

• Proposition (2) is itself a particular case of

〈∀ x : φ x : ψ (f x)〉 (3)

which states that f ensures property ψ on its output
everytime property φ holds on its input.
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Answer
First PF-transform scope:

y = 2x ∧ even x

≡ { ∃-one-point }

〈∃ z : z = x : y = 2z ∧ even z〉

≡ { ∃-trading ; introduce ⌈even⌉ }

〈∃ z :: y = 2z ∧ z = x ∧ even z
︸ ︷︷ ︸

z⌈even⌉x

〉

≡ { composition ; introduce twice z △ 2z }

y(twice · ⌈even⌉)x

cf. diagram IN0

twice

��

IN0

⌈even⌉
oo

IN0
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Now the whole thing

〈∀ x , y : y = 2x ∧ even x : even y〉

≡ { above }

〈∀ x , y : y(twice · ⌈even⌉)x : even y〉

≡ { ∃-one-point }

〈∀ x , y : y(twice · ⌈even⌉)x : 〈∃ z : z = y : even z〉〉

≡ { predicate calculus: p ∧True = p }

〈∀ x , y : y(twice · ⌈even⌉)x : 〈∃ z :: z = y ∧ even z ∧True〉〉

≡ { ⊤ is the top relation }

〈∀ x , y : y(twice · ⌈even⌉)x : 〈∃ z :: y⌈even⌉z ∧ z⊤x〉〉

≡ { composition }
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Now the whole thing

〈∀ x , y : y(twice · ⌈even⌉)x : y(⌈even⌉ · ⊤)x〉

≡ { go pointfree (inclusion) }

twice · ⌈even⌉ ⊆ ⌈even⌉ · ⊤

cf. diagram

IN0

twice

��

IN0

⌈even⌉
oo

⊤

��

⊆

IN0 IN0
⌈even⌉

oo
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In summary

In the calculation above, unary predicate even has been
PF-transformed in two ways:

• ⌈even⌉ such that

z⌈even⌉x △ z = x ∧ even z

— that is, ⌈even⌉ is a coreflexive relation;

• ⌈even⌉ · ⊤, which is such that

z(⌈even⌉ · ⊤)x ≡ even z

— a so-called (left) condition.
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Coreflexives
The PF-transformation of unary predicates to fragments of id

coreflexives) is captured by the following universal property:

Φ = ⌈p⌉ ≡ (y Φ x ≡ y = x ∧ p y) (4)

Via cancellation, (4) yields

y ⌈p⌉ x ≡ y = x ∧ p y (5)

A set S can also be PF-transformed into a coreflexive by
calculating ⌈(∈ S)⌉, cf. eg. the transform of set {1, 2, 3, 4}:

⌈1 ≤ x ≤ 4⌉ =
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Exercises

Exercise 1: Let false be the “everywhere false” predicate such that
false x = False for all x , that is, false = False. Use (4) to show that
⌈false⌉ = ⊥.

�

Exercise 2: Given a set S , let ΦS abbreviate coreflexive ⌈(∈ S)⌉.
Calculate Φ{1,2} · Φ{2,3}.

�

Exercise 3: Solve (4) for p under substitution Φ := id .

�
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Boolean algebra of coreflexives

Building up one the exercises above, from (4) one easily draws:

⌈p ∧ q⌉ = ⌈p⌉ · ⌈q⌉ (6)

⌈p ∨ q⌉ = ⌈p⌉ ∪ ⌈q⌉ (7)

⌈¬p⌉ = id − ⌈p⌉ (8)

⌈false⌉ = ⊥ (9)

⌈true⌉ = id (10)

where p, q are predicates.

(Note the slight, obvious abuse in notation.)
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Basic properties of coreflexives

Let Φ, Ψ be coreflexive relations. Then the following properties
hold:

• Coreflexives are symmetric and transitive:

Φ◦ = Φ = Φ · Φ (11)

• Meet of two coreflexives is composition:

Φ ∩Ψ = Φ ·Ψ (12)

• Closure properties:

R · Φ ⊆ S ≡ R · Φ ⊆ S · Φ (13)

Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S (14)
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Coreflexives for data flow control

Coreflexives are very handy in controlling information flow in
PF-expressions, as the following two PF-transform rules show,
given two suitably typed coreflexives Φ = ⌈φ⌉ and Ψ = ⌈ψ⌉:

• Guarded composition: for all b, c

〈∃ a : φ a : b R a ∧ a Sc〉 ≡ b(R · Φ · S)c (15)

• Guarded inclusion:

〈∀ b, a : φ b ∧ ψ a : b R a⇒ b S a〉

≡ Φ · R ·Ψ ⊆ S (16)

See next slide for some related terminology.
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Projection and selection

The following relational operators capture two useful relational
patterns involving relations, coreflexives and functions:

• Selection:

σΨ,ΦR △ Ψ · R · Φ B

Ψ
��

A
Roo

Φ
��

B A
σΨ,ΦR
oo

(17)

• Projection:

πg ,f R △ g · R · f ◦ B

g

��

A
Roo

f

��

C D
πg,f R
oo

(18)
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Projection and selection

Set-theoretical meaning of selection and projection, for Ψ = ⌈ψ⌉
and Φ = ⌈φ⌉:

σΨ,ΦR = {(b, a) : b R a ∧ ψ b ∧ φ a} (19)

πg ,f R = {(g b, f a) : b R a} (20)

Let us check (19):

σΨ,ΦR

= { set theoretical meaning of a relation }

{(b, a) : b(σΨ,ΦR)a}

= { definition (17) }

{(b, a) : b(Ψ · R ·Φ)a}

= { composition }
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Projection and selection

{(b, a) : 〈∃ c : b Ψ c : c(R · Φ)a〉}

= { coreflexive Ψ = ⌈ψ⌉ (4) ; ∃-trading }

{(b, a) : 〈∃ c : b = c : ψb ∧ c(R ·Φ)a〉}

= { ∃-one-point ; composition again }

{(b, a) : ψ b ∧ 〈∃ d :: b R d ∧ d Φ a〉}

= { coreflexive Φ = ⌈φ⌉ (4) ; ∃-trading }

{(b, a) : ψ b ∧ 〈∃ d : d = a : b R d ∧ φ a〉}

= { ∃-one-point ; trivia }

{(b, a) : ψ b ∧ b R a ∧ φ a}

Exercise 4: Check (20).

�
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Two useful coreflexives

Domain:

δ R △ ker R ∩ id (21)

Range:

ρR △ imgR ∩ id (22)

Facts:

δ R = ρ (R◦) (23)

δ (R · S) = δ (δ R · S) (24)

ρ (R · S) = ρ (R · ρS) (25)

R = R · (δ R) (26)

R = (ρR) · R (27)
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Relating coreflexives with conditions

Pre and post restriction:

R · Φ = R ∩ ⊤ · Φ (28)

Ψ · R = R ∩Ψ · ⊤ (29)

Domain/range elimination:

⊤ · δ R = ⊤ · R (30)

ρR · ⊤ = R · ⊤ (31)

Mapping back and forward:

Φ ⊆ Ψ ≡ Φ ⊆ ⊤ ·Ψ (32)

Exercise 5: Show that

δ R ⊆ δ S ≡ R ⊆ ⊤ · S (33)

holds.

�
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Application — satisfiability

In the pre/post specification style, by writing

Spec : (b : B)← (a : A)

pre . . .

post . . .

we mean the definition of two predicates

pre-Spec : A→ IB

post-Spec : B × A→ IB

such that the satisfiability condition holds:

〈∀ a : a ∈ A : pre-Spec a⇒ 〈∃ b : b ∈ B : post-Spec(b, a)〉〉(34)
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Application — satisfiability

Let us abbreviate

• ⌈pre-Spec⌉ by Pre

• ⌈post-Spec⌉ by Post

• ⌈(∈ A)⌉ by ΦA, which in general encompasses an invariant
associated to datatype A

• ⌈(∈ B)⌉ by ΦB , which in general encompasses an invariant
associated to datatype B

Then (34) PF-transforms to

A

Pre

��

A

Post

��

ΦAoo

A B
⊤

oo B
ΦB

oo

Pre ·ΦA ⊆ ⊤ · ΦB · Post (35)
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Application — functional satisfiability

Case Pre = id , Post = f :

ΦA ⊆ ⊤ ·ΦB · f

≡ { shunting (44) }

ΦA · f
◦ ⊆ ⊤ · ΦB

≡ { converses }

f · ΦA ⊆ ΦB · ⊤

≡ { (45), since f · ΦA ⊆ f }

f · ΦA ⊆ f ∩ΦB · ⊤

≡ { (29) }

f · ΦA ⊆ ΦB · f

What does this mean?
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Functional satisfiability ≡ invariant preservation

Let us introduce variables in f · ΦA ⊆ ΦB · f :

f · ΦA ⊆ ΦB · f

≡ { shunting (43) }

ΦA ⊆ f ◦ · ΦB · f

≡ { introduce variables }

〈∀ a, a′ : a ΦA a′ : (f a)ΦB(f a′)〉

≡ { coreflexives (a = a′) }

〈∀ a : : a ΦA a⇒ (f a)ΦB(f a)〉

≡ { meaning of ΦA, ΦB }

〈∀ a : a ∈ A : (f a) ∈ B〉
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Invariant preservation

Another way to put it:

f · ΦA ⊆ ΦB · f

≡ { shunting }

f · ΦA · f
◦ ⊆ ΦB

≡ { coreflexives }

f · ΦA · Φ
◦

A · f
◦ ⊆ ΦB

≡ { image definition }

img (f · ΦA) ⊆ ΦB

≡ { f ·ΦA is simple }

ρ (f · ΦA) ⊆ ΦB
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Invariant preservation

We will write “type declaration”

ΦB ΦA
foo (36)

to mean

f · ΦA ⊆ ΦB · f cf. diagram A

f

��

A
ΦAoo

f

��

B B
ΦB

oo

equivalent to both

f · ΦA ⊆ ΦB · ⊤ (37)

ρ (f · ΦA) ⊆ ΦB (38)
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Exercises (ESC rules)

Exercise 6: Infer from (36) and properties (43) to (47) the following
ESC (extended static checking) properties:

ΦB ΦA1 ∪ ΦA2
foo ≡ ΦB ΦA1

foo ∧ ΦB ΦA2
foo (39)

ΦB1 · ΦB2 ΦA
foo ≡ ΦB1 ΦA

foo ∧ ΦB2 ΦA
foo (40)

�

Exercise 7: Using (37) and the relational version of McCarthy’s
conditional combinator which follows,

p → f , g = f · ⌈p⌉ ∪ g · ⌈¬p⌉ (41)

infer the conditional ESC rule which follows:

ΦB ΦA

p→f ,g
oo ≡ ΦB ΦA · ⌈p⌉

foo ∧ ΦB ΦA · ⌈¬p⌉
g

oo (42)

�



Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Exercises (ESC by calculation)

Exercise 8: Recall that our motivating ESC assertion (1) was stated
but not proved. Now that we know that (1) PF-transforms to

⌈even⌉ ⌈even⌉
twiceoo and that ⌈even⌉ = ρ twice, complete the following

”almost no work at all” PF-calculation of (1):

⌈even⌉ ⌈even⌉
twiceoo

≡ { .......... }

twice · ⌈even⌉ ⊆ ⌈even⌉ · twice

≡ { .......... }

twice · ⌈even⌉ ⊆ ρ twice · twice

≡ { .......... }

twice · ⌈even⌉ ⊆ twice

⇐ { .......... }

⌈even⌉ ⊆ id

≡ { .......... }

True

�
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Background

The following facts have been of help throughout this set of slides:

• Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (43)

R · f ◦ ⊆ S ≡ R ⊆ S · f (44)

• ∩-universal:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (45)

• ∪-universal:

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (46)

• (R ·)-distribution:

R · (S ∪ T ) = R · S ∪ R · T (47)
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