PF transform: conditions and coreflexives for ESC

J.N. Oliveira

Dept. Informática, Universidade do Minho Braga, Portugal

DI/UM, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Basic rules of the PF-transform

ϕ	$PF \phi$
$\langle \exists a :: b R a \land a S c \rangle$	$b(R \cdot S)c$
$\langle \forall a, b :: b R a \Rightarrow b S a \rangle$	$R \subseteq S$
$\langle orall \; a \; :: \; a \; R \; a angle$	$id \subseteq R$
b R a \land c S a	$(b,c)\langle R,S \rangle$ a
$b \ R \ a \wedge d \ S \ c$	$(b,d)(R \times S)(a,c)$
$b \ R \ a \wedge b \ S \ a$	b (R ∩ S) a
$b R a \lor b S a$	b (R ∪ S) a
(f b) R (g a)	$b(f^{\circ} \cdot R \cdot g)a$
TRUE	b⊤a
FALSE	$b\perp a$

- The PF-transform seems applicable to transforming binary predicates only, easily converted to binary relations, eg.
 φ(y, x) △ y − 1 = 2x which transforms to function y = 2x + 1, etc.
- What about transforming predicates such as the following

$$\langle \forall x, y : y = 2x \land even x : even y \rangle$$
 (1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

expressing the fact that function y = 2x preserves even numbers, where even $x \triangleq rem(x, 2) = 0$ is a **unary** predicate?

- As already noted, (1) is a proposition stating that function y = 2x preserves even numbers.
- In general, a function A < f / A is said to preserve a given predicate φ iff the following holds:

$$\langle \forall x : \phi x : \phi (f x) \rangle$$
 (2)

• Proposition (2) is itself a particular case of

$$\langle \forall x : \phi x : \psi (f x) \rangle \tag{3}$$

which states that f ensures property ψ on its output everytime property ϕ holds on its input.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Answer

First PF-transform scope:

$$y = 2x \land even x$$

$$\equiv \{ \exists \text{-one-point} \}$$

$$\langle \exists z : z = x : y = 2z \land even z \rangle$$

$$\equiv \{ \exists \text{-trading ; introduce [even]} \}$$

$$\langle \exists z :: y = 2z \land \underline{z = x \land even z} \rangle$$

$$\equiv \{ \text{ composition ; introduce twice } z \triangleq$$

 $\equiv \{ \text{ composition ; introduce twice } z \leq 2z \}$ $y(twice \cdot \lceil even \rceil)x$

cf. diagram

$$\mathbb{N}_{0} \stackrel{[even]}{\longleftarrow} \mathbb{N}_{0}$$

$$twice \downarrow \qquad \mathbb{N}_{0}$$

Now the whole thing

 $\langle \forall x, y : y = 2x \land even x : even y \rangle$ { above } = $\langle \forall x, y : y(twice \cdot [even])x : even y \rangle$ $\{ \exists -one-point \}$ \equiv $\langle \forall x, y : y(twice \cdot [even])x : \langle \exists z : z = y : even z \rangle \rangle$ { predicate calculus: $p \wedge \text{TRUE} = p$ } \equiv $\langle \forall x, y : y(twice \cdot [even])x : \langle \exists z :: z = y \land even z \land TRUE \rangle \rangle$ $\{ \top \text{ is the top relation } \}$ = $\langle \forall x, y : y(twice \cdot [even])x : \langle \exists z :: y[even]z \land z \top x \rangle \rangle$ { composition } =

・ロト ・聞ト ・ヨト ・ヨト

æ

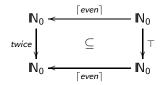
Now the whole thing

$$\langle \forall x, y : y(twice \cdot \lceil even \rceil)x : y(\lceil even \rceil \cdot \top)x \rangle$$

$$\equiv \{ go pointfree (inclusion) \}$$

$$twice \cdot \lceil even \rceil \subseteq \lceil even \rceil \cdot \top$$

cf. diagram



In the calculation above, **unary** predicate *even* has been PF-transformed in two ways:

• [even] such that

 $z \lceil even \rceil x \triangleq z = x \land even z$

— that is, [even] is a **coreflexive** relation;

• $[even] \cdot \top$, which is such that

 $z(\lceil even \rceil \cdot \top)x \equiv even z$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

— a so-called (left) condition.

Coreflexives

The PF-transformation of **unary** predicates to fragments of *id* coreflexives) is captured by the following universal property:

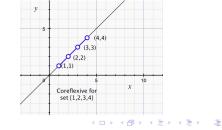
$$\Phi = \lceil \rho \rceil \equiv (y \ \Phi \ x \equiv y = x \land \rho \ y) \tag{4}$$

Via cancellation, (4) yields

$$y [p] x \equiv y = x \land p y \tag{5}$$

A set S can also be PF-transformed into a coreflexive by calculating $[(\in S)]$, cf. eg. the transform of set $\{1, 2, 3, 4\}$:

 $\left[1 \le x \le 4\right]$ =



Exercise 1: Let *false* be the "everywhere false" predicate such that *false* x = FALSE for all x, that is, *false* = FALSE. Use (4) to show that $\lceil false \rceil = \bot$.

Exercise 2: Given a set *S*, let Φ_S abbreviate coreflexive $\lceil (\in S) \rceil$. Calculate $\Phi_{\{1,2\}} \cdot \Phi_{\{2,3\}}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Exercise 3: Solve (4) for *p* under substitution $\Phi := id$.

П

Boolean algebra of coreflexives

Building up one the exercises above, from (4) one easily draws:

$$\lceil p \land q \rceil = \lceil p \rceil \cdot \lceil q \rceil \tag{6}$$

$$\lceil p \lor q \rceil = \lceil p \rceil \cup \lceil q \rceil \tag{7}$$

$$\lceil \neg p \rceil = id - \lceil p \rceil \tag{8}$$

$$[false] = \bot$$
 (9)

$$[true] = id$$
 (10)

where p, q are predicates.

(Note the slight, obvious abuse in notation.)

Basic properties of coreflexives

Let $\Phi,\,\Psi$ be coreflexive relations. Then the following properties hold:

• Coreflexives are symmetric and transitive:

$$\Phi^{\circ} = \Phi = \Phi \cdot \Phi \tag{11}$$

• Meet of two coreflexives is composition:

$$\Phi \cap \Psi = \Phi \cdot \Psi \tag{12}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Closure properties:

 $R \cdot \Phi \subseteq S \equiv R \cdot \Phi \subseteq S \cdot \Phi$ (13) $\Phi \cdot R \subseteq S \equiv \Phi \cdot R \subseteq \Phi \cdot S$ (14)

Coreflexives for data flow control

Coreflexives are very handy in controlling information flow in PF-expressions, as the following two PF-transform rules show, given two suitably typed coreflexives $\Phi = \lceil \phi \rceil$ and $\Psi = \lceil \psi \rceil$:

• Guarded composition: for all b, c

 $\langle \exists a : \phi a : b R a \wedge a Sc \rangle \equiv b(R \cdot \Phi \cdot S)c$ (15)

• Guarded inclusion:

$$\langle \forall \ b, a : \phi \ b \land \psi \ a : b \ R \ a \Rightarrow b \ S \ a \rangle$$
$$\equiv \phi \cdot R \cdot \Psi \subseteq S$$
(16)

See next slide for some related terminology.

Projection and selection

The following relational operators capture two useful relational patterns involving relations, coreflexives and functions:

• Selection:

$$\sigma_{\Psi,\Phi}R \triangleq \Psi \cdot R \cdot \Phi \qquad B \stackrel{R}{\longleftarrow} A \qquad (17)$$

$$\downarrow \Psi \qquad \downarrow \Phi \\ B \stackrel{R}{\longleftarrow} A$$

Projection:

Projection and selection

Set-theoretical meaning of selection and projection, for $\Psi = \lceil \psi \rceil$ and $\Phi = \lceil \phi \rceil$:

$$\sigma_{\Psi,\Phi}R = \{(b,a): b \ R \ a \land \psi \ b \land \phi \ a\}$$
(19)
$$\pi_{g,f}R = \{(g \ b, f \ a): b \ R \ a\}$$
(20)

Let us check (19):

 $\sigma_{\Psi,\Phi}R$ = { set theoretical meaning of a relation }
{(b, a) : b(\sigma_{\Psi,\Phi}R)a}
= { definition (17) }
{(b, a) : b(\Psi \cdot R \cdot \Phi)a}
= { composition }

Projection and selection

 $\{(b,a): \langle \exists c : b \Psi c : c(R \cdot \Phi)a \rangle\}$ { coreflexive $\Psi = [\psi]$ (4); \exists -trading } = $\{(b,a): \langle \exists c : b = c: \psi b \land c(R \cdot \Phi)a \rangle\}$ $\{ \exists - one-point; composition again \}$ = $\{(b, a) : \psi \ b \land \langle \exists \ d \ :: \ b \ R \ d \land d \ \Phi \ a \rangle\}$ { coreflexive $\Phi = [\phi]$ (4); \exists -trading } = $\{(b,a): \psi \ b \land \langle \exists \ d : \ d = a: \ b \ R \ d \land \phi \ a \rangle\}$ $\{ \exists - one - point ; trivia \}$ = $\{(b, a) : \psi \ b \land b \ R \ a \land \phi \ a\}$

Exercise 4: Check (20).

Context Unary predicates	Coreflexives	Coreflexives as guards	Domain and range	Applications
	Two use	eful coreflexive	es	
Domain :				
	$\delta R \triangleq$	$\ker R \cap id$		(21)
Range:				
	$\rho R \triangleq$	$\operatorname{img} R \cap id$		(22)
Facts:				
	δF	$R = \rho(R^\circ)$		(23)
	$\delta(R \cdot S)$	$) = \delta \left(\delta R \cdot S \right)$		(24)
	$\rho(R \cdot S)$	$) = \rho(R \cdot \rho S)$		(25)
	F	$R = R \cdot (\delta R)$		(26)
	F	$R = (\rho R) \cdot R$		(27)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のんの

Relating coreflexives with conditions

Pre and post restriction:

- $R \cdot \Phi = R \cap \top \cdot \Phi \tag{28}$
- $\Psi \cdot R = R \cap \Psi \cdot \top \tag{29}$

Domain/range elimination:

 $\top \cdot \delta R = \top \cdot R$ (30) $\rho R \cdot \top = R \cdot \top$ (31)

Mapping back and forward:

$$\Phi \subseteq \Psi \equiv \Phi \subseteq \top \cdot \Psi \tag{32}$$

Exercise 5: Show that

$$\delta R \subseteq \delta S \equiv R \subseteq \top \cdot S \tag{33}$$

holds.

Application — satisfiability

In the $\ensuremath{\text{pre}}/\ensuremath{\text{post}}$ specification style, by writing

```
Spec: (b:B) \leftarrow (a:A)
pre ...
post ...
```

we mean the definition of two predicates

pre-*Spec* : $A \rightarrow \mathbb{B}$ post-*Spec* : $B \times A \rightarrow \mathbb{B}$

such that the **satisfiability** condition holds:

 $\langle \forall a : a \in A : \text{ pre-}Spec \ a \Rightarrow \langle \exists b : b \in B : \text{ post-}Spec(b,a) \rangle \rangle$ (34)

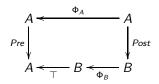
◆□▶ ◆□▶ ◆目▶ ◆目▶ 三三 - のへで

Application — satisfiability

Let us abbreviate

- [pre-*Spec*] by *Pre*
- [post-*Spec*] by *Post*
- [(∈ A)] by Φ_A, which in general encompasses an invariant associated to datatype A
- [(∈ B)] by Φ_B, which in general encompasses an invariant associated to datatype B

Then (34) PF-transforms to



$$Pre \cdot \Phi_A \subseteq \top \cdot \Phi_B \cdot Post$$
 (35)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Application — functional satisfiability

Case Pre = id, Post = f:

 $\Phi_A \subset \top \cdot \Phi_B \cdot f$ $\{ \text{ shunting } (44) \}$ \equiv $\Phi_A \cdot f^\circ \subset \top \cdot \Phi_B$ \equiv { converses } $f \cdot \Phi_A \subset \Phi_B \cdot \top$ \equiv { (45), since $f \cdot \Phi_A \subseteq f$ } $f \cdot \Phi_A \subset f \cap \Phi_B \cdot \top$ \equiv { (29) } $f \cdot \Phi_A \subset \Phi_B \cdot f$

What does this mean?

Functional satisfiability \equiv invariant preservation

Let us introduce variables in $f \cdot \Phi_A \subseteq \Phi_B \cdot f$:

 $f \cdot \Phi_A \subset \Phi_B \cdot f$ \equiv { shunting (43) } $\Phi_A \subset f^\circ \cdot \Phi_B \cdot f$ { introduce variables } ≡ $\langle \forall a, a' : a \Phi_A a' : (f a) \Phi_B(f a') \rangle$ { coreflexives (a = a') } \equiv $\langle \forall a :: a \Phi_A a \Rightarrow (f a) \Phi_B(f a) \rangle$ \equiv { meaning of Φ_A , Φ_B } $\langle \forall a : a \in A : (f a) \in B \rangle$

Context

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Applications

Invariant preservation

Another way to put it:

 $f \cdot \Phi_A \subset \Phi_B \cdot f$ \equiv { shunting } $f \cdot \Phi_A \cdot f^\circ \subset \Phi_B$ \equiv { coreflexives } $f \cdot \Phi_A \cdot \Phi_A^\circ \cdot f^\circ \subset \Phi_B$ { image definition } \equiv $\operatorname{img}(f \cdot \Phi_A) \subseteq \Phi_B$ $\equiv \{f \cdot \Phi_A \text{ is simple }\}$ $\rho(f \cdot \Phi_A) \subset \Phi_B$

Coreflexives as guard

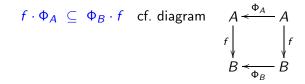
Applications

Invariant preservation

We will write "type declaration"

$$\Phi_B \xleftarrow{f} \Phi_A \tag{36}$$

to mean



equivalent to both

$$\begin{array}{rcl} f \cdot \Phi_A & \subseteq & \Phi_B \cdot \top \\ \rho \left(f \cdot \Phi_A \right) & \subseteq & \Phi_B \end{array}$$
 (37)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Exercises (ESC rules)

Exercise 6: Infer from (36) and properties (43) to (47) the following ESC (*extended static checking*) properties:

$$\Phi_{B} \xleftarrow{f} \Phi_{A_{1}} \cup \Phi_{A_{2}} \equiv \Phi_{B} \xleftarrow{f} \Phi_{A_{1}} \wedge \Phi_{B} \xleftarrow{f} \Phi_{A_{2}} (39)$$

$$\Phi_{B_{1}} \cdot \Phi_{B_{2}} \xleftarrow{f} \Phi_{A} \equiv \Phi_{B_{1}} \xleftarrow{f} \Phi_{A} \wedge \Phi_{B_{2}} \xleftarrow{f} \Phi_{A} (40)$$

Exercise 7: Using (37) and the relational version of McCarthy's conditional combinator which follows,

$$p \to f, g = f \cdot \lceil p \rceil \cup g \cdot \lceil \neg p \rceil$$
 (41)

infer the *conditional ESC* rule which follows:

$$\Phi_{B} \stackrel{p \to f,g}{\longleftarrow} \Phi_{A} \equiv \Phi_{B} \stackrel{f}{\longleftarrow} \Phi_{A} \cdot \lceil p \rceil \land \Phi_{B} \stackrel{g}{\longleftarrow} \Phi_{A} \cdot \lceil \neg p \rceil (42)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Exercises (ESC by calculation)

Exercise 8: Recall that our motivating ESC assertion (1) was stated but not proved. Now that we know that (1) PF-transforms to

 $[even] \xleftarrow{twice} [even]$ and that $[even] = \rho$ twice, complete the following "almost no work at all" PF-calculation of (1):

$$[even] \stackrel{twice}{\leftarrow} [even] \equiv \{ \dots, \dots \}$$

$$\equiv \{ \dots, \dots \}$$

$$twice \cdot [even] \subseteq [even] \cdot twice$$

$$\equiv \{ \dots, \dots \}$$

$$twice \cdot [even] \subseteq \rho twice \cdot twice$$

$$= \{ \dots, \dots \}$$

$$[even] \subseteq id$$

$$TRUE$$

Background

The following facts have been of help throughout this set of slides:

- Shunting rules:
- $f \cdot R \subseteq S \equiv R \subseteq f^{\circ} \cdot S \tag{43}$

$$R \cdot f^{\circ} \subseteq S \equiv R \subseteq S \cdot f \tag{44}$$

• ∩-universal:

$$X \subseteq R \cap S \equiv X \subseteq R \land X \subseteq S \tag{45}$$

• U-universal:

$$R \cup S \subseteq X \equiv R \subseteq X \land S \subseteq X$$
(46)

• (*R*·)-distribution:

$$R \cdot (S \cup T) = R \cdot S \cup R \cdot T \tag{47}$$