
PF transform: conditions and coreflexives for
ESC

J.N. Oliveira

Dept. Informática,

Universidade do Minho

Braga, Portugal

DI/UM, 2007

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Basic rules of the PF-transform

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a

b R a ∨ b S a b (R ∪ S) a

(f b) R (g a) b(f ◦ · R · g)a
True b ⊤ a

False b ⊥ a

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Question

• The PF-transform seems applicable to transforming binary

predicates only, easily converted to binary relations, eg.
φ(y , x) △ y − 1 = 2x which transforms to function
y = 2x + 1, etc.

• What about transforming predicates such as the following

〈∀ x , y : y = 2x ∧ even x : even y〉 (1)

expressing the fact that function y = 2x preserves even
numbers, where even x △ rem(x , 2) = 0 is a unary predicate?

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Observation

• As already noted, (1) is a proposition stating that function
y = 2x preserves even numbers.

• In general, a function A A
foo is said to preserve a given

predicate φ iff the following holds:

〈∀ x : φ x : φ (f x)〉 (2)

• Proposition (2) is itself a particular case of

〈∀ x : φ x : ψ (f x)〉 (3)

which states that f ensures property ψ on its output
everytime property φ holds on its input.

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Answer
First PF-transform scope:

y = 2x ∧ even x

≡ { ∃-one-point }

〈∃ z : z = x : y = 2z ∧ even z〉

≡ { ∃-trading ; introduce ⌈even⌉ }

〈∃ z :: y = 2z ∧ z = x ∧ even z
︸ ︷︷ ︸

z⌈even⌉x

〉

≡ { composition ; introduce twice z △ 2z }

y(twice · ⌈even⌉)x

cf. diagram IN0

twice

��

IN0

⌈even⌉
oo

IN0

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Now the whole thing

〈∀ x , y : y = 2x ∧ even x : even y〉

≡ { above }

〈∀ x , y : y(twice · ⌈even⌉)x : even y〉

≡ { ∃-one-point }

〈∀ x , y : y(twice · ⌈even⌉)x : 〈∃ z : z = y : even z〉〉

≡ { predicate calculus: p ∧True = p }

〈∀ x , y : y(twice · ⌈even⌉)x : 〈∃ z :: z = y ∧ even z ∧True〉〉

≡ { ⊤ is the top relation }

〈∀ x , y : y(twice · ⌈even⌉)x : 〈∃ z :: y⌈even⌉z ∧ z⊤x〉〉

≡ { composition }

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Now the whole thing

〈∀ x , y : y(twice · ⌈even⌉)x : y(⌈even⌉ · ⊤)x〉

≡ { go pointfree (inclusion) }

twice · ⌈even⌉ ⊆ ⌈even⌉ · ⊤

cf. diagram

IN0

twice

��

IN0

⌈even⌉
oo

⊤

��

⊆

IN0 IN0
⌈even⌉

oo

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

In summary

In the calculation above, unary predicate even has been
PF-transformed in two ways:

• ⌈even⌉ such that

z⌈even⌉x △ z = x ∧ even z

— that is, ⌈even⌉ is a coreflexive relation;

• ⌈even⌉ · ⊤, which is such that

z(⌈even⌉ · ⊤)x ≡ even z

— a so-called (left) condition.

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Coreflexives
The PF-transformation of unary predicates to fragments of id

coreflexives) is captured by the following universal property:

Φ = ⌈p⌉ ≡ (y Φ x ≡ y = x ∧ p y) (4)

Via cancellation, (4) yields

y ⌈p⌉ x ≡ y = x ∧ p y (5)

A set S can also be PF-transformed into a coreflexive by
calculating ⌈(∈ S)⌉, cf. eg. the transform of set {1, 2, 3, 4}:

⌈1 ≤ x ≤ 4⌉ =

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Exercises

Exercise 1: Let false be the “everywhere false” predicate such that
false x = False for all x , that is, false = False. Use (4) to show that
⌈false⌉ = ⊥.

�

Exercise 2: Given a set S , let ΦS abbreviate coreflexive ⌈(∈ S)⌉.
Calculate Φ{1,2} · Φ{2,3}.

�

Exercise 3: Solve (4) for p under substitution Φ := id .

�

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Boolean algebra of coreflexives

Building up one the exercises above, from (4) one easily draws:

⌈p ∧ q⌉ = ⌈p⌉ · ⌈q⌉ (6)

⌈p ∨ q⌉ = ⌈p⌉ ∪ ⌈q⌉ (7)

⌈¬p⌉ = id − ⌈p⌉ (8)

⌈false⌉ = ⊥ (9)

⌈true⌉ = id (10)

where p, q are predicates.

(Note the slight, obvious abuse in notation.)

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Basic properties of coreflexives

Let Φ, Ψ be coreflexive relations. Then the following properties
hold:

• Coreflexives are symmetric and transitive:

Φ◦ = Φ = Φ · Φ (11)

• Meet of two coreflexives is composition:

Φ ∩Ψ = Φ ·Ψ (12)

• Closure properties:

R · Φ ⊆ S ≡ R · Φ ⊆ S · Φ (13)

Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S (14)

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Coreflexives for data flow control

Coreflexives are very handy in controlling information flow in
PF-expressions, as the following two PF-transform rules show,
given two suitably typed coreflexives Φ = ⌈φ⌉ and Ψ = ⌈ψ⌉:

• Guarded composition: for all b, c

〈∃ a : φ a : b R a ∧ a Sc〉 ≡ b(R · Φ · S)c (15)

• Guarded inclusion:

〈∀ b, a : φ b ∧ ψ a : b R a⇒ b S a〉

≡ Φ · R ·Ψ ⊆ S (16)

See next slide for some related terminology.

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Projection and selection

The following relational operators capture two useful relational
patterns involving relations, coreflexives and functions:

• Selection:

σΨ,ΦR △ Ψ · R · Φ B

Ψ
��

A
Roo

Φ
��

B A
σΨ,ΦR
oo

(17)

• Projection:

πg ,f R △ g · R · f ◦ B

g

��

A
Roo

f

��

C D
πg,f R
oo

(18)

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Projection and selection

Set-theoretical meaning of selection and projection, for Ψ = ⌈ψ⌉
and Φ = ⌈φ⌉:

σΨ,ΦR = {(b, a) : b R a ∧ ψ b ∧ φ a} (19)

πg ,f R = {(g b, f a) : b R a} (20)

Let us check (19):

σΨ,ΦR

= { set theoretical meaning of a relation }

{(b, a) : b(σΨ,ΦR)a}

= { definition (17) }

{(b, a) : b(Ψ · R ·Φ)a}

= { composition }

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Projection and selection

{(b, a) : 〈∃ c : b Ψ c : c(R · Φ)a〉}

= { coreflexive Ψ = ⌈ψ⌉ (4) ; ∃-trading }

{(b, a) : 〈∃ c : b = c : ψb ∧ c(R ·Φ)a〉}

= { ∃-one-point ; composition again }

{(b, a) : ψ b ∧ 〈∃ d :: b R d ∧ d Φ a〉}

= { coreflexive Φ = ⌈φ⌉ (4) ; ∃-trading }

{(b, a) : ψ b ∧ 〈∃ d : d = a : b R d ∧ φ a〉}

= { ∃-one-point ; trivia }

{(b, a) : ψ b ∧ b R a ∧ φ a}

Exercise 4: Check (20).

�

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Two useful coreflexives

Domain:

δ R △ ker R ∩ id (21)

Range:

ρR △ imgR ∩ id (22)

Facts:

δ R = ρ (R◦) (23)

δ (R · S) = δ (δ R · S) (24)

ρ (R · S) = ρ (R · ρS) (25)

R = R · (δ R) (26)

R = (ρR) · R (27)

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Relating coreflexives with conditions

Pre and post restriction:

R · Φ = R ∩ ⊤ · Φ (28)

Ψ · R = R ∩Ψ · ⊤ (29)

Domain/range elimination:

⊤ · δ R = ⊤ · R (30)

ρR · ⊤ = R · ⊤ (31)

Mapping back and forward:

Φ ⊆ Ψ ≡ Φ ⊆ ⊤ ·Ψ (32)

Exercise 5: Show that

δ R ⊆ δ S ≡ R ⊆ ⊤ · S (33)

holds.

�

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Application — satisfiability

In the pre/post specification style, by writing

Spec : (b : B)← (a : A)

pre . . .

post . . .

we mean the definition of two predicates

pre-Spec : A→ IB

post-Spec : B × A→ IB

such that the satisfiability condition holds:

〈∀ a : a ∈ A : pre-Spec a⇒ 〈∃ b : b ∈ B : post-Spec(b, a)〉〉(34)

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Application — satisfiability

Let us abbreviate

• ⌈pre-Spec⌉ by Pre

• ⌈post-Spec⌉ by Post

• ⌈(∈ A)⌉ by ΦA, which in general encompasses an invariant
associated to datatype A

• ⌈(∈ B)⌉ by ΦB , which in general encompasses an invariant
associated to datatype B

Then (34) PF-transforms to

A

Pre

��

A

Post

��

ΦAoo

A B
⊤

oo B
ΦB

oo

Pre ·ΦA ⊆ ⊤ · ΦB · Post (35)

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Application — functional satisfiability

Case Pre = id , Post = f :

ΦA ⊆ ⊤ ·ΦB · f

≡ { shunting (44) }

ΦA · f
◦ ⊆ ⊤ · ΦB

≡ { converses }

f · ΦA ⊆ ΦB · ⊤

≡ { (45), since f · ΦA ⊆ f }

f · ΦA ⊆ f ∩ΦB · ⊤

≡ { (29) }

f · ΦA ⊆ ΦB · f

What does this mean?

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Functional satisfiability ≡ invariant preservation

Let us introduce variables in f · ΦA ⊆ ΦB · f :

f · ΦA ⊆ ΦB · f

≡ { shunting (43) }

ΦA ⊆ f ◦ · ΦB · f

≡ { introduce variables }

〈∀ a, a′ : a ΦA a′ : (f a)ΦB(f a′)〉

≡ { coreflexives (a = a′) }

〈∀ a : : a ΦA a⇒ (f a)ΦB(f a)〉

≡ { meaning of ΦA, ΦB }

〈∀ a : a ∈ A : (f a) ∈ B〉

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Invariant preservation

Another way to put it:

f · ΦA ⊆ ΦB · f

≡ { shunting }

f · ΦA · f
◦ ⊆ ΦB

≡ { coreflexives }

f · ΦA · Φ
◦

A · f
◦ ⊆ ΦB

≡ { image definition }

img (f · ΦA) ⊆ ΦB

≡ { f ·ΦA is simple }

ρ (f · ΦA) ⊆ ΦB

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Invariant preservation

We will write “type declaration”

ΦB ΦA
foo (36)

to mean

f · ΦA ⊆ ΦB · f cf. diagram A

f

��

A
ΦAoo

f

��

B B
ΦB

oo

equivalent to both

f · ΦA ⊆ ΦB · ⊤ (37)

ρ (f · ΦA) ⊆ ΦB (38)

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Exercises (ESC rules)

Exercise 6: Infer from (36) and properties (43) to (47) the following
ESC (extended static checking) properties:

ΦB ΦA1 ∪ ΦA2
foo ≡ ΦB ΦA1

foo ∧ ΦB ΦA2
foo (39)

ΦB1 · ΦB2 ΦA
foo ≡ ΦB1 ΦA

foo ∧ ΦB2 ΦA
foo (40)

�

Exercise 7: Using (37) and the relational version of McCarthy’s
conditional combinator which follows,

p → f , g = f · ⌈p⌉ ∪ g · ⌈¬p⌉ (41)

infer the conditional ESC rule which follows:

ΦB ΦA

p→f ,g
oo ≡ ΦB ΦA · ⌈p⌉

foo ∧ ΦB ΦA · ⌈¬p⌉
g

oo (42)

�

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Exercises (ESC by calculation)

Exercise 8: Recall that our motivating ESC assertion (1) was stated
but not proved. Now that we know that (1) PF-transforms to

⌈even⌉ ⌈even⌉
twiceoo and that ⌈even⌉ = ρ twice, complete the following

”almost no work at all” PF-calculation of (1):

⌈even⌉ ⌈even⌉
twiceoo

≡ { }

twice · ⌈even⌉ ⊆ ⌈even⌉ · twice

≡ { }

twice · ⌈even⌉ ⊆ ρ twice · twice

≡ { }

twice · ⌈even⌉ ⊆ twice

⇐ { }

⌈even⌉ ⊆ id

≡ { }

True

�

Context Unary predicates Coreflexives Coreflexives as guards Domain and range Applications

Background

The following facts have been of help throughout this set of slides:

• Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (43)

R · f ◦ ⊆ S ≡ R ⊆ S · f (44)

• ∩-universal:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (45)

• ∪-universal:

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (46)

• (R ·)-distribution:

R · (S ∪ T) = R · S ∪ R · T (47)

	Context
	Unary predicates
	Coreflexives
	Coreflexives as guards
	Domain and range
	Applications

