
Objectification — from functional to state-based

models

J.N. Oliveira

Dept. Informática,

Universidade do Minho

Braga, Portugal

DI/UM, 2007

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Functional modeling

Consider the following model of a stack:

• Datatype:

Stack A △ A⋆

• Functionality

empty : Stack A→ IB
empty s △ s = []

push : A→ Stack A→ Stack A

push a s △ a : s

Pop : Stack A→ Stack A

Pop s △ tail s

pre ¬(empty s)

Top : Stack A→ A

Top s △ head s

pre ¬(empty s)

clear : Stack A→ Stack A

clear s △ []

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Questions

• Is this the only way to specify a stack?

• Compare with, at programming level
• functional program (eg. in Haskell)
• imperative program (eg. in C)
• object oriented program (eg. in Java)

• How do we bridge the gap between such an abstract model
and other models closer to such programming languages?

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Objectification

• Process of inferring object class models from a purely
functional models

• Based on Coad and Yourdon’s principle:

The potential class must have a set of identifiable

operations that can change the value of its

attributes in some way. [1]

• One needs to identify what Coad and Yourdon mean by
attributes

• More generally, one needs to identify the state space of an
automaton

Motivation Objectification State transformers DMM semantics Proof obligation State monad

About automata

Given a set A (input alphabet), a set B (output alphabet) and a
set of states S , a Deterministic Mealy Machine (DMM) is specified
by a transition function of type

δ : A→ (S → (B × S))

Wherever (b, s ′) = δ a s, we say that there is a transition

s ′ s
a|boo

and refer to s as the before state, and to s ′ as the after state.

Motivation Objectification State transformers DMM semantics Proof obligation State monad

First step: identify the DMM

Analysis of functionality of example given shows:

• All involve either an argument or result of type Stack A

• There is at least one function where Stack A is the type of
both an argument and the result (two in fact: push and Pop.)

• Easy to see that eg.

push : A→ (Stack A→ (1× Stack A)

is itself a DMM (note the 1 signaling the empty output)
whose state is of type Stack A

• Other functionality can be converted into DMMs by adding 1s
where needed, eg.

clear : 1→ (Stack A→ (1× Stack A)

(note the empty input this time)

Motivation Objectification State transformers DMM semantics Proof obligation State monad

First step: identify the DMM

• Other functionality can be converted into DMMs by explicitly
declaring that the state doesn’t change, eg.

Top : 1→ (Stack A→ (A × Stack A)

Top s △ (head s, s)

pre ¬(empty s)

Altogether

• we can build an object as a composite DMM which
encompasses the whole functionality,

• whose state is of type Stack A and where

• push, Pop and clear modify the state (they write on it)

• Top and empty read (abbrev. rd) the state only

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Comments

• Builiding the DMM as above is the right (formal) way but
involves a number of technical details [2] which it is wise to
ignore for the time being

• Below we head for a practical method based on
pre/post-conditions

• So we go for implict specifications

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Second step: go implicit

empty : (s : Stack A)→ (r : IB)
post r = (s = [])

push : (a : A)→ (s : Stack A)→ (r : Stack A)
post r = a : s

Pop : (s : Stack A)→ (r : Stack A)
pre ¬(empty s)
post r = tail s

Top : (s : Stack A)→ (r : A)
pre ¬(empty s)
post r = head s

clear : (s : Stack A)→ (r : Stack A)
post r = []

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Third step: factor out state

A way to indicate that Stack A is the DMM’s state is to drop this
from the signatures while marking each operation as a state
reader or state writer:

empty :→ (r : IB)
rd s : Stack A

push : (a : A)→
wr s : Stack A

Pop :→
wr s : Stack A

Top :→ (r : A)
rd s : Stack A

clear :→
wr s : Stack A

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Notation: state readers

By writing

OP : (b : B)← (a : A)

rd s : St

pre precond(s, a)

post postcond(s ′, b, s, a)

we mean an operation which does not modify the state:

pre-OP : St × A→ IB

pre-OP(s, a) △ precond(s, a)

post-OP : St × B × St × A→ IB

post-OP(s ′, b, s, a) △ postcond(s ′, b, s, a) ∧ s ′ = s

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Notation: state writers

By writing

OP : (b : B)← (a : A)

wr s : St

pre precond(s, a)

post postcond(s ′, b, s, a)

we mean

pre-OP : St × A→ IB

pre-OP(s, a) △ precond(s, a)

post-OP : St × B × St × A→ IB

post-OP(s ′, b, s, a) △ postcond(s ′, b, s, a)

that is, condition s ′ = s is dropped.

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Fourth step: merge and rename

Readers and writers can be combined so as to build a DMM whose
transitions involve operations which both yield a result and modify
the state:

EMPTY :→ (b : IB)
rd s : Stack A

post b = (empty s)

PUSH : (a : A)→
wr s : Stack A

post s ′ = a : s

POP :→ (r : A)
wr s : Stack A

pre ¬(empty s)
post s ′ = tail s ∧ r = head s

TOP : Stack A→ A

rd s : Stack A

pre ¬(empty s)
post r = head s

CLEAR :→
wr s : Stack A

post s ′ = []

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Combining functions to build writers

The “output first” pattern:

g

f
a

s

r = f (a, s)

s ′ = g(a, s)

-

-

�

�
�

�
�St

-

p

-

p -

post r = f (a, s) ∧ s ′ = g(a, s)

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Combining functions to build writers

The “update first” pattern:

g

f
a

s

r = f (a, s ′)

s ′ = g(a, s)

-

-

�

�
�

�
�St

-

p

-

p -

post s ′ = g(a, s) ∧ r = f (a, s ′)

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Example of update first writer

A cash-point operation:

DEBIT : (m : Amount)→ (r : Receipt)

wr s : Account

pre m ≤ balance s

post s ′ = debit m s ∧ r = balance s ′

Motivation Objectification State transformers DMM semantics Proof obligation State monad

DMM semantics

• The behaviour of the Stack DMM is defined as the set of all
state transitions which can take place as dictated by
pre/post-condition pairs.

• Example: for A = {0, 1}, B = A ∪ IB, the state transition
diagram will include

s
CLEAR|

// []

CLEAR|

��
PUSH 0|

%%

PUSH 1|

��

[0]

CLEAR|

��

POP|0

ee

PUSH 1|
((

...|...

��

[1, 0]

TOP|1

SS

...|...

��

POP|1

ff

...|...

%%. . .

[1]

TOP|1

KK

EMPTY |False

kk

etc

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Behavioural safety and nondeterminism

Note that

• state transition diagram rules out all transitions whose
before-states violate pre-conditions

• in general, there may exist operations such as eg.

Pick :→ (x : Marble)

wr b : Bag

pre b 6= {}

post x ∈ b ∧ b′ = b − {x}

So, in general, Mealy machines can be nondeterministic.

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Proof obligation

For every

OP : (b : B)← (a : A)

wr/rd s : St

pre ...

post ...

where St, A and B are subject to invariants, one is obliged to
discharge the following proof:

Satisfiability

〈 ∀ s, a :
s ∈ St ∧ a ∈ A :

pre-OP(s, a)⇒ 〈∃ s ′, b : s ′ ∈ St ∧ b ∈ B : post-OP(s ′, b, s, a)〉

〉

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Back to functions

DMMs can be built and animated using the state monad:

• Recall

δ : A→ (S → (B × S))
︸ ︷︷ ︸

ST S B

• Every function of type ST S B will be referred to as a state

transformer

• For a fixed state space S , F
def
= ST S can be turned into a

monad

• Split combinator 〈f , g〉a △ (f a, g a) useful in building state
transformers

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Building state transformers

Update state:

update : (S → S)→ ST S 1

update f △ 〈!, f 〉

Query the state:

query : (S → B)→ ST S B

query f △ 〈f , id〉

Return a result:

return : B → ST S B

return b △ 〈b, id〉

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Combining state transformers

Sequential composition:

seq : ST S A→ ST S B → ST S B

seq f g △ do {f ; g}

”Update first” transformer:

updfst : (A→ S → S)→ (A→ S → B)→ A→ ST S B

updfst g f a △ do {update(g a); query(f a)}

”Query first” transformer:

qryfst : (A→ S → S)→ (A→ S → B)→ A→ ST S B

qryfst g f a △ do {b← query(f a); update(g a); return b}

Motivation Objectification State transformers DMM semantics Proof obligation State monad

Animating state transformers

Running:

run : ST S A→ S → (A× S)

run g s △ g s

Example: given POP △ qryfst head tail , by running POP over
state [1, 2, 3] one obtains

run POP [1, 2, 3] = (1, [2, 3])

This reactive behaviour can only be animated for DMMs.
Nondeterminism requires explicit use of test suites guided by
post-conditions.

Motivation Objectification State transformers DMM semantics Proof obligation State monad

P. Coad and E. Yourdon.
Object-Oriented Analysis.
Prentice Hall, 2nd edition, 1991.

A. Cruz, L. Barbosa, and J. Oliveira.
From algebras to objects: Generation and composition.
Journal of Universal Computer Science, 11(10):1580–1612,
2005.

	Motivation
	Objectification
	State transformers
	DMM semantics
	Proof obligation
	State monad

