Proof obligation discharge using the PF transform

J.N. Oliveira
Dept. Informática, Universidade do Minho
Braga, Portugal

DI/UM, 2008

Summary

Learning outcomes:

- Discharging proof obligations via PF-transform. Pre/post conditions. Invariants.
- Extended static checking in the PF-style. PF-calculation of weakest pre-conditions for invariant maintenance.
- Three examples

Broad picture: a "all-in-one" strategy for PO discharge

Poof obligations in the PF-style

In general:
Input/output property preservation (functions)
Proof obligation

$$
\begin{equation*}
\langle\forall x: p x: q(f x)\rangle \tag{1}
\end{equation*}
$$

stating that function f ensures property q on its output every time property p holds on its input PF-transforms to

$$
\begin{equation*}
f \cdot \Phi_{p} \subseteq \Phi_{q} \cdot f \quad c f . \text { diagram } \quad A \stackrel{\Phi_{p}}{\longleftarrow} A \tag{2}
\end{equation*}
$$

Predicates as "types"

We will write "type declaration"

$$
\begin{equation*}
\Phi_{q} \stackrel{f}{\leftrightarrows} \Phi_{p} \tag{3}
\end{equation*}
$$

to mean (2).
Exercise 1: Show that (2) and

$$
\begin{equation*}
f \cdot \Phi_{p} \subseteq \Phi_{q} \cdot T \tag{4}
\end{equation*}
$$

are the same.
\square

Exercise 2: Prove the equivalence

$$
\begin{equation*}
\Phi_{q} \stackrel{i d}{\rightleftarrows} \Phi_{p} \equiv q \Leftarrow p \tag{5}
\end{equation*}
$$

Exercises

Exercise 3: Infer from (3) and properties (59) to (61) the following ESC (extended static checking) properties:

$$
\begin{align*}
& \Phi_{q}{ }^{f} \Phi_{p_{1}} \cup \Phi_{p_{2}} \equiv \Phi_{q} \stackrel{f}{\longleftarrow}_{{ }^{f}}^{p_{1}} \wedge \Phi_{q}{ }^{f} \Phi_{p_{2}} \tag{6}\\
& \Phi_{q_{1}} \cdot \Phi_{q_{2}}{ }^{f} \tag{7}\\
& \leftarrow
\end{align*} \Phi_{p} \equiv \Phi_{q_{1}}{ }^{f} \Phi_{p} \wedge \Phi_{q_{2}}{ }^{f} \Phi_{p} .
$$

Exercise 4: Using (4) and the relational version of McCarthy's conditional combinator which follows,

$$
\begin{equation*}
c \rightarrow f, g=f \cdot \Phi_{c} \cup g \cdot \Phi_{\neg c} \tag{8}
\end{equation*}
$$

infer the conditional ESC rule which follows:

$$
\begin{equation*}
\Phi_{q} \stackrel{c \rightarrow f, g}{\longleftrightarrow} \Phi_{p} \equiv \Phi_{q} \stackrel{f}{\leftarrow} \Phi_{p} \cdot \Phi_{c} \wedge \Phi_{q} \stackrel{g}{\longleftarrow} \Phi_{p} \cdot \Phi_{\neg c} \tag{9}
\end{equation*}
$$

Relationship with Hoare Logic

Let us show that Hoare triples such as

$$
\begin{equation*}
\{p\} P\{q\} \tag{10}
\end{equation*}
$$

are also instances of ESC proof obligations. First we spell out the meaning of (10):

$$
\begin{equation*}
\left\langle\forall s: p s:\left\langle\forall s^{\prime}: s \xrightarrow{P} s^{\prime}: q s^{\prime}\right\rangle\right\rangle \tag{11}
\end{equation*}
$$

Then (recording the meaning of program P as relation $\llbracket P \rrbracket$ on program states) we PF-transform (11) into

$$
\begin{equation*}
\Phi_{p} \subseteq \llbracket P \rrbracket \backslash\left(\Phi_{q} \cdot \top\right) \tag{12}
\end{equation*}
$$

thanks to the introduction of relational (left) division,

$$
\begin{equation*}
b(R \backslash S) a \equiv\langle\forall c: c R b: c S a\rangle \tag{13}
\end{equation*}
$$

Relationship with Hoare Logic

Thanks to "al-djabr" rule

$$
\begin{equation*}
R \cdot X \subseteq S \equiv X \subseteq R \backslash S \tag{14}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\llbracket P \rrbracket \cdot \Phi_{p} \subseteq \Phi_{q} \cdot \top \tag{15}
\end{equation*}
$$

equivalent to

$$
\llbracket P \rrbracket \cdot \Phi_{p} \subseteq \Phi_{q} \cdot \llbracket P \rrbracket
$$

which shares the same scheme as

$$
f \cdot \Phi_{p} \subseteq \Phi_{q} \cdot f
$$

earlier on.

Summary

In general, we will write "type declaration"

$$
\begin{equation*}
\psi \stackrel{R}{\leftarrow} \Phi \tag{16}
\end{equation*}
$$

to mean

$$
\begin{equation*}
R \cdot \Phi \subseteq \Psi \cdot R \tag{17}
\end{equation*}
$$

In words:

- Notation (16) can be regarded as the type assertion that, if fed with values (or starting on states) "of type ϕ " computation R yields results (moves to states) "of type Ψ " (if it terminates).
- So functional ESC POs and Hoare triples are one and the same device: a way to type computations, be them specified as (always terminating, deterministic) functions or encoded into (possibly non-terminating, non-deterministic) programs.

The invariant maintenance (IM) PO

Pointfree:

$$
\begin{equation*}
\Phi_{i n v} \stackrel{R}{\longleftrightarrow} \Phi_{i n v} \tag{18}
\end{equation*}
$$

that is,

$$
\begin{equation*}
R \cdot \Phi_{i n v} \subseteq \Phi_{i n v} \cdot R \tag{19}
\end{equation*}
$$

Pointwise (functions):

$$
\begin{equation*}
\langle\forall a: \operatorname{inv} a: \operatorname{inv}(f a)\rangle \tag{20}
\end{equation*}
$$

Pointwise (relations):

$$
\begin{equation*}
\left\langle\forall a: \operatorname{inv} a:\left\langle\forall a^{\prime}: a^{\prime} R a: \operatorname{inv} a^{\prime}\right\rangle\right\rangle \tag{21}
\end{equation*}
$$

Mid point: pre-conditioned functions

The most typical situation corresponds to R being a function restricted by some precondition:

- Let $R:=f \cdot \Phi_{\text {pre }}$ in (18), where pre is a given precondition.
- Then (18) becomes

$$
\begin{align*}
& \Phi_{i n v} \stackrel{f \cdot \Phi_{\text {pre }}}{\rightleftarrows} \Phi_{i n v} \\
& \equiv \quad\{\text { definition }\} \\
& f \cdot \Phi_{p r e} \cdot \Phi_{i n v} \subseteq \Phi_{i n v} \cdot \top \\
& \equiv \quad\{\text { definition }\} \\
& \Phi_{i n v} \stackrel{f}{\longleftarrow} \Phi_{\text {pre }} \cdot \Phi_{i n v} \\
& \equiv \quad\{\text { going pointwise }\} \\
& \langle\forall \text { a :: pre a } \wedge \operatorname{inv} a \Rightarrow \operatorname{inv}(f a)\rangle \tag{22}
\end{align*}
$$

Calculating Preconditions for IM

- Very often f and inv are given and pre is the "unknown": the idea is to find pre which is "enough" for (22) to hold.
- In fact, wherever f does not ensure maintenance of invariant inv, there is always a pre-condition pre which enforces this at the cost of partializing f : in the limit, pre is the everywhere false predicate.
- As a rule, the average programmer will become aware of such a pre-condition at runtime, in the testing phase.
- One can find it much earlier, at specification time, when trying to discharge the standard proof obligation (22).

PF-ESC instead of invent \& verify

However,

- Bound to invent pre, we'll hope to have guessed the weakest such pre-condition. Otherwise, future use of f will be spuriously constrained.
- Can we be sure of having hit the weakest pre-condition?

Our approach (PF-ESC) will be as follows:

- We take the PF-transform of $\operatorname{inv}(f a)$ in (22) - at data level - and attempt to rewrite it to a term involving inv a and possibly "something else": the calculated pre-condition.
- This will be the weakest provided the calculation stays within equivalence steps (as shown in the next slides).

Weakest pre-conditions

- Let us strengthen (22) to equivalence

$$
\begin{equation*}
\langle\forall a::(\text { pre } a) \wedge(\operatorname{inv} a) \equiv \operatorname{inv}(f a)\rangle \tag{23}
\end{equation*}
$$

which PF-transforms to equality

$$
\begin{equation*}
\Phi_{p r e} \cdot \Phi_{i n v}=\top \cdot \Phi_{i n v} \cdot f \tag{24}
\end{equation*}
$$

- Later on we will show that (24) ensures pre as the weakest (up to logical equivalence) pre-condition for inv to be preserved.
- Weakest $=$ sufficient + necessary for $\operatorname{inv}(f a)$ to hold.

Case study 1: PF-ESC at work

We want to calculate the WP for

$$
\text { add } \times 1 \triangle x: 1
$$

to preserve the no duplicates invariant on finite lists.

- First step: PF-transform X^{\star} to $\mathbb{N} \rightharpoonup X$ (simple relation telling which elements take which position in list).
Then the no duplicates invariant on L is encoded as $\operatorname{ker} L \subseteq i d$ (L is injective)
Finally, add $\times L$ PF-transforms to

$$
\begin{equation*}
\underline{x} \cdot \underline{1}^{\circ} \cup L \cdot \operatorname{succ}^{\circ} \tag{25}
\end{equation*}
$$

cf. back to points: $\{1 \mapsto x\} \cup\{i+1 \mapsto(L i): i \leftarrow \delta L\}$.

Case study 1: PF-ESC at work

- Second step: we start from the right hand side $\operatorname{inv}(\operatorname{add} \times L)$ of (23) and re-write it by successive equivalence steps until we reach:
- condition inv 1 ...
- ... "plus something else" - the calculated weakest pre-condition.
- Since the PF-transformed proof has to do with injectivity of union of relations, the following fact

$$
\begin{align*}
& R \cup S \text { is injective } \equiv \\
& \quad R \text { is injective } \wedge S \text { is injective } \wedge R^{\circ} \cdot S \subseteq \text { id } \tag{26}
\end{align*}
$$

(easy to prove) is likely to be of use.

Case study 1: PF-ESC at work

$$
\text { True } \wedge L^{\circ} \cdot L \subseteq i d \wedge \underline{x}^{\circ} \cdot L \subseteq \underline{1}^{\circ} \cdot \operatorname{succ}
$$

$$
\begin{aligned}
& \text { add } \times L \text { has no duplicates } \\
& \equiv \quad\{\text { cf. (25) etc }\} \\
& \underline{x} \cdot \underline{1}^{\circ} \cup L \cdot \text { succ }^{\circ} \text { is injective } \\
& \equiv \quad\{(26)\} \\
& \underline{x} \cdot \underline{1}^{\circ} \text { is injective } \wedge L \cdot \text { succ }^{\circ} \text { is injective } \wedge\left(\underline{x} \cdot \underline{1}^{\circ}\right)^{\circ} \cdot L \cdot \operatorname{succ}^{\circ} \subseteq i d \\
& \equiv \quad\{\text { definition of injective (twice) ; "al-djabr" (59) \} } \\
& \underline{1} \cdot \underline{x}^{\circ} \cdot \underline{x} \cdot \underline{1}^{\circ} \subseteq i d \wedge \operatorname{succ} \cdot L^{\circ} \cdot L \cdot \operatorname{succ}{ }^{\circ} \subseteq i d \wedge \underline{x}^{\circ} \cdot L \subseteq \underline{1}^{\circ} \cdot \operatorname{succ} \\
& \equiv \quad\{\text { "al-djabr" }(59,60) \text { as much as possible \}} \\
& \underline{x}^{\circ} \cdot \underline{x} \subseteq \underline{1}^{\circ} \cdot \underline{1} \wedge L^{\circ} \cdot L \subseteq \operatorname{succ}{ }^{\circ} \cdot \operatorname{succ} \wedge \underline{x}^{\circ} \cdot L \subseteq \underline{1}^{\circ} \cdot \operatorname{succ} \\
& \equiv \quad\{\text { kernel of constant function is } T \text {; succ is an injection \}}
\end{aligned}
$$

Case study 1: summary

We have thus calculated:

PW-expansion of the calculated WP:

$$
\left.\begin{array}{ll}
& \begin{array}{l}
\underline{x}^{\circ} \cdot L \subseteq \underline{1}^{\circ} \cdot \text { succ } \\
\equiv
\end{array} \quad\{\text { go pointwise: }(48) \text { twice }\} \\
\equiv & \langle\forall n:: x L n \Rightarrow 1=1+n\rangle \\
& \quad\{L \text { models list } /\}
\end{array}\right\} \quad\langle\forall n: n \in \text { inds } /: x=(I n) \Rightarrow 1=1+n\rangle
$$

Case study 2: PF-ESC at work

From the mobile phone directory problem we select maintenance of the no duplicates invariant by function

$$
\text { store } x \triangleq(\text { take } 10) \cdot(x:) \cdot \text { filter }(x \neq)
$$

Remarks:

- It's sufficient to show that (x :) \cdot filter $(x \neq)$ preserves injectivity, since take $n L \subseteq L(\forall n)$ and smaller than injective is injective
- Defined over PF-transformed lists, filter becomes

$$
\begin{equation*}
\text { filter }(x \neq) L \quad \triangleq \quad(\neg \rho \underline{x}) \cdot L \tag{27}
\end{equation*}
$$

where the negated range operator $(\neg \rho)$ satisfies property

$$
\begin{equation*}
\Phi \subseteq \neg \rho R \quad \equiv \quad \Phi \cdot R \subseteq \perp \tag{28}
\end{equation*}
$$

Case study 2: PF-ESC at work

$x:($ filter $(x \neq) L)$ is injective
$\equiv \quad\{$ case study $1,(27)$ \}
$(\neg \rho \underline{x}) \cdot L$ is injective $\wedge \underline{x}^{\circ} \cdot(\neg \rho \underline{x}) \cdot L \subseteq \underline{1}^{\circ} \cdot \operatorname{succ}$
$\Leftarrow \quad\{$ smaller than injective is injective \}
L is injective $\wedge \underline{x}^{\circ} \cdot(\neg \rho \underline{x}) \cdot L \subseteq \underline{1}^{\circ} \cdot$ succ
$\equiv \quad\{$ converses $\}$
L is injective $\wedge L^{\circ} \cdot(\neg \rho \underline{x}) \cdot \underline{x} \subseteq \operatorname{succ}^{\circ} \cdot \underline{1}$
$\equiv \quad\{(\neg \rho \underline{x}) \cdot \underline{x}=\perp$ by left-cancellation of (28) $\}$
L is injective $\wedge L^{\circ} \cdot \perp \subseteq \operatorname{succ}^{\circ} \cdot \underline{1}$
$\equiv \quad\{$ bottom is below anything \}
L is injective \wedge True

Case study 2: PF-ESC at work

Moral of this case study:
Although the implication in the second step of the reasoning could put weakness of calculated pre-condition at risk, we've calculated the weakest of all conditions anyway (TRUE).

Exercise 5: Show that (28) stems from "al-djabr" rule

$$
\begin{equation*}
\Phi \subseteq \neg \delta R \equiv R \subseteq \perp / \Phi \tag{29}
\end{equation*}
$$

among others.

Exercise 6: Prove (26).

Case study 3: Verified File System

A real-life case study:

- VSR (Verified Software Repository) initiative
- VFS (Verified File System) on Flash Memory - challenge put forward by Rajeev Joshi and Gerard Holzmann (NASA JPL) [2]
- Two levels - POSIX level and (NAND) flash level
- Working document: Intel ${ }^{\circledR}$ Flash File System Core Reference Guide (Oct. 2004) is POSIX aware.

Case study 3: Verified File System

VERIFYING INTEL'S FLASH FILE SYSTEM CORE

Miguel Ferreira and Samuel Silva
University of Minho
Deep Space lost contact with Spirit on 21 Jan 2004, just 17 days after landing.

Initially thought to be due to thunderstorm over Australia.

Spirit transmited an empty message and missed another communication session.

After two days controllers were surprised

Case study 3: Verified File System

The problem (sample):

File System API Reference
intel

4.6 FS_DeleteFileDir

Deletes a single file/directory from the media

Syntax

FFS_Status FS_DeleteFileDir (mOS_char *full_path, UINT8 static_info_type);

Parameters

Parameter	Description
*full_path	(IN) This is the full path of the filename for the file or directory to be deleted.
static_info_type	(IN) This tells whether this function is called to delete a file or a directory.

Error Codes/Return Values

FFS_StatusSuccess	Success
FFS_StatusNotinitialized	Failure
FFS_StatusInvalidPath	Failure
FFS_StatusInvalidTarget	Failure
FFS_StatusFileStillOpen	Failure

Verified File System Project

Sample of model's data types (simplified):

```
System = {table:OpenFileDescriptorTable,tar:Tar}
inv sys }\triangle\langle\forall\mathrm{ ofd : ofd }\in\mathrm{ rng (table sys) : path ofd }\in\mathrm{ dom tar sys>
```

where

> OpenFileDescriptorTable $=$ FileHandler \rightharpoonup OpenFileDescriptor Tar $=$ Path \rightharpoonup File inv $\operatorname{tar} \triangleq$ file Type $(\operatorname{attributes}(\operatorname{tar}(\operatorname{dirName} p)))=$ Directory \rangle

OpenFileDescriptor $=\{$ path : Path, $\ldots\}$

Verified File System Project

(Sample) API function:

$$
\text { FS_DeleteFileDir : Path } \rightarrow \text { System } \rightarrow \text { (System } \times \text { FFS_Status })
$$

FS_DeleteFileDir p sys \triangle
if $p \neq$ Root $\wedge p \in \operatorname{dom}(\operatorname{tar}$ sys) \wedge pre-FS_DeleteFileDir_System p sys then (FS_DeleteFileDir_System p sys, FFS_StatusSuccess) else (sys, FS_DeleteFileDir_Exception p sys)
where
FS_DeleteFileDir_System : Path \rightarrow System \rightarrow System
FS_DeleteFileDir_System $p(h, t) \triangleq$ (h, FS_DeleteFileDir_Tar $\{p\} t$)
pre $\left\langle\begin{array}{c}\forall \text { buffer } \\ \text { buffer } \in \text { rng } h: \\ \text { path buffer } \neq p \wedge \text { pre-FS_DeleteFileDir_Tar } p t\end{array}\right\rangle$

Verified File System Project

Sample API function (continued):

$$
\begin{aligned}
& \text { FS_DeleteFileDir_Tar : PPPath } \rightarrow \text { Tar } \rightarrow \text { Tar } \\
& \text { FS_DeleteFileDir_Tar } s t \triangleq \operatorname{tar} \backslash s \\
& \text { pre }\langle\forall p: p \in \operatorname{dom} \text { tar : dirName } p \in s \Rightarrow p \in s\rangle ;
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { dirName : Path } \rightarrow \text { Path } \\
& \text { dirName } p \triangleq \text { if } p=\text { Root } \vee \text { len } p=1 \\
& \text { then Root } \\
& \quad \text { else blast } p
\end{aligned}
$$

and so on. (NB: blast selects all but the last element of a list.)

Invariant structural synthesis (coreflexives)

- Real-size problems show where complexity is, namely the intricate structure involving nested datatype invariants.
- Need to calculate the associated coreflexives.
- Denoting by A_{p} the fact that datatype A is constrained by invariant p, we will write $€_{A_{p}}$ to denote the associated coreflexive, calculated by induction on the structure of types:

$$
\begin{align*}
€_{X} & =i d \tag{30}\\
€_{K_{p}} & =\Phi_{p} \tag{31}\\
€_{(A \times B)_{p}} & =\left(€_{A} \times €_{B}\right) \cdot \Phi_{p} \tag{32}\\
€_{(A+B)_{[p, q]}} & =€_{A} \cdot \Phi_{p}+€_{B} \cdot \Phi_{q} \tag{33}\\
€_{(F A)_{p}} & =\mathrm{F}\left(€_{A}\right) \cdot \Phi_{p} \tag{34}
\end{align*}
$$

Invariant structural synthesis (coreflexives)

Example:

$€_{\text {System }}$

$=\quad\{(32)$, for $r i(=$ "referential integrity" $)$ the top level inv. \}

$$
\left(€_{\text {OpenFileDescriptorTable }} \times €_{\text {Tar }}\right) \cdot \Phi_{r i}
$$

$=\quad\{$ OpenFileDescriptorTable has no invariant \}
$\begin{aligned} & \left(\text { id } \times €_{T a r}\right) \cdot \Phi_{r i} \\ =\quad & \{(31) \text { for } p c(=\text { "prefix closed" }) \text { denoting Tar's invariant }\}\end{aligned}$

$$
\begin{equation*}
\left(i d \times \Phi_{p c}\right) \cdot \Phi_{r i} \tag{35}
\end{equation*}
$$

Facing complexity

Need to "find structure" in the specification text:

- FS_DeleteFileDir p has conditional "shape"

$$
\begin{equation*}
c \rightarrow\left\langle f \cdot \Phi_{p}, \underline{k}\right\rangle,\langle i d, g\rangle \tag{36}
\end{equation*}
$$

where

- c is the (main) if-then-else's condition
- f abbreviates FS_DeleteFileDir_System p
- p is the precondition of f
- k abbreviates FFS_StatusSuccess
- g abbreviates FS_DeleteFileDir_Exception p

What's the advantage of pattern (36)?
See the "divide and conquer" rules which follow:

Breaking complexity of POs

Further to (5), (7), (9):

- Trivial:
- Trading:

$$
\begin{equation*}
\Upsilon \rightleftarrows_{\leftarrow}^{R} \phi \cdot \psi \equiv \Upsilon \stackrel{R \cdot \phi}{\leftarrow} \psi \tag{38}
\end{equation*}
$$

- Composition (Fusion):

$$
\begin{equation*}
\psi \stackrel{R \cdot S}{\rightleftarrows} \phi \Leftarrow \psi \stackrel{R}{\longleftarrow} \Upsilon \wedge \Upsilon \stackrel{S}{\leftrightarrows} \phi \tag{39}
\end{equation*}
$$

Breaking complexity of POs

- Split by conjunction:

$$
\begin{equation*}
\Psi_{1} \cdot \Psi_{2} \stackrel{R}{\longleftrightarrow} \Phi \equiv \Psi_{1} \stackrel{R}{\longleftrightarrow} \Phi \wedge \Psi_{2} \stackrel{R}{\longleftrightarrow} \Phi \tag{40}
\end{equation*}
$$

- generalizes (7)
- Weakening/strengthening:

$$
\begin{equation*}
\psi \gtrless_{\longleftarrow}^{R} \phi \Leftarrow \Psi \supseteq \Theta \wedge \Theta \stackrel{R}{\longleftarrow} \Upsilon \wedge \Upsilon \supseteq \Phi \tag{41}
\end{equation*}
$$

- Separation:

$$
\begin{equation*}
\Upsilon \cdot \Theta \stackrel{R}{\longleftarrow} \phi \cdot \psi \Leftarrow \Upsilon \stackrel{R}{\longleftarrow} \phi \wedge \Theta \Vdash^{R} \psi \tag{42}
\end{equation*}
$$

— outcome of (41), (40)

Breaking complexity of POs

- Splitting (functions):

$$
\begin{equation*}
\psi \times \Upsilon \stackrel{\langle f, g\rangle}{\leftrightarrows} \phi \equiv \psi \longleftarrow^{f} \phi \wedge \Upsilon \leftarrow^{g} \phi \tag{43}
\end{equation*}
$$

- Splitting (in general):

$$
\psi \times \Upsilon \stackrel{\langle R, S\rangle}{\leftrightarrows} \phi \equiv \psi \stackrel{R}{\leftrightarrows} \Phi \cdot \delta S \wedge \Upsilon \stackrel{S}{\leftrightarrows} \Phi \cdot \delta R(44)
$$

- Product:

$$
\begin{equation*}
\phi^{\prime} \times \psi^{\prime} \stackrel{R \times S}{\longleftrightarrow} \Phi \times \Psi \equiv \phi^{\prime} \stackrel{R}{\longleftarrow} \Phi \wedge \psi^{\prime}{ }_{\longleftarrow}^{S} \psi \tag{45}
\end{equation*}
$$

Breaking complexity of POs

- Conditional:

$$
\begin{equation*}
\Psi \stackrel{c \rightarrow R, S}{\longleftrightarrow} \Phi \equiv \Psi \longleftarrow \stackrel{R}{\longleftrightarrow} \Phi \cdot \Phi_{c} \wedge \Psi \longleftarrow S \tag{46}
\end{equation*}
$$

which generalizes (6).
NB:

- Close relationship with Hoare logic axioms
- but note many equivalences instead of implications

Exercise 7: Use the PF-calculus to prove the correctness of the rules given above.

Verified File System Project

Checking FS_DeleteFileDir:

$$
\begin{gathered}
€_{\text {System } \times \text { FFS_Status }} \stackrel{\text { FS_DeleteFileDir } p}{\longleftrightarrow} €_{\text {System }} \\
\equiv\{(36)\} \\
\equiv €_{\text {System }} \times i d \stackrel{c \rightarrow\left\langle f \cdot \Phi_{p}, \underline{k}\right\rangle,\langle i d, g\rangle}{\Vdash} €_{\text {System }} \\
\{\text { conditional (46) }\} \\
€_{\text {System }} \times i d \stackrel{\left\langle f \cdot \Phi_{p}, \underline{k}\right\rangle}{\longleftrightarrow} €_{\text {System }} \cdot \Phi_{c} \\
€_{\text {System }} \times i d \stackrel{\langle i d, g\rangle}{\longleftrightarrow} €_{\text {System }} \cdot \Phi_{\neg c}
\end{gathered}
$$

Verified File System Project

$$
\begin{aligned}
& \equiv \quad\{\text { splitting }(44,43)\} \\
& €_{\text {System }} \stackrel{f \cdot \Phi_{p}}{\leftarrow} €_{\text {System }} \cdot \Phi_{c} \\
& \wedge \\
& i d \stackrel{\underline{k}}{\leftarrow} €_{\text {System }} \cdot \Phi_{C} \cdot \delta\left(f \cdot \Phi_{p}\right) \\
& €_{\text {System }} \stackrel{i d}{\longleftarrow} €_{\text {System }} \cdot \Phi_{\neg c} \\
& \wedge \\
& i d \stackrel{g}{\stackrel{ }{\leftrightarrows}} €_{\text {System }} \cdot \Phi_{\neg c} \\
& \equiv \quad\{(37),(5)\}
\end{aligned}
$$

Case study 3: Verified File System

$$
\begin{aligned}
& €_{\text {System }} \stackrel{f \cdot \Phi_{p}}{\leftarrow} €_{\text {System }} \cdot \Phi_{C} \\
& \equiv \quad\left\{\text { trading (38), unfold } €_{\text {System }}\right. \text { (35) \} } \\
& \left(i d \times \Phi_{p c}\right) \cdot \Phi_{r i} \stackrel{f \cdot \Phi_{p} \cdot \Phi_{c}}{\rightleftharpoons}\left(i d \times \Phi_{p c}\right) \cdot \Phi_{r i} \\
& \Leftarrow \quad\{\text { separating (42) \}} \\
& \Phi_{r i} \stackrel{f \cdot \Phi_{p} \cdot \Phi_{c}}{\longleftrightarrow} \Phi_{r i} \wedge i d \times \Phi_{p c} \stackrel{f \cdot \Phi_{p} \cdot \Phi_{c}}{\longleftrightarrow} i d \times \Phi_{p c} \\
& \equiv \quad\{\text { trading (38) and implication } c \Rightarrow p\} \\
& \Phi_{r i} \stackrel{f}{\longleftarrow} \Phi_{r i} \cdot \Phi_{c} \\
& i d \times \Phi_{p c} \stackrel{f}{\longleftarrow}\left(i d \times \Phi_{p c}\right) \cdot \Phi_{c}
\end{aligned}
$$

Case study 3: Verified File System

- So much for PO calculation "in-the-large".
- Going "in-the-small" means spelling out invariants, functions and pre-conditions and reason as in the previous case studies
- Let us pick the first PO, $\Phi_{r i} \stackrel{f}{\longleftarrow} \Phi_{r i} \cdot \Phi_{C}$, for example.
- As earlier on, we go pointwise and try to rewrite $\operatorname{ri}(f(M, N))$ - M keeps open file descriptors, N the file contents - into ri $(M, N)+$ a weakest precondition; then we compare the outcome with what the designer wrote $\left(\Phi_{c}\right)$.

Case study 3: Verified File System

Clearly, from slide 25 we infer

$$
r i(M, N) \subseteq \rho(\text { path } \cdot M) \subseteq \delta N
$$

cf. diagram

which is a referential integrity constraint relating paths in open-file descriptors and paths in the file store N. PF calculation will lead to

$$
\begin{equation*}
r i(M, N) \triangleq \text { path } \cdot M \subseteq N^{\circ} \cdot \top \tag{47}
\end{equation*}
$$

thanks to (64) etc.

Case study 3: Verified File System

We calculate:

$$
\begin{aligned}
& \begin{array}{c}
r i(f(M, N)) \\
=
\end{array} \quad\{(36)\}
\end{aligned} \quad \begin{aligned}
& r i\left(F S_{_} \text {DeleteFileDir_System } p(M, N)\right) \\
= & \left\{F S_{-} \text {DeleteFileDir_Tar } s t \triangleq \operatorname{tar} \backslash s \text { etc }\right\} \\
& r i(M, N \cdot \neg \rho \underline{p})
\end{aligned}
$$

We can generalize from single path p to a set S of paths:

$$
\begin{array}{ll}
& r i\left(M, N \cdot \Phi_{\neg S}\right) \\
\equiv & \{(47)\} \\
& \text { path } \cdot M \subseteq\left(N \cdot \Phi_{\neg S}\right)^{\circ} \cdot \top \\
\equiv & \{\text { converses }(50,51,54)\}
\end{array}
$$

Case study 3: Verified File System

$$
\begin{aligned}
& \text { path } \cdot M \subseteq \Phi_{\neg S} \cdot N^{\circ} \cdot \top \\
& \equiv \quad\{(66), \text { coreflexives (55), }(\cdot \top) \text { distribution }\} \\
& \text { path } \cdot M \subseteq \Phi_{\neg S} \cdot \top \cap N^{\circ} \cdot \top \\
& \equiv \quad\{\cap \text {-universal (52) }\} \\
& \text { path } \cdot M \subseteq \Phi_{\neg S} \cdot \top \wedge \text { path } \cdot M \subseteq N^{\circ} \cdot \top \\
& \equiv \quad\{\text { "al-djabr"; (47) \} } \\
& \underbrace{M \subseteq \text { path }^{\circ} \cdot \Phi_{\neg S} \cdot \mathrm{~T}}_{\mathrm{wp}} \wedge r i(M, N) \\
& \equiv \quad\{\text { going pointwise }\} \\
& \langle\forall b: b \in \operatorname{rng} M: \text { path } b \notin S\rangle \wedge r i(M, N)
\end{aligned}
$$

Summary

- Thus we've checked (part) of the pre-condition of FS_DeleteFileDir_System, recall slide 25
- The other checks are performed in a similar way.
- Two levels of PO calculation: in-the-large (PO level) and in-the-small (where PF-notation describes data).
- PO-level useful in preparing POs for a theorem prover, recall diagram of slide 3.

Background

"Napkin" rule:

$$
\begin{equation*}
b\left(f^{\circ} \cdot R \cdot g\right) a \equiv(f b) R(g a) \tag{48}
\end{equation*}
$$

Converses:

$$
\begin{align*}
(R \cup S)^{\circ} & =R^{\circ} \cup S^{\circ} \tag{49}\\
(R \cdot S)^{\circ} & =S^{\circ} \cdot R^{\circ} \tag{50}\\
\left(R^{\circ}\right)^{\circ} & =R \tag{51}
\end{align*}
$$

Background

Meet and join:

$$
\begin{align*}
& X \subseteq R \cap S \equiv X \subseteq R \wedge X \subseteq S \tag{52}\\
& R \cup S \subseteq X \equiv R \subseteq X \wedge S \subseteq X \tag{53}
\end{align*}
$$

Coreflexives are symmetric and transitive:

$$
\begin{equation*}
\Phi^{\circ}=\Phi=\Phi \cdot \Phi \tag{54}
\end{equation*}
$$

Meet of two coreflexives is composition:

$$
\begin{equation*}
\Phi \cap \psi=\Phi \cdot \psi \tag{55}
\end{equation*}
$$

Background

Equality on relations $B \stackrel{R, S}{\rightleftarrows} A$:

$$
\begin{equation*}
R=S \equiv R \subseteq S \wedge S \subseteq R \tag{56}
\end{equation*}
$$

Alternative to (56) - indirect equality rules:

$$
\begin{align*}
R=S & \equiv\langle\forall X::(X \subseteq R \equiv X \subseteq S)\rangle \tag{57}\\
& \equiv\langle\forall X:(R \subseteq X \equiv S \subseteq X)\rangle \tag{58}
\end{align*}
$$

Shunting rules:

$$
\begin{align*}
f \cdot R \subseteq S & \equiv R \subseteq f^{\circ} \cdot S \tag{59}\\
R \cdot f^{\circ} \subseteq S & \equiv R \subseteq S \cdot f \tag{60}
\end{align*}
$$

Therefore

$$
\begin{equation*}
f \cdot(R \cup S)=f \cdot R \cup f \cdot S \tag{61}
\end{equation*}
$$

Background

Kernel, image (the same for respectively δ, ρ):

$$
\begin{align*}
\operatorname{ker}\left(R^{\circ}\right) & =\operatorname{img} R \tag{62}\\
\operatorname{img}\left(R^{\circ}\right) & =\operatorname{ker} R \tag{63}
\end{align*}
$$

Range:

$$
\begin{equation*}
\rho R \subseteq \Phi \equiv R \subseteq \Phi \cdot \top \tag{64}
\end{equation*}
$$

Domain/range elimination:

$$
\begin{align*}
& \top \cdot \delta R=\top \cdot R \tag{65}\\
& \rho R \cdot \top=R \cdot \top \tag{66}
\end{align*}
$$

Background

Weakest (liberal) pre-condition is the upper adjoint of the following "al-djabr" rule [1] which combines two already seen - range (64) and left division (13):

$$
\begin{equation*}
\rho(R \cdot \Phi) \subseteq \psi \equiv \Phi \subseteq R \emptyset \psi \tag{67}
\end{equation*}
$$

The pointwise version wlp $R \psi$ of $R \emptyset \psi$ is:

$$
w / p R \psi \triangleq\langle\bigvee \phi::\langle\forall b, a: b R a: \phi a \Rightarrow \psi b\rangle\rangle
$$

In the slide which follows we show that, if equivalence (23) holds then pre is the weakest precondition for inv to be maintained. The calculation proceeds by indirect equality (57) over coreflexive Φ :

Weakest pre-conditions

$$
\begin{aligned}
& \Phi \subseteq \Phi_{\text {pre }} \cdot \Phi_{i n v} \\
& \equiv \quad\{\text { rep. equal by equals (24) \}} \\
& \Phi \subseteq \top \cdot \Phi_{i n v} \cdot f \\
& \equiv \quad\{\text { "al-djabr" rule (59) ; converses \} } \\
& f \cdot \Phi \subseteq \Phi_{i n v} \cdot \top \\
& \equiv \quad\{\text { range (64) }\} \\
& \rho(f \cdot \Phi) \subseteq \Phi_{i n v} \\
& \equiv \quad\{\text { weakest pre-condition (67) \}} \\
& \Phi \subseteq f \emptyset \Phi_{i n v} \\
& : \quad\{\text { indirection (57) \}} \\
& \Phi_{p r e} \cdot \Phi_{i n v}=f \phi \Phi_{i n v}
\end{aligned}
$$

R R.C. Backhouse.
Fixed point calculus, 2000.
Summer School and Workshop on Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, Lincoln College, Oxford, UK 10th to 14th April 2000.

Rajeev Joshi and Gerard J. Holzmann.
A mini challenge: build a verifiable filesystem.
Formal Asp. Comput., 19(2):269-272, 2007.

