Coalgebra and coinduction (II)

L.S. Barbosa
Dept. Informática, Universidade do Minho
Braga, Portugal

DI-CCTC, UM, 2008

- Moore and Mealy transducers
- Behavioural effects
- The general case: coalgebras
- Bisimulation and bisimilarity

Moore transducers

$$
\begin{array}{ll}
\begin{array}{l}
\text { state space } \\
\text { transition function } \\
\text { attribute (or label) }
\end{array} & \overline{\mathrm{nx}}: U^{A} \longleftarrow U \\
\text { at }: B \longleftarrow U \\
\text { i.e., } & p=\langle\overline{\mathrm{nx}}, \text { at }\rangle: U^{A} \times B \longleftarrow U
\end{array}
$$

Notation:

$$
\begin{aligned}
u \xrightarrow{a} u^{\prime} u^{\prime} & \Leftrightarrow \quad \overline{\mathrm{n}} u a=u^{\prime} \\
u \downarrow_{p} b & \Leftrightarrow \text { at } u=b
\end{aligned}
$$

Moore transducers

The behaviour of p at (from) a state $u \in U$ is revealed by successive observations (experiments) triggered on input of different values $a \in A$:

$$
[(p)] u=\left[\text { at } u, \text { at }\left(\overline{n x} u a_{0}\right), \text { at }\left(\overline{n x}\left(\overline{n x} u a_{0}\right) a_{1}\right), \ldots\right]
$$

$[(p)] u \underline{\text { nil }}=$ at u

$$
[(p)] u(a: t)=\llbracket(p)](\overline{\mathrm{nx}} u a) t
$$

which means that

Moore behaviours are elements of $B^{A^{*}}$
(depicted as rooted trees whose branches are labelled by sequences of inputs and leaves by B values)

Moore morphisms

A morphism

$$
h: q \longleftarrow p
$$

where

$$
\begin{aligned}
& p=\langle\overline{\mathrm{nx}}, a \mathrm{at}\rangle: U^{A} \times B \longleftarrow U \\
& q=\left\langle\overline{\mathrm{nx}}^{\prime}, \mathrm{at}^{\prime}\right\rangle: V^{A} \times B \longleftarrow V
\end{aligned}
$$

is a function $h: V \longleftarrow U$ such that

To avoid the explicit use of exponentials, the diagram can be decomposed into:

Moore morphisms

and

corresponding to

$$
\begin{aligned}
\mathrm{at}^{\prime} \cdot h & =\mathrm{at} \\
\mathrm{nx}^{\prime} \cdot(h \times \mathrm{id}) & =h \cdot \mathrm{nx}
\end{aligned}
$$

Moore morphisms

Clearly, morphisms preserve attributes and transitions

$$
\begin{array}{ll}
& u \xrightarrow{a} p u^{\prime} \text { and } u \downarrow_{p} b \\
\Leftrightarrow & \{\text { definition }\} \\
& \mathrm{nx}(u, a)=u^{\prime} \text { and at } u=b \\
\Leftrightarrow & \quad\{\text { Liebniz }\} \\
& h \mathrm{nx}(u, a)=h u^{\prime} \text { and at } u=b \\
\Leftrightarrow & \quad\{h \text { is a morphism }\} \\
& \mathrm{nx}^{\prime}(h u, a)=h u^{\prime} \text { and } \mathrm{at}^{\prime} h u=b \\
\Leftrightarrow & \quad\{\text { definition }\} \\
& h u \xrightarrow{a}{ }_{q} h u^{\prime} \text { and } h u \downarrow_{q} b
\end{array}
$$

The final Moore transducer

Moore behaviours organise themselves into a final Moore machine over $B^{A^{*}}$

$$
\omega=\left\langle\overline{\mathrm{x}}_{\omega}, \mathrm{at}_{\omega}\right\rangle:\left(B^{A^{*}}\right)^{A} \times B \longleftarrow B^{A^{*}}
$$

where
at ${ }_{\omega} f=f$ nil ie, the value before any input
$\overline{n x}_{\omega} f a=\lambda s . f(a: s) \quad$ every input determines its evolution

The final Moore transducer

Th: Coalgebra ω is the final coalgebra for $\mathrm{T} X=X^{A} \times B$
because

1. For any $p=\langle\overline{\mathrm{n}}$, at $\rangle,[(p)]$ is a Moore morphism $[(p)]: \omega \longleftarrow p$

$$
\begin{array}{cc}
& \text { at }_{\omega} \cdot[(p)]=\text { at } \\
\Leftrightarrow & \{\text { introduction of variables }\} \\
& \text { at }_{\omega}([(p)] u)=\text { at } u \\
\Leftrightarrow & \left\{\text { definition of at }{ }_{\omega}\right\} \\
& ([(p)] u) \text { nil }=\text { at } u \\
\Leftrightarrow & \{\text { definition of }[(p)]\}
\end{array}
$$

The final Moore transducer

$$
\begin{aligned}
& n \mathrm{x}_{\omega} \cdot([(p)] \times \mathrm{id})=\llbracket(p) \rrbracket \cdot \mathrm{nx} \\
& \Leftrightarrow \quad\{\text { introduction of variables and application }\} \\
& \left.n x_{\omega}(\llbracket p) \rrbracket u, a\right)=\llbracket(p) \rrbracket \mathrm{nx}(u, a) \\
& \Leftrightarrow \quad\left\{\text { definition of } n x_{\omega}\right\} \\
& \lambda s .([(p) \rrbracket u)(a: s)=\llbracket(p) \rrbracket \mathrm{nx}(u, a) \\
& \Leftrightarrow \quad\{\text { introduction of variables and application }\} \\
& (\lfloor(p) \rrbracket u)(a: t)=([(p) \rrbracket \mathrm{nx}(u, a)) t \\
& \Leftrightarrow \quad\{\text { definition of }[(p) \rrbracket\} \\
& \text { True }
\end{aligned}
$$

The final Moore transducer

2. ... and is unique

Exercise. Prove uniqueness (by induction on A^{*})

Instances of Moore transducers

$$
\text { Queue }=\langle\overline{\mathrm{nx}}, \text { at }\rangle:\left(E^{*}\right)^{E+\mathbf{1}} \times((E+\mathbf{1}) \times \mathbf{2}) \longleftarrow E^{*}
$$

with

$$
\begin{aligned}
& \text { at }=\langle\text { top, isempty? }\rangle \\
& \text { where } \begin{array}{l}
\text { top } s=\left(s=\underline{\text { nil }} \rightarrow \iota_{2} *, \iota_{1}(\text { last } s)\right) \\
\\
\text { isempty? } s=s=\underline{\text { nil }}
\end{array} \\
& \qquad \begin{array}{l}
\mathrm{nx}=[\text { enq, deq] } \cdot \mathrm{dl}
\end{array} \\
& \text { where enq }(s, e)=e: s \\
& \quad \operatorname{deq}(s, *)=(s=\underline{\text { nil }} \rightarrow s,(\text { blast } s))
\end{aligned}
$$

Instances of Moore transducers

Make $B=\mathbf{2}$ in $\mathrm{T} X=X^{A} \times B$.
The carrier (or state space) of the corresponding final coalgebra is

$$
\mathbf{2}^{A^{*}} \cong \mathcal{P} A^{*}
$$

and its dynamics is $\left\langle\overline{\mathrm{nx}}_{\omega}\right.$, at $\left.{ }_{\omega}\right\rangle:\left(\mathcal{P} A^{*}\right)^{A} \times \mathbf{2} \longleftarrow \mathcal{P} A^{*}$ where

$$
\begin{aligned}
\operatorname{at}_{\omega} L & =\underline{\text { nil }} \in L \\
\overline{\mathrm{nx}}_{\omega} L & =\lambda a \cdot\left\{a \in A^{*} \mid(a: s) \in L\right\}
\end{aligned}
$$

Exercise. ... what are we talking about?
Exercise. Make $A=\mathbf{1}$ in $\mathrm{T} X=X^{A} \times B$. What comes up?

Mealy transducers

```
state space
    U
reactive transition function }\overline{\textrm{ac}}:(U\timesB\mp@subsup{)}{}{A}\longleftarrow
```

Notation:

$$
u \xrightarrow{a / b} p u^{\prime} \quad \Leftrightarrow \quad \overline{\mathrm{ac}} u a=\left(u^{\prime}, b\right)
$$

Mealy transducers

The behaviour of p at a state $u \in U$ is revealed by successive observations (experiments) triggered on input of different values $a \in A$:

$$
\begin{aligned}
\llbracket(p) \rrbracket u & =\left[\pi_{2}\left(\overline{\operatorname{ac}} u a_{0}\right), \pi_{2}\left(\overline{\operatorname{ac}}\left(\pi_{2}\left(\overline{\operatorname{ac}} u a_{0}\right)\right) a_{1}, \ldots\right]\right. \\
\llbracket(p) \rrbracket u[a] & =\pi_{2}(\mathrm{ac} u a) \\
{[(p)] u(a: t) } & =[(p)]\left(\pi_{1}(\mathrm{ac} u a)\right) t
\end{aligned}
$$

which means that

Mealy behaviours are elements of $B^{A^{+}}$

Mealy transducers

Mealy behaviours can alternatively be regarded as

```
causal functions from }\mp@subsup{A}{}{\omega}\mathrm{ to }\mp@subsup{B}{}{\omega
```

A causal function f over streams is such that, for all $s, t \in A^{\omega}$ and $n \in \mathbb{N}$,

$$
\langle\forall k: k \leq n: s k=t k\rangle \Rightarrow(f s n=f t n)
$$

i.e, the n-th element of $f s$ depends only on the first n elements of input stream s
... upon which the final Mealy automata can be defined:

The final Mealy transducer

Mealy behaviours organise themselves into a final Mealy automata over $\Gamma=\left\{f: B^{\omega} \longleftarrow A^{\omega} \mid f\right.$ is causal $\}$

$$
\bar{\omega}:(\Gamma \times B)^{A} \longleftarrow \Gamma
$$

where

$$
\bar{\omega} f a=\langle\lambda s . \operatorname{tl} f(a: s), \operatorname{hd} f(a: r)\rangle
$$

which means that

- the next state acts as f after a has been seen
- the output hd $f(a: r)$ depends only on f and a; therefore, the tail r of the input stream is irrelevant.

Exercises

Exercise. Characterize Mealy morphisms. Draw the corresponding diagram and derive an equational definition.

Exercise. Prove that the Mealy transducer over 「 defined above is final.

- Moore and Mealy transducers
- Behavioural effects
- The general case: coalgebras
- Bisimulation and bisimilarity

Non-determinism

Further behavioural effects can be introduced in the basic machines discussed so far by 'sophisticating' the corresponding signature functor. For example,

- non-determinism is captured by the powerset functor \mathcal{P}

Automata	$\mathrm{T} X=B \times X$	$\mathrm{~T} X=\mathcal{P}(B \times X)$
Moore transducer	$\mathrm{T} X=X^{A} \times B$	$\mathrm{~T} X=\mathcal{P}(X)^{A} \times B$
Mealy transducer	$\mathrm{T} X=(X \times B)^{A}$	$\mathrm{~T} X=\mathcal{P}(X \times B)^{A}$

Example: non-deterministic automata

Coalgebras

$$
p: \mathcal{P}(B \times U) \longleftarrow U
$$

as relations

$$
P: B \times U \longleftarrow U
$$

through the relational transpose

$$
p=\Lambda P \Leftrightarrow P=\epsilon \cdot p
$$

Notation:

$$
\left(b, x^{\prime}\right) P x \Leftrightarrow\left(b, x^{\prime}\right) \in p x \Leftrightarrow x^{\prime} P_{b} x \Leftrightarrow x \xrightarrow{b}_{p} x^{\prime}
$$

Example: non-deterministic automata

Th: A morphism between two non-deterministic automata p and q satisfies

$$
\begin{equation*}
(\mathrm{id} \times h) \cdot P=Q \cdot h \tag{1}
\end{equation*}
$$

because

$$
\begin{array}{ll}
& (\text { id } \times h) \cdot P=Q \cdot h \\
\Leftrightarrow & \quad\{\text { relational transpose is an isomorphism }\} \\
& \Lambda((\text { id } \times h) \cdot P)=\Lambda(Q \cdot h) \\
\Leftrightarrow & \quad\{\Lambda(f \cdot R)=\mathcal{P} f \cdot \Lambda R \text { and } \Lambda(R \cdot f)=\Lambda R \cdot f \text { and definition }\} \\
& \mathcal{P}(\mathrm{id} \times h) \cdot \Lambda(\in \cdot p)=\Lambda(\in \cdot q) \cdot h \\
\Leftrightarrow & \quad\{\Lambda(R \cdot f)=\Lambda R \cdot f\} \\
& \mathcal{P}(\mathrm{id} \times h) \cdot \Lambda \in \cdot p=\Lambda \in \cdot q \cdot h \\
\Leftrightarrow & \quad\{\Lambda \in=\mathrm{id}\} \\
& \mathcal{P}(\mathrm{id} \times h) \cdot p=q \cdot h
\end{array}
$$

Example: non-deterministic automata

Function p, relation p and the B-indexed family of relations $\left\{P_{b} \mid b \in B\right\}$, all represent the same structure. Therefore, a morphism between non-deterministic automata can be defined by the commutativity of any of the following diagrams (of functions or relations, respectively):

Example: non-deterministic automata

Therefore, equation (1) equivales to

$$
\begin{aligned}
& h \cdot P_{b} \subseteq Q_{b} \cdot h \\
& Q_{b} \cdot h \subseteq h \cdot P_{b}
\end{aligned}
$$

entailing, respectively, preservation of p-transitions and reflection of q-transitions, i.e.,

$$
\begin{equation*}
\left\langle\forall u, u^{\prime}: u, u^{\prime} \in U: u \xrightarrow{b} p u^{\prime} \Rightarrow h u \xrightarrow{b} q h u^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

$\left\langle\forall u, v: u \in U, v^{\prime} \in V: h u \xrightarrow{b} q v^{\prime} \Rightarrow\left\langle\exists u^{\prime}: u^{\prime} \in U: u \xrightarrow{b} p u^{\prime} \wedge v^{\prime}=h u^{\prime}\right\rangle\right\rangle$
because

Example: non-deterministic automata

Proof of (2):

$$
\left.\left.\begin{array}{ll}
& h \cdot P_{b} \subseteq Q_{b} \cdot h \\
\Leftrightarrow & \{\text { shunting }\}
\end{array}\right] \begin{array}{ll}
& P_{b} \subseteq h^{\circ} \cdot Q_{b} \cdot h
\end{array}\right\}
$$

Example: non-deterministic automata

Proof of (2):

$$
\begin{aligned}
& Q_{b} \cdot h \subseteq h \cdot P_{b} \\
& \Leftrightarrow \quad\{\cdot R \vdash / R\} \\
& Q_{b} \subseteq\left(h \cdot P_{b}\right) / h \\
& \Leftrightarrow \quad \text { \{ definition of left division and PF transform \}} \\
& \left\langle\forall v, v^{\prime}: v, v^{\prime} \in V: v^{\prime} Q_{b} v \Rightarrow\left\langle\forall u: u \in U: v=h u \Rightarrow v^{\prime}\left(h \cdot P_{b}\right) u\right\rangle\right\rangle \\
& \Leftrightarrow \quad\{\text { quantifier trading (twice) }\} \\
& \left\langle\forall v, v^{\prime}: v, v^{\prime} \in V \wedge v^{\prime} Q_{b} v:\left\langle\forall u: u \in U \wedge v=h u: v^{\prime}\left(h \cdot P_{b}\right) u\right\rangle\right\rangle \\
& \Leftrightarrow \quad \text { \{ quantifier nesting (twice, in opposite directions) \} } \\
& \left\langle\forall u, v^{\prime}: u \in U \wedge v^{\prime} \in V:\left\langle\forall v: v \in V \wedge v=h u \wedge v^{\prime} Q_{b} v: v^{\prime}\left(h \cdot P_{b}\right) u\right\rangle\right\rangle
\end{aligned}
$$

Example: non-deterministic automata

$$
\begin{aligned}
& \left\langle\forall u, v^{\prime}: u \in U \wedge v^{\prime} \in V:\left\langle\forall v: v \in V \wedge v=h u \wedge v^{\prime} Q_{b} v: v^{\prime}\left(h \cdot P_{b}\right) u\right\rangle\right\rangle \\
& \Leftrightarrow \quad\{\text { quantifier trading }\} \\
& \left\langle\forall u, v^{\prime}: u \in U \wedge v^{\prime} \in V:\left\langle\forall v: v=h u:\left(v \in V \wedge v^{\prime} Q_{b} v\right) \Rightarrow v^{\prime}\left(h \cdot P_{b}\right) u\right\rangle\right\rangle \\
& \Leftrightarrow \quad\{\text { quantifier one-point rule }\} \\
& \left\langle\forall u, v^{\prime}: u \in U \wedge v^{\prime} \in V:\left(h u \in V \wedge v^{\prime} Q_{b}(h u)\right) \Rightarrow v^{\prime}\left(h \cdot P_{b}\right) u\right\rangle \\
& \Leftrightarrow \quad\{h \text { type and definition of relational composition \}} \\
& \left\langle\forall u, v^{\prime}: u \in U \wedge v^{\prime} \in V: v^{\prime} Q_{b} v \Rightarrow\left\langle\exists u^{\prime}: u^{\prime} \in U: v^{\prime}=h u \wedge u^{\prime} P_{b} u\right\rangle\right\rangle \\
& \Leftrightarrow \quad\left\{P_{b}=(\xrightarrow{b} p)^{\circ}\right\} \\
& \left\langle\forall u, v^{\prime}: u \in U \wedge v^{\prime} \in V: v^{\prime} Q_{b} v \Rightarrow\left\langle\exists u^{\prime}: u^{\prime} \in U: v^{\prime}=h u \wedge u \xrightarrow{b} p u^{\prime}\right\rangle\right\rangle
\end{aligned}
$$

Partiality

Automata	$\mathrm{T} X=B \times X$	$\mathrm{~T} X=(B \times X)+\mathbf{1}$
Moore transducer	$\mathrm{T} X=X^{A} \times B$	$\mathrm{~T} X=(X+\mathbf{1})^{A} \times B$
Mealy transducer	$\mathrm{T} X=(X \times B)^{A}$	$\mathrm{~T} X=((X \times B)+\mathbf{1})^{A}$

In general: monads introduce behaviour

Automata	$\mathrm{T} X=B \times X$	$\mathrm{~T} X=\mathrm{B}(B \times X)$
Moore transducer	$\mathrm{T} X=X^{A} \times B$	$\mathrm{~T} X=\mathrm{B}(X)^{A} \times B$
Mealy transducer	$\mathrm{T} X=(X \times B)^{A}$	$\mathrm{~T} X=\mathrm{B}(X \times B)^{A}$

where B is a strong monad capturing a particular behavioural effect.

Behaviour monads

- Partiality: $\mathrm{B}=\mathrm{Id}+\mathbf{1}$
- Non determinism: $B=\mathcal{P}$
- Ordered non determinism: $B=I d^{*}$
- Monoidal labelling: $\mathrm{B}=\mathrm{Id} \times M$, with M a monoid.
- 'Metric' non determinism: $\mathrm{B}=\mathrm{Bag}_{M}$ based on $\langle M, \oplus, \otimes\rangle$, where \otimes distributes over \oplus, both defining Abelian monoids over M.

Behaviour monads

$$
\langle\mathrm{B}, \eta, \mu\rangle
$$

where

$$
\begin{aligned}
\eta: \mathrm{Id} \Longleftarrow \mathrm{~B} & \text { (to make a behavioural annotation) } \\
\mu: \mathrm{BB} \Longleftarrow \mathrm{~B} & \text { (to flatten nested annotations) }
\end{aligned}
$$

being strong entails the presence of right and left strength for context handling:

$$
\begin{aligned}
& B(I d \times-): B \times-\Longleftarrow B \times- \\
& B(-\times I d):-\times B \Longleftarrow-\times B
\end{aligned}
$$

Behaviour monads

Furthermore, Kleisli compositions

$$
\delta r_{l, J}=\tau_{r_{l, J}} \bullet \tau_{l_{\mathrm{B}, J}} \quad \text { and } \quad \delta l_{I, J}=\tau_{l, J} \bullet \tau_{r_{l, \mathrm{BJ}}}
$$

map

$$
\mathrm{B} I \times \mathrm{BJ} \text { to } \mathrm{B}(I \times J)
$$

specifying a sort of sequential composition of B-computations
B is a commutative monad if $\delta r_{l, J}=\delta l_{l, J}$

> ... plus a handful of equational laws

- Moore and Mealy transducers
- Behavioural effects
- The general case: coalgebras
- Bisimulation and bisimilarity

Algebras

a tool box:

an assembly process:
artifact $\stackrel{a}{\longleftrightarrow} \square^{\square}$ artifact

- algebras describe assembly processes
- and abstract data types as (initial) algebras (term algebras)
- emphasis is on construction

Coalgebras

a lens:

an observation structure: $\bigcirc \frown$ universe $\stackrel{c}{\longleftarrow}$ universe

- coalgebras describe observation structures (i.e., transition systems)
- and abstract behaviour types as (final) coalgebras
- emphasis is on observation

Typical lens

- 'opaque'

$$
\bigcirc \frown \bigcup=1
$$

- black \& white

$$
\bigcirc \frown \bigcup=\mathbf{2}
$$

- colouring

$$
\bigcirc \frown \bigcirc U=O
$$

... in each case the colour set acts as a space classifier

Typical lens

- partiality

$$
\bigcirc \frown \bigcup=U+1
$$

- visible attributes

$$
\bigcirc \frown U=O \times U
$$

- external stimulus

$$
\bigcirc \frown \cup=U^{\prime}
$$

- non determinism

$$
\bigcirc \frown \bigcirc U=\mathcal{P} U
$$

Question

Which lens shall we seek?

- The main criteria is to choose functors for which the final coalgebra does exist
- Such is the case of the all polynomial functors as well as finite powerset functor

Coalgebras

A coalgebra for a functor T is any function from a set U (its carrier) to TU:

$$
\alpha: \mathrm{TU} \longleftarrow U
$$

For any functor T, if its space of behaviours can be made a T-coalgebra itself

$$
\omega_{\mathrm{T}}: \mathrm{T} \nu_{\mathrm{T}} \longleftarrow \nu_{\mathrm{T}}
$$

this is the final coalgebra: from any other T-coalgebra p there is a unique morphism [(p)] making the following diagram to commute:

Coalgebras

The universal property is equivalently captured by the following law:

$$
k=[(p)] \quad \Leftrightarrow \quad \omega_{\mathrm{T}} \cdot k=\mathrm{T} k \cdot p
$$

- Existence \Leftrightarrow definition principle (co-recursion)
- Uniqueness \Leftrightarrow proof principle (co-induction)

From which:
cancellation $\quad \omega_{\mathrm{T}} \cdot[(p)]=\mathrm{T}[(p)] \cdot p$
reflection $\quad\left[\left(\omega_{\mathrm{T}}\right)\right]=\mathrm{id}_{\nu_{\mathrm{T}}}$ fusion $\quad[(p)] \cdot h=[(q)]$ if $p \cdot h=\mathrm{T} h \cdot q$

Coalgebras

Example: fusion law

Coalgebras

Example: fusion law

$$
\begin{array}{lc}
& {[(p)] \cdot h=[(q)]} \\
\Leftrightarrow & \{\text { universal law }\} \\
& \omega \cdot[(p)] \cdot h=\mathrm{T}([(p)] \cdot h) \cdot q \\
\Leftrightarrow & \quad\{\text { cancellation law and } T \text { functor }\} \\
& \mathrm{T}[(p)] \cdot p \cdot h=\mathrm{T}[(p)] \cdot \mathrm{T} h \cdot q \\
\Leftrightarrow & \quad\{\text { function equality }\} \\
& p \cdot h=\mathrm{T} h \cdot q
\end{array}
$$

Coalgebras

From which one may generalise the fundamental result (proved above for the case of streams)

Th: morphisms preserve behaviour: $[(p)]=[(q)] \cdot h$

Proof by coinduction

Example: map_{f} and generic laws

$$
\operatorname{map}_{f \cdot g}=\operatorname{map}_{f} \cdot \operatorname{map}_{g}
$$

defining map_{f} as follows:

Proof by coinduction

$$
\begin{aligned}
& \operatorname{map}_{f \cdot g}=\operatorname{map}_{f} \cdot \operatorname{map}_{g} \\
& \Leftrightarrow \quad\{\text { map definition }\} \\
& {[(((f \cdot g) \times \mathrm{id}) \cdot \omega)]=[((f \times \mathrm{id}) \cdot \omega)] \cdot \operatorname{map}_{g}} \\
& \Leftarrow \quad \text { \{ coinduction fusion law \}} \\
& (f \times \mathrm{id}) \cdot \omega \cdot \mathrm{map}_{g}=\left(\mathrm{id} \times \mathrm{map}_{g}\right) \cdot((f \cdot g) \times \mathrm{id}) \cdot \omega \\
& \Leftrightarrow \quad\{\text { coinduction cancellation law }\} \\
& (f \times \mathrm{id}) \cdot\left(\mathrm{id} \times \mathrm{map}_{g}\right) \cdot(g \times \mathrm{id}) \cdot \omega=\left(\mathrm{id} \times \operatorname{map}_{g}\right) \cdot((f \cdot g) \times \mathrm{id}) \cdot \omega \\
& \Leftrightarrow \quad\{\text { functoriality }\} \\
& \left((f \cdot g) \times \operatorname{map}_{g}\right) \cdot \omega=\left((f \cdot g) \times \operatorname{map}_{g}\right) \cdot \omega
\end{aligned}
$$

Proof by coinduction

but this is just an instance of a more general result:

$$
\operatorname{map}_{\mathrm{T}}(g \cdot f)=\operatorname{map}_{\mathrm{T}} g \cdot \operatorname{map}_{\mathrm{T}} f
$$

Proof by coinduction

In general one also gets:

$$
\begin{aligned}
\operatorname{map}_{\mathrm{T}} \mathrm{id}_{A} & =\mathrm{id}_{\operatorname{map}_{\mathrm{T}_{A}}} \\
\operatorname{map}_{\mathrm{T}} f \cdot[(p)]_{\mathrm{T}} & =[(\mathrm{T}(f, \mathrm{id}) \cdot p)]_{\mathrm{T}}
\end{aligned}
$$

- function map extends to a functor mapping a set A into the behaviour space of T -coalgebras parametric on A
- the last equation acts as an absorption law for coinductive extension

Proof by coinduction

Example: Lambek's Lemma
The dynamics of the final coalgebra is an isomorphism
proof idea:

- Assume the existence of an inverse α_{T} to $\omega_{\top}: T \nu_{\top} \longleftarrow \nu_{\mathrm{T}}$. Then, $\alpha_{\mathrm{T}} \cdot \omega_{\mathrm{T}}=\mathrm{id}_{\nu_{\mathrm{T}}}$ and $\omega_{\mathrm{T}} \cdot \alpha_{\mathrm{T}}=\mathrm{id}_{\mathrm{T}_{\nu_{\mathrm{T}}}}$
- Take one of this requirements and use it to conjecture a definition for α_{T} (or an implementation ...) Note the use of the reflection law to introduce an anamorphism in the calculation, instead of eliminating one
- Then check the validity of this conjecture by verifying with it the other requirement

Proof by coinduction

$$
\begin{array}{cc}
& \alpha_{\mathrm{T}} \cdot \omega_{\mathrm{T}}=\mathrm{id}_{\nu_{\mathrm{T}}} \\
\Leftrightarrow & \{\text { reflection law }\} \\
& \alpha_{\mathrm{T}} \cdot \omega_{\mathrm{T}}=\left[\left(\omega_{\mathrm{T}}\right)\right] \\
\Leftrightarrow & \{\text { universal law }\} \\
& \omega_{\mathrm{T}} \cdot \alpha_{\mathrm{T}} \cdot \omega_{\mathrm{T}}=\mathrm{T}\left(\alpha_{\mathrm{T}} \cdot \omega_{\mathrm{T}}\right) \cdot \omega_{\mathrm{T}} \\
\Leftrightarrow & \{\text { as a functor } \mathrm{T} \text { preserves composition }\}
\end{array}
$$

Proof by coinduction

$$
\begin{aligned}
& \omega_{\top} \cdot \alpha_{\top} \\
& =\quad\left\{\text { replace } \alpha_{\mathrm{T}} \text { by the derived conjecture }\right\} \\
& \omega_{T} \cdot\left[\left(T \omega_{T}\right)\right] \\
& =\left\{\left[\left(T \omega_{T}\right)\right] \text { is a morphism }\right\} \\
& T\left[\left(T \omega_{T}\right)\right] \cdot T \omega_{T} \\
& =\quad\{\text { as a functor } \mathrm{T} \text { preserves composition }\} \\
& \mathrm{T}\left(\left[\left(\mathrm{~T} \omega_{\mathrm{T}}\right)\right] \cdot \omega_{\mathrm{T}}\right) \\
& =\quad\{\text { just proved }\} \\
& \mathrm{Tid}_{\nu_{\mathrm{T}}} \\
& =\quad\{\text { as a functor } \mathrm{T} \text { preserves identities }\} \\
& \operatorname{id}_{\left(\operatorname{Tid}_{\nu_{\mathrm{T}}}\right)}
\end{aligned}
$$

Question

The powerset functor has not a final coalgebra. Why?

- Moore and Mealy transducers
- Behavioural effects
- The general case: coalgebras
- Bisimulation and bisimilarity

Bisimulation

A bisimulation is a relation over the state spaces of two coalgebras, p and q, which is closed for their dynamics, i.e.

$$
(x, y) \in R \Rightarrow(p x, q y) \in \mathrm{T} R
$$

which is PF-transformed to

$$
R \subseteq p^{\circ} \cdot(T R) \cdot q
$$

Shunting on p° yields

$$
p \cdot R \subseteq(\mathrm{~T} R) \cdot q
$$

Note: signature functor T is now extended to a relator.

Example: $\mathrm{T} X=B \times X$

$$
\begin{aligned}
& p \cdot R \subseteq(i d \times R) \cdot q \\
& \Leftrightarrow \quad\{\text { shunting }\} \\
& R \subseteq p^{\circ} \cdot(\mathrm{id} \times R) \cdot q \\
& \Leftrightarrow \quad\{\text { introducing variables \}} \\
& \left\langle\forall u, v: u \in U, v \in V: u R v \Rightarrow u\left(p^{\circ} \cdot(\mathrm{id} \times R) \cdot q\right) v\right\rangle \\
& \Leftrightarrow \quad\{\quad \text { "guardanapo" rule }\} \\
& \langle\forall u, v: u \in U, v \in V: u R v \Rightarrow p u(i d \times R) q v\rangle \\
& \Leftrightarrow \quad\{\text { product }\} \\
& \left\langle\forall u, v: u \in U, v \in V: u R v \Rightarrow \pi_{1}(p u)=\pi_{1}(q v) \wedge \pi_{2}(p u) R \pi_{2}(q v)\right\rangle
\end{aligned}
$$

Example: $\mathrm{T} X=\mathcal{P} X$

- Note that every powerset coalgebra can be regarded as the transpose of a binary relation through isomorphism

$$
\begin{equation*}
f=\Lambda R \quad \Leftrightarrow \quad R=\epsilon \cdot f \tag{4}
\end{equation*}
$$

- The powerset relator is defined by

$$
\begin{equation*}
\mathcal{P} R=(\epsilon \backslash(R \cdot \epsilon)) \cap\left(\in \backslash\left(R^{\circ} \cdot \epsilon\right)\right)^{\circ} \tag{5}
\end{equation*}
$$

where \cap denotes relation intersection and $R \backslash S$ denotes relational division,

$$
a(R \backslash S) c \Leftrightarrow\langle\forall b: b R a: b S c\rangle
$$

a relational operator whose semantics is captured by universal property

$$
\begin{equation*}
R \cdot X \subseteq S \quad \Leftrightarrow \quad X \subseteq R \backslash S \tag{6}
\end{equation*}
$$

Then,

Example: $\mathrm{T} X=\mathcal{P} X$

$$
\begin{aligned}
& p \cdot R \subseteq(\mathcal{P} R) \cdot q \\
& \Leftrightarrow \quad\{\text { let } p, q:=\Lambda P, \wedge Q \text {, unfold } \mathcal{P R} \text { (5) \} } \\
& (\wedge P) \cdot R \subseteq(\in \backslash(R \cdot \in)) \cap\left(\in \backslash\left(R^{\circ} \cdot \in\right)\right)^{\circ} \cdot(\Lambda Q) \\
& \Leftrightarrow \quad\{\text { distribution (since } \Lambda Q \text { is a function) \}} \\
& (\wedge P) \cdot R \subseteq(\epsilon \backslash(R \cdot \epsilon)) \cdot(\wedge Q) \wedge(\wedge P) \cdot R \subseteq\left(\in \backslash\left(R^{\circ} \cdot \epsilon\right)\right)^{\circ} \cdot(\wedge Q) \\
& \Leftrightarrow \quad\{\text { property } R \backslash(S \cdot f)=(R \backslash S) \cdot f \text {; converses \}} \\
& (\Lambda P) \cdot R \subseteq \in \backslash(R \cdot \in \cdot \Lambda Q) \wedge R^{\circ} \cdot(\wedge P)^{\circ} \subseteq(\wedge Q)^{\circ} \cdot\left(\in \backslash\left(R^{\circ} \cdot \epsilon\right)\right) \\
& \Leftrightarrow \quad \text { \{ shunting and property above \}} \\
& (\Lambda P) \cdot R \subseteq \in \backslash(R \cdot \in \cdot \Lambda Q) \wedge(\Lambda Q) \cdot R^{\circ} \subseteq \in \backslash\left(R^{\circ} \cdot \in \cdot \wedge P\right) \\
& \Leftrightarrow \quad\{(6) \text { twice }\} \\
& \epsilon \cdot(\Lambda P) \cdot R \subseteq R \cdot \in \cdot \wedge Q \wedge \in \cdot(\Lambda Q) \cdot R^{\circ} \subseteq R^{\circ} \cdot \in \cdot \Lambda P \\
& \Leftrightarrow \quad\{\text { cancellation } \in \cdot(\wedge R)=R \text { four times }\} \\
& P \cdot R \subseteq R \cdot Q \wedge Q \cdot R^{\circ} \subseteq R^{\circ} \cdot P
\end{aligned}
$$

Example: $\mathrm{T} X=\mathcal{P} X$

The two conjuncts state that R and its converse are simulations between state transition relations P and Q, which corresponds to the Park-Milner definition:

- a bisimulation is a simulation such that its converse is also a simulation
- a simulation between relations P and Q is a relation R such that, if $(p, q) \in R$, then for all p^{\prime} such that $\left(p^{\prime}, p\right) \in P$, then there is a q^{\prime} such that $\left(p^{\prime}, q^{\prime}\right) \in R$ and $\left(q^{\prime}, q\right) \in Q$

Example: $\mathrm{T} X=\mathcal{P} X$

$$
\begin{array}{ll}
& P \cdot R \subseteq R \cdot Q \\
\Leftrightarrow & \quad\{S \cdot \vdash R \backslash\} \\
& R \subseteq P \backslash(R \cdot Q) \\
\Leftrightarrow & \quad\{P F \text { transform }\} \\
& \quad\langle\forall u, v: u \in U \wedge v \in V: u R v \Rightarrow u(P \backslash(R \cdot Q)) v\rangle \\
\Leftrightarrow & \quad\{\text { definition of right division }\}
\end{array}
$$

Example: $\mathrm{T} X=\mathcal{P} X$

and

```
    \(Q \cdot R^{\circ} \subseteq R^{\circ} \cdot P\)
\(\Leftrightarrow \quad\{\) by a similar argument \(\}\)
\(\left\langle\forall u, v, v^{\prime}: u \in U \wedge v, v^{\prime} \in V: u R v \wedge v^{\prime} Q v \Rightarrow\left\langle\exists u^{\prime}: u^{\prime} \in U: u^{\prime} R v^{\prime} \wedge u^{\prime} P u\right\rangle\right\rangle\)
```

which jointly states that both R and R° are simulations

Example: $\mathrm{T} X=\mathcal{P}(B \times X)$

This result scales easily for $\mathrm{T} X=\mathcal{P}(B \times X)$ coalgebras, where it is usually expressed in terms of B-indexed families of transition relations:

- R is a simulation between coalgebras p and q as before iff, for all $b \in B, u, u^{\prime} \in U$ and $v \in V$,

$$
u R v \wedge u^{\prime} \xrightarrow{b} p u \Rightarrow\left\langle\exists v^{\prime}: v^{\prime} \in V: u^{\prime} R v^{\prime} \wedge v^{\prime} \xrightarrow{b}_{q} v\right\rangle
$$

- R is a bisimulation iff both R and R° are simulations
which leads to the usual definition of bisimulation in process algebra (cf, [Milner, 80])

Example: $\mathrm{T} X=\mathcal{P}(B \times X)$

Example states q_{0} and p_{0} in coalgebras

are related by simulation

$$
\left\{\left\langle q_{0}, p_{0}\right\rangle,\left\langle q_{1}, p_{1}\right\rangle,\left\langle q_{4}, p_{1}\right\rangle,\left\langle q_{2}, p_{2}\right\rangle,\left\langle q_{3}, p_{3}\right\rangle\right\}
$$

Example: $\mathrm{T} X=\mathcal{P}(B \times X)$

Note, however, that, although there are simulations R and S containing pairs $\left(q_{0}, p_{0}\right)$ and $\left(p_{0}, q_{0}\right)$ in

$$
p_{0} \xrightarrow{a} p_{1} \xrightarrow{b} p_{3}
$$

the two states are not bisimilar.

Exercise. Compute relations R and S above and explain why q_{0} and p_{0} are not bisimilar.
Exercise. Compute the definition of bisimulation for the signature functor of a Moore and a Mealy transducer, respectively.

Bisimulation as a Reynolds arrow

The definition of bisimulation brings to mind the "Reynolds arrow combinator"-pattern:

$$
f(R \leftarrow S) g \Leftrightarrow f \cdot S \subseteq R \cdot g
$$

leading to

$$
\begin{equation*}
R \text { is a bisimulation } \quad \Leftrightarrow \quad p(\mathrm{~T} R \leftarrow R) q \tag{7}
\end{equation*}
$$

Note: Reynolds' arrow combinator is a relation on functions useful in expressing properties of functions, notably the "free theorem" of a polymorphic function f :

$$
\mathrm{G} A \leftarrow^{f} \mathrm{~T} A \text { polymorphic } \Leftrightarrow\langle\forall R:: f(\mathrm{G} R \leftarrow \mathrm{~T} R) f\rangle
$$

Reynolds-arrow laws

$$
\begin{align*}
i d \leftarrow i d & =\text { id } \tag{8}\\
(R \leftarrow S)^{\circ} & =R^{\circ} \leftarrow S^{\circ} \tag{9}\\
(R \leftarrow V) \cdot(S \leftarrow U) & \subseteq(R \cdot S) \leftarrow(V \cdot U) \tag{10}\\
R \leftarrow S \subseteq V \leftarrow U & \Leftarrow R \subseteq V \wedge U \subseteq S \tag{11}\\
k(f \leftarrow g) h & \Leftrightarrow k \cdot g=f \cdot h \tag{12}\\
\left(f \leftarrow g^{\circ}\right) h & =f \cdot h \cdot g \tag{13}
\end{align*}
$$

Reynolds-arrow laws

Property (11) entails monotonicity on the left hand side, thus,

$$
\begin{align*}
& S \leftarrow R \subseteq(S \cup V) \leftarrow R \tag{14}\\
& T \leftarrow S=\top \tag{15}
\end{align*}
$$

and anti-monotonicity on the right hand side:

$$
\begin{equation*}
R \leftarrow \perp=\top \tag{16}
\end{equation*}
$$

as well as two distributive properties:

$$
\begin{align*}
& S \leftarrow\left(R_{1} \cup R_{2}\right)=\left(S \leftarrow R_{1}\right) \cap\left(S \leftarrow R_{2}\right) \tag{17}\\
& \left(S_{1} \cap S_{2}\right) \leftarrow R=\left(S_{1} \leftarrow R\right) \cap\left(S_{2} \leftarrow R\right) \tag{18}
\end{align*}
$$

Bisimulation: Properties

- The converse of a bisimulation is also a bisimulation

$$
\begin{array}{lc}
& R \text { is a bisimulation } \\
\Leftrightarrow & \{(7)\} \\
& p(\mathrm{~T} R \leftarrow R) q \\
\Leftrightarrow & \{\text { converse } \\
& q(\mathrm{~T} R \leftarrow R)^{\circ} p \\
\Leftrightarrow & \{(9)\}
\end{array}
$$

$$
p\left((\mathrm{~T} R)^{\circ} \leftarrow R^{\circ}\right) q
$$

	$p\left((\mathrm{~T} R)^{\circ} \leftarrow R^{\circ}\right) q$
\Leftrightarrow	$\{$ relator T \} $\}$
	$q\left(\mathrm{~T}\left(R^{\circ}\right) \leftarrow R^{\circ}\right) p$
\Leftrightarrow	$\{(7)\}$
	R° is a bisimulation

$\begin{array}{lc} & p\left((\mathrm{~T} R)^{\circ} \leftarrow R^{\circ}\right) q \\ \Leftrightarrow & \{\text { relator } \mathrm{T}\} \\ & q\left(\mathrm{~T}\left(R^{\circ}\right) \leftarrow R^{\circ}\right) p \\ \Leftrightarrow & \{(7)\} \\ & R^{\circ} \text { is a bisimulation }\end{array}$ \}

$$
q\left(\mathrm{~T}\left(R^{\circ}\right) \leftarrow R^{\circ}\right) p
$$

\square

- Composition of bisimulations is a bisimulation by property (10), as can be checked by parsing its pointwise version: for all suitably typed coalgebras p and q,

$$
\langle\exists z:: p(\mathrm{~T} S \leftarrow S) z \wedge z(\mathrm{~T} R \leftarrow R) q\rangle \quad \Rightarrow \quad p(\mathrm{~T}(S \cdot R) \leftarrow(S \cdot R)) q
$$

Bisimulation: Properties

- the identity relation id is a bisimulation

$$
\begin{array}{cc}
& p(\text { Tid } \leftarrow i d) q \\
\Leftrightarrow & \{\text { relator T \} } \\
& p(i d \leftarrow i d) q \\
\Leftrightarrow & \{(8)\} \\
& p=q
\end{array}
$$

- the empty relation \perp is a bisimulation

$$
\begin{array}{cc}
& \langle\forall p, q:: p(\mathrm{~T} \perp \leftarrow \perp) q\rangle \\
\Leftrightarrow & \{\text { PF-transform }\} \\
& \langle\forall p, q:: p(\mathrm{~T} \perp \leftarrow \perp) q \Leftrightarrow \mathrm{True}\rangle \\
\Leftrightarrow & \{\mathrm{PF} \text {-transform \}} \\
& \mathrm{T} \perp \leftarrow \perp=\mathrm{T} \\
\Leftrightarrow & \{(16)\} \\
& \text { True }
\end{array}
$$

Bisimulation: Properties

- bisimulations are closed under union

$$
p\left(\mathrm{~T} R_{1} \leftarrow R_{1}\right) q \wedge p\left(\mathrm{~T} R_{2} \leftarrow R_{2}\right) q \quad \Rightarrow \quad p\left(\mathrm{~T}\left(R_{1} \cup R_{2}\right) \leftarrow\left(R_{1} \cup R_{2}\right)\right) q \text { (19) }
$$

stems from properties $(11,14)$ and (17). First we PF-transform (19) to

$$
\left(\mathrm{T} R_{1} \leftarrow R_{1}\right) \cap\left(\mathrm{T} R_{2} \leftarrow R_{2}\right) \subseteq \mathrm{T}\left(R_{1} \cup R_{2}\right) \leftarrow\left(R_{1} \cup R_{2}\right)
$$

and reason:

$$
\left.\begin{array}{ll}
& \left(\mathrm{T} R_{1} \leftarrow R_{1}\right) \cap\left(\mathrm{T} R_{2} \leftarrow R_{2}\right) \\
\subseteq & \{(14)(\text { twice }) ; \text { monotonicity of } \cap\} \\
& \left(\left(\mathrm{T} R_{1} \cup \mathrm{~T} R_{2}\right) \leftarrow R_{1}\right) \cap\left(\left(\mathrm{T} R_{1} \cup \mathrm{~T} R_{2}\right) \leftarrow R_{2}\right)
\end{array}\right\}
$$

Bisimulation: Properties

- any coalgebra morphism is a bisimulation (why?)
- behavioural equivalence is a bisimulation.

$$
\begin{aligned}
& p\left(\mathrm{~T}\left([(p)]^{\circ} \cdot[(q)]\right) \leftarrow[(p)]^{\circ} \cdot[(q)]\right) q \\
& \Leftrightarrow \quad\{\text { definition }\} \\
& {[(p)]^{\circ} \cdot[(q)] \subseteq p^{\circ} \cdot \mathrm{T}\left([(p)]^{\circ} \cdot[(q)]\right) \cdot q} \\
& \Leftrightarrow \quad\{\text { relators }\} \\
& {[(p)]^{\circ} \cdot[(q)] \subseteq p^{\circ} \cdot \mathrm{T}[(p)]^{\circ} \cdot \mathrm{T}[(q)] \cdot q} \\
& \Leftrightarrow \quad\{\text { converse }\} \\
& {[(p)]^{\circ} \cdot[(q)] \subseteq(T[(p)] \cdot p)^{\circ} \cdot T[(q)] \cdot q} \\
& \Leftrightarrow \quad\{\text { universal property of coinductive extension \}} \\
& {[(p)]^{\circ} \cdot[(q)] \subseteq(\omega \cdot[(p)])^{\circ} \cdot \omega \cdot[(q)]} \\
& \Leftrightarrow \quad\{\text { converse }\} \\
& {[(p)]^{\circ} \cdot[(q)] \subseteq[(p)]^{\circ} \cdot \omega^{\circ} \cdot \omega \cdot[(q)]} \\
& \Leftrightarrow \quad\{\text { Lambek (final coalgebra is an isomorphism) \}} \\
& \text { True }
\end{aligned}
$$

Bisimilarity

Def. Two states, u and v, from the same or different coalgebras, are bisimilar iff they are related by a bisimulation, i.e.,
$u \sim v \Leftrightarrow\langle\exists R: R \subseteq U \times V: u R v \wedge R$ is a bisimulation \rangle

Th. Bisimilarity is an equivalence relation.

Th. The set of all bisimulations, defined between two coalgebras, over state spaces U and V, is a complete lattice, ordered by \subseteq, whose top is the restriction of \sim to $U \times V$.

Exercise. Prove both theorems.

