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Moore transducers

state space U
transition function nx : UA ←− U
attribute (or label) at : B ←− U

i.e.,
p = 〈nx, at〉 : UA × B ←− U

Notation:

u
a−→p u′ ⇔ nx u a = u′

u ↓p b ⇔ at u = b
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Moore transducers

The behaviour of p at (from) a state u ∈ U is revealed by
successive observations (experiments) triggered on input of
different values a ∈ A:

[(p)] u = [at u, at (nx u a0), at (nx (nx u a0) a1), ...]

[(p)]u nil = at u

[(p)]u (a : t) = [(p)] (nx u a) t

which means that

Moore behaviours are elements of BA∗

(depicted as rooted trees whose branches are labelled by se-
quences of inputs and leaves by B values)
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Moore morphisms

A morphism
h : q ←− p

where

p = 〈nx, at〉 : UA × B ←− U

q = 〈nx′, at′〉 : V A × B ←− V

is a function h : V ←− U such that

U
p //

h

��

UA × B

hA×id
��

V
q // V A × B

To avoid the explicit use of exponentials, the diagram can be
decomposed into:
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Moore morphisms

U
at //

h
��

B

id
��

V
at′ // B

and

U × A
nnx //

h×id
��

U

h
��

V × A
nx′ // V

corresponding to

at′ · h = at

nx′ · (h × id) = h · nx
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Moore morphisms

Clearly, morphisms preserve attributes and transitions

u
a−→p u′ and u ↓p b

⇔ { definition }

nx(u, a) = u′ and at u = b

⇔ { Liebniz }

h nx(u, a) = h u′ and at u = b

⇔ { h is a morphism }

nx′(h u, a) = h u′ and at′ h u = b

⇔ { definition }

h u
a−→q h u′ and h u ↓q b



Moore and Mealy transducers Behavioural effects The general case: coalgebras Bisimulation and bisimilarity

The final Moore transducer

Moore behaviours organise themselves into a final Moore
machine over BA∗

ω = 〈nxω, atω〉 : (BA∗
)A × B ←− BA∗

where

atω f = f nil ie, the value before any input

nxω f a = λ s . f (a : s) every input determines its evolution
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The final Moore transducer

Th: Coalgebra ω is the final coalgebra for T X = XA × B

because

1. For any p = 〈nx, at〉, [(p)] is a Moore morphism [(p)] : ω ←− p

atω · [(p)] = at

⇔ { introduction of variables }

atω([(p)] u) = at u

⇔ { definition of atω }

([(p)] u) nil = at u

⇔ { definition of [(p)] }

True
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The final Moore transducer

nxω · ([(p)]× id) = [(p)] · nx

⇔ { introduction of variables and application }

nxω([(p)] u, a) = [(p)] nx (u, a)

⇔ { definition of nxω }

λ s . ([(p)] u) (a : s) = [(p)] nx (u, a)

⇔ { introduction of variables and application }

([(p)] u) (a : t) = ([(p)] nx (u, a)) t

⇔ { definition of [(p)] }

True
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The final Moore transducer

2. ... and is unique

Exercise. Prove uniqueness (by induction on A∗)
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Instances of Moore transducers

Queue = 〈nx, at〉 : (E ∗)E+1 × ((E + 1)× 2)←− E ∗

with

at = 〈top, isempty?〉
where top s = (s = nil → ι2 ∗, ι1(last s) )

isempty? s = s = nil

nx = [enq, deq] · dl

where enq (s, e) = e : s

deq (s, ∗) = (s = nil → s, (blast s))
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Instances of Moore transducers

Make B = 2 in TX = XA × B.
The carrier (or state space) of the corresponding final coalgebra is

2A∗ ∼= PA∗

and its dynamics is 〈nxω, atω〉 : (PA∗)A × 2←− PA∗

where

atω L = nil ∈ L

nxω L = λ a . {a ∈ A∗| (a : s) ∈ L}

Exercise. ... what are we talking about?
Exercise. Make A = 1 in TX = XA × B. What comes up?
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Mealy transducers

state space U
reactive transition function ac : (U × B)A ←− U

Notation:

u
a/b−→p u′ ⇔ ac u a = (u′, b)
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Mealy transducers

The behaviour of p at a state u ∈ U is revealed by successive
observations (experiments) triggered on input of different values
a ∈ A:

[(p)] u = [π2(ac u a0), π2(ac (π2(ac u a0)) a1, ...]

[(p)]u [a] = π2(ac u a)

[(p)]u (a : t) = [(p)] (π1(ac u a)) t

which means that

Mealy behaviours are elements of BA+
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Mealy transducers

Mealy behaviours can alternatively be regarded as

causal functions from Aω to Bω

A causal function f over streams is such that, for all s, t ∈ Aω and
n ∈ N,

〈∀ k : k ≤ n : s k = t k〉 ⇒ (f s n = f t n)

i.e, the n-th element of f s depends only on the first n elements of
input stream s

... upon which the final Mealy automata can be defined:



Moore and Mealy transducers Behavioural effects The general case: coalgebras Bisimulation and bisimilarity

The final Mealy transducer

Mealy behaviours organise themselves into a final Mealy
automata over Γ = {f : Bω ←− Aω| f is causal}

ω : (Γ× B)A ←− Γ

where

ω f a = 〈λ s . tl f (a : s), hd f (a : r)〉

which means that

• the next state acts as f after a has been seen

• the output hd f (a : r) depends only on f and a; therefore, the
tail r of the input stream is irrelevant.
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Exercises

Exercise. Characterize Mealy morphisms. Draw the corresponding
diagram and derive an equational definition.

Exercise. Prove that the Mealy transducer over Γ defined above is
final.
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Non-determinism

Further behavioural effects can be introduced in the basic
machines discussed so far by ’sophisticating’ the corresponding
signature functor. For example,

• non-determinism is captured by the powerset functor P

Automata TX = B × X TX = P(B × X )

Moore transducer TX = XA × B TX = P(X )A × B

Mealy transducer TX = (X × B)A TX = P(X × B)A
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Example: non-deterministic automata

Coalgebras
p : P(B × U)←− U

as relations
P : B × U ←− U

through the relational transpose

p = Λ P ⇔ P = ∈ ·p

Notation:

(b, x ′) P x ⇔ (b, x ′) ∈ p x ⇔ x ′Pb x ⇔ x
b−→p x ′
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Example: non-deterministic automata

Th: A morphism between two non-deterministic automata p
and q satisfies

(id× h) · P = Q · h (1)

because

(id× h) · P = Q · h

⇔ { relational transpose is an isomorphism }

Λ ((id× h) · P) = Λ (Q · h)

⇔ { Λ (f · R) = Pf · Λ R and Λ (R · f ) = Λ R · f and definition }

P(id× h) · Λ (∈ · p) = Λ (∈ · q) · h

⇔ { Λ (R · f ) = Λ R · f }

P(id× h) · Λ ∈ ·p = Λ ∈ · q · h

⇔ { Λ ∈= id }

P(id× h) · p = q · h
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Example: non-deterministic automata

Function p, relation p and the B-indexed family of relations
{Pb| b ∈ B}, all represent the same structure. Therefore, a
morphism between non-deterministic automata can be defined by
the commutativity of any of the following diagrams (of functions
or relations, respectively):

U
h //

p

��

V

q

��

U
h //

P

��

V

Q

��

U
h //

Pb

��

V

Qb

��
P(B × U)

P id×h // P(B × V ) B × U
id×h // B × V U

h // V
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Example: non-deterministic automata

Therefore, equation (1) equivales to

h · Pb ⊆ Qb · h

Qb · h ⊆ h · Pb

entailing, respectively, preservation of p-transitions and reflection
of q-transitions, i.e.,

〈∀ u, u′ : u, u′ ∈ U : u
b−→p u′ ⇒ h u

b−→q h u′〉 (2)

〈∀ u, v : u ∈ U, v ′ ∈ V : h u
b−→q v ′ ⇒ 〈∃ u′ : u′ ∈ U : u

b−→p u′ ∧ v ′ = h u′〉〉
(3)

because
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Example: non-deterministic automata

Proof of (2):

h · Pb ⊆ Qb · h

⇔ { shunting }

Pb ⊆ h◦ · Qb · h

⇔ { PF transform }

〈∀ u, u′ : u, u′ ∈ U : u′ Pb u ⇒ u′(h◦ · Qb · h)u〉

⇔ { ”guardanapo” rule }

〈∀ u, u′ : u, u′ ∈ U : u′ Pb u ⇒ (h u′)Qb(h u)〉

⇔ { Pb = (
b−→p )◦ }

〈∀ u, u′ : u, u′ ∈ U : u
b−→p u′ ⇒ h u

b−→q h u′〉
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Example: non-deterministic automata

Proof of (2):

Qb · h ⊆ h · Pb

⇔ { ·R ` /R }

Qb ⊆ (h · Pb)/h

⇔ { definition of left division and PF transform }

〈∀ v , v ′ : v , v ′ ∈ V : v ′Qbv ⇒ 〈∀ u : u ∈ U : v = h u ⇒ v ′(h · Pb)u〉〉

⇔ { quantifier trading (twice) }

〈∀ v , v ′ : v , v ′ ∈ V ∧ v ′Qbv : 〈∀ u : u ∈ U ∧ v = h u : v ′(h · Pb)u〉〉

⇔ { quantifier nesting (twice, in opposite directions) }

〈∀ u, v ′ : u ∈ U ∧ v ′ ∈ V : 〈∀ v : v ∈ V ∧ v = h u ∧ v ′Qbv : v ′(h · Pb)u〉〉
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Example: non-deterministic automata

〈∀ u, v ′ : u ∈ U ∧ v ′ ∈ V : 〈∀ v : v ∈ V ∧ v = h u ∧ v ′Qbv : v ′(h · Pb)u〉〉

⇔ { quantifier trading }

〈∀ u, v ′ : u ∈ U ∧ v ′ ∈ V : 〈∀ v : v = h u : (v ∈ V ∧ v ′Qbv)⇒ v ′(h · Pb)u〉〉

⇔ { quantifier one-point rule }

〈∀ u, v ′ : u ∈ U ∧ v ′ ∈ V : (h u ∈ V ∧ v ′Qb(h u))⇒ v ′(h · Pb)u〉

⇔ { h type and definition of relational composition }

〈∀ u, v ′ : u ∈ U ∧ v ′ ∈ V : v ′Qbv ⇒ 〈∃ u′ : u′ ∈ U : v ′ = h u ∧ u′Pbu〉〉

⇔ { Pb = (
b−→p )◦ }

〈∀ u, v ′ : u ∈ U ∧ v ′ ∈ V : v ′Qbv ⇒ 〈∃ u′ : u′ ∈ U : v ′ = h u ∧ u
b−→p u′〉〉
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Partiality

Automata TX = B × X TX = (B × X ) + 1
Moore transducer TX = XA × B TX = (X + 1)A × B
Mealy transducer TX = (X × B)A TX = ((X × B) + 1)A
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In general: monads introduce behaviour

Automata TX = B × X TX = B(B × X )
Moore transducer TX = XA × B TX = B(X )A × B
Mealy transducer TX = (X × B)A TX = B(X × B)A

where B is a strong monad capturing a particular behavioural
effect.
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Behaviour monads

• Partiality: B = Id + 1

• Non determinism: B = P
• Ordered non determinism: B = Id∗

• Monoidal labelling: B = Id×M, with M a monoid.

• ‘Metric’ non determinism: B = BagM based on 〈M,⊕,⊗〉,
where ⊗ distributes over ⊕, both defining Abelian monoids
over M.
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Behaviour monads

〈B, η, µ〉

where

η : Id⇐= B (to make a behavioural annotation)

µ : BB⇐= B (to flatten nested annotations)

being strong entails the presence of right and left strength for
context handling:

B(Id×−) : B×− ⇐= B×−
B(−× Id) : −× B⇐= −× B
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Behaviour monads

Furthermore, Kleisli compositions

δrI ,J = τrI ,J • τlBI ,J
and δlI ,J = τlI ,J • τrI ,BJ

map
BI × BJ to B(I × J)

specifying a sort of sequential composition of B-computations

B is a commutative monad if δrI ,J = δlI ,J

... plus a handful of equational laws
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Algebras

a tool box:
eee

an assembly process: artifact
a←−

eee
artifact

• algebras describe assembly processes

• and abstract data types as (initial) algebras (term algebras)

• emphasis is on construction
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Coalgebras

a lens: ©_©

an observation structure: ©_© universe
c←− universe

• coalgebras describe observation structures (i.e., transition
systems)

• and abstract behaviour types as (final) coalgebras

• emphasis is on observation
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Typical lens

• ‘opaque’
©_© U = 1

• black & white

©_© U = 2

• colouring
©_© U = O

... in each case the colour set acts as a space classifier
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Typical lens

• partiality
©_© U = U + 1

• visible attributes

©_© U = O × U

• external stimulus

©_© U = U I

• non determinism

©_© U = PU
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Question

Which lens shall we seek?

• The main criteria is to choose functors for which the final
coalgebra does exist

• Such is the case of the all polynomial functors as well as finite
powerset functor
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Coalgebras

A coalgebra for a functor T is any function from a set U (its
carrier) to TU:

α : TU ←− U

For any functor T, if its space of behaviours can be made a
T-coalgebra itself

ωT : TνT ←− νT

this is the final coalgebra: from any other T-coalgebra p there is a
unique morphism [(p)] making the following diagram to commute:

νT
ωT // TνT

U
p //

[(p)]

OO

TU

T[(p)]

OO
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Coalgebras

The universal property is equivalently captured by the following
law:

k = [(p)] ⇔ ωT · k = T k · p

• Existence ⇔ definition principle (co-recursion)

• Uniqueness ⇔ proof principle (co-induction)

From which:

cancellation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q
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Coalgebras

Example: fusion law

νT
ωT // TνT

U
p //

[(p)]

OO

TU

T[(p)]

OO

V

[(q)]

44

q //

h

OO

TV

Th

OO
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Coalgebras

Example: fusion law

[(p)] · h = [(q)]

⇔ { universal law }

ω · [(p)] · h = T([(p)] · h) · q

⇔ { cancellation law and T functor }

T[(p)] · p · h = T[(p)] · Th · q

⇐ { function equality }

p · h = Th · q
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Coalgebras

From which one may generalise the fundamental result (proved
above for the case of streams)

Th: morphisms preserve behaviour: [(p)] = [(q)] · h
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Proof by coinduction

Example: mapf and generic laws

mapf ·g = mapf ·mapg

defining mapf as follows:

Bω
ωB // B × Bω

Aω

mapf

OO

ωA // A× Aω f×id // A× Bω

id×mapf

OO
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Proof by coinduction

mapf ·g = mapf ·mapg

⇔ { map definition }

[(((f · g)× id) · ω)] = [((f × id) · ω)] ·mapg

⇐ { coinduction fusion law }

(f × id) · ω ·mapg = (id×mapg ) · ((f · g)× id) · ω

⇔ { coinduction cancellation law }

(f × id) · (id×mapg ) · (g × id) · ω = (id×mapg ) · ((f · g)× id) · ω

⇔ { functoriality }

((f · g)×mapg ) · ω = ((f · g)×mapg ) · ω
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Proof by coinduction

but this is just an instance of a more general result:

mapT (g · f ) = mapT g ·mapT f

νTB

ωTB // TB νTB

νTA

mapT f

OO

ωTA // TA νTA

T (f ,idmapT A)
// TB νTA

TB mapT f

OO
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Proof by coinduction

In general one also gets:

mapT idA = idmapTA

mapT f · [(p)]T = [(T (f , id) · p)]T

• function map extends to a functor mapping a set A into the
behaviour space of T-coalgebras parametric on A

• the last equation acts as an absorption law for coinductive
extension
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Proof by coinduction

Example: Lambek’s Lemma
The dynamics of the final coalgebra is an isomorphism

proof idea:

• Assume the existence of an inverse αT to ωT : TνT ←− νT.
Then, αT · ωT = idνT

and ωT · αT = idTνT

• Take one of this requirements and use it to conjecture a
definition for αT (or an implementation ...)
Note the use of the reflection law to introduce an
anamorphism in the calculation, instead of eliminating one

• Then check the validity of this conjecture by verifying with it
the other requirement
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Proof by coinduction

αT · ωT = idνT

⇔ { reflection law }

αT · ωT = [(ωT)]

⇔ { universal law }

ωT · αT · ωT = T(αT · ωT) · ωT

⇔ { as a functor T preserves composition }

ωT · αT · ωT = TαT · TωT · ωT

⇔ { cancel ωT from both sides & universal law }

αT = [(TωT)]
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Proof by coinduction

ωT · αT

= { replace αT by the derived conjecture }

ωT · [(TωT)]

= { [(TωT)] is a morphism }

T[(TωT)] · TωT

= { as a functor T preserves composition }

T([(TωT)] · ωT)

= { just proved }

T idνT

= { as a functor T preserves identities }

id(TidνT
)
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Question

The powerset functor has not a final coalgebra. Why?
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Bisimulation

A bisimulation is a relation over the state spaces of two coal-
gebras, p and q, which is closed for their dynamics, i.e.

(x , y) ∈ R ⇒ (p x , q y) ∈ TR

which is PF-transformed to

R ⊆ p◦ · (TR) · q

Shunting on p◦ yields

p · R ⊆ (TR) · q

Note: signature functor T is now extended to a relator.
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Example: T X = B × X

U

p

��

V
R

oo

q

��
B × U B × V

id×R
oo

p · R ⊆ (id× R) · q

⇔ { shunting }

R ⊆ p◦ · (id× R) · q

⇔ { introducing variables }

〈∀ u, v : u ∈ U, v ∈ V : u R v ⇒ u (p◦ · (id× R) · q) v〉

⇔ { ”guardanapo” rule }

〈∀ u, v : u ∈ U, v ∈ V : u R v ⇒ p u (id× R) q v〉

⇔ { product }

〈∀ u, v : u ∈ U, v ∈ V : u R v ⇒ π1(p u) = π1(q v) ∧ π2(p u) R π2(q v)〉
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Example: T X = PX

• Note that every powerset coalgebra can be regarded as the
transpose of a binary relation through isomorphism

f = ΛR ⇔ R = ∈ ·f (4)

• The powerset relator is defined by

PR = (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ (5)

where ∩ denotes relation intersection and R \ S denotes
relational division,

a(R \ S)c ⇔ 〈∀ b : b R a : b S c〉

a relational operator whose semantics is captured by universal
property

R · X ⊆ S ⇔ X ⊆ R \ S (6)

Then,
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Example: T X = PX

p · R ⊆ (PR) · q

⇔ { let p, q := ΛP,ΛQ, unfold PR (5) }

(ΛP) · R ⊆ (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ · (ΛQ)

⇔ { distribution (since ΛQ is a function) }

(ΛP) · R ⊆ (∈ \(R· ∈)) · (ΛQ) ∧ (ΛP) · R ⊆ (∈ \ (R◦· ∈))◦ · (ΛQ)

⇔ { property R \ (S · f ) = (R \ S) · f ; converses }

(ΛP) · R ⊆ ∈ \ (R· ∈ ·ΛQ) ∧ R◦ · (ΛP)◦ ⊆ (ΛQ)◦ · (∈ \ (R◦· ∈))

⇔ { shunting and property above }

(ΛP) · R ⊆ ∈ \ (R· ∈ ·ΛQ) ∧ (ΛQ) · R◦ ⊆ ∈ \ (R◦· ∈ ·ΛP)

⇔ { (6) twice }

∈ · (ΛP) · R ⊆ R· ∈ ·ΛQ ∧ ∈ · (ΛQ) · R◦ ⊆ R◦· ∈ ·ΛP

⇔ { cancellation ∈ · (ΛR) = R four times }

P · R ⊆ R · Q ∧ Q · R◦ ⊆ R◦ · P



Moore and Mealy transducers Behavioural effects The general case: coalgebras Bisimulation and bisimilarity

Example: T X = PX

The two conjuncts state that R and its converse are simulations
between state transition relations P and Q, which corresponds to
the Park-Milner definition:

• a bisimulation is a simulation such that its converse is
also a simulation

• a simulation between relations P and Q is a relation R
such that, if (p, q) ∈ R, then for all p′ such that
(p′, p) ∈ P, then there is a q′ such that (p′, q′) ∈ R
and (q′, q) ∈ Q

because
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Example: T X = PX

P · R ⊆ R · Q

⇔ { S · ` R\ }
R ⊆ P\(R · Q)

⇔ { PF transform }

〈∀ u, v : u ∈ U ∧ v ∈ V : uRv ⇒ u(P\(R · Q))v〉

⇔ { definition of right division }

〈∀ u, v : u ∈ U ∧ v ∈ V : uRv ⇒ 〈∀ u′ : u′ ∈ U ∧ u′Pu : u′(R · Q)v〉〉

⇔ { quantifier trading, nesting and trading again }

〈∀ u, u′, v : u, u′ ∈ U ∧ v ∈ V : uRv ∧ u′Pu⇒ u′(R · Q)v〉

⇔ { relational composition }

〈∀ u, u′, v : u, u′ ∈ U ∧ v ∈ V : uRv ∧ u′Pu⇒ 〈∃ v ′ : v ′ ∈ V : u′Rv ′ ∧ v ′Qv〉〉



Moore and Mealy transducers Behavioural effects The general case: coalgebras Bisimulation and bisimilarity

Example: T X = PX

and

Q · R◦ ⊆ R◦ · P

⇔ { by a similar argument }

〈∀ u, v , v ′ : u ∈ U ∧ v , v ′ ∈ V : uRv ∧ v ′Qv ⇒ 〈∃ u′ : u′ ∈ U : u′Rv ′ ∧ u′Pu〉〉

which jointly states that both R and R◦ are simulations
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Example: T X = P(B × X )

This result scales easily for TX = P(B × X ) coalgebras, where it
is usually expressed in terms of B-indexed families of transition
relations:

• R is a simulation between coalgebras p and q as before iff, for
all b ∈ B, u, u′ ∈ U and v ∈ V ,

uRv ∧ u′
b−→p u⇒ 〈∃ v ′ : v ′ ∈ V : u′Rv ′ ∧ v ′

b−→q v〉

• R is a bisimulation iff both R and R◦ are simulations

which leads to the usual definition of bisimulation in process
algebra (cf, [Milner, 80])
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Example: T X = P(B × X )

Example states q0 and p0 in coalgebras

q1
d // q2 p2

q0

a
>>||||||||

a
  B

BB
BB

BB
B p0

a // p1

d
>>||||||||

e
  B

BB
BB

BB
B

q4 e
// q3 p3

are related by simulation

{〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}
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Example: T X = P(B × X )

Note, however, that, although there are simulations R and S
containing pairs (q0, p0) and (p0, q0) in

q1

q0

a
>>||||||||

a

  B
BB

BB
BB

B p0
a // p1

b // p3

q2
b // q3

the two states are not bisimilar.

Exercise. Compute relations R and S above and explain why q0

and p0 are not bisimilar.
Exercise. Compute the definition of bisimulation for the signature
functor of a Moore and a Mealy transducer, respectively.
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Bisimulation as a Reynolds arrow

The definition of bisimulation brings to mind the “Reynolds arrow
combinator”-pattern:

f (R ← S)g ⇔ f · S ⊆ R · g

leading to

R is a bisimulation ⇔ p(TR ← R)q (7)

Note: Reynolds’ arrow combinator is a relation on functions
useful in expressing properties of functions, notably the “free
theorem” of a polymorphic function f :

GA TA
foo polymorphic ⇔ 〈∀ R : : f (GR ← TR)f 〉
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Reynolds-arrow laws

id ← id = id (8)

(R ← S)◦ = R◦← S◦ (9)

(R ← V ) · (S ← U) ⊆ (R · S)← (V · U) (10)

R ← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (11)

k(f ← g)h ⇔ k · g = f · h (12)

(f ← g◦)h = f · h · g (13)
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Reynolds-arrow laws

Property (11) entails monotonicity on the left hand side, thus,

S ← R ⊆ (S ∪ V )← R (14)

>← S = > (15)

and anti-monotonicity on the right hand side:

R ←⊥ = > (16)

as well as two distributive properties:

S ← (R1 ∪ R2) = (S ← R1) ∩ (S ← R2) (17)

(S1 ∩ S2)← R = (S1← R) ∩ (S2← R) (18)
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Bisimulation: Properties

• The converse of a bisimulation is also a bisimulation

R is a bisimulation

⇔ { (7) }
p(TR← R)q

⇔ { converse }
q(TR← R)◦p

⇔ { (9) }

p((TR)◦← R◦)q

⇔ { relator T }
q(T(R◦)← R◦)p

⇔ { (7) }
R◦ is a bisimulation

• Composition of bisimulations is a bisimulation
by property (10), as can be checked by parsing its pointwise version: for all
suitably typed coalgebras p and q,

〈∃ z : : p(TS ← S)z ∧ z(TR← R)q〉 ⇒ p(T(S · R)← (S · R))q
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Bisimulation: Properties
• the identity relation id is a bisimulation

p(Tid ← id)q

⇔ { relator T }

p(id ← id)q

⇔ { (8) }
p = q

• the empty relation ⊥ is a bisimulation

〈∀ p, q : : p(T⊥←⊥)q〉

⇔ { PF-transform }

〈∀ p, q : : p(T⊥←⊥)q⇔True〉

⇔ { PF-transform }

T⊥←⊥ = >
⇔ { (16) }

True
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Bisimulation: Properties

• bisimulations are closed under union

p(TR1← R1)q ∧ p(TR2← R2)q ⇒ p(T(R1 ∪ R2)← (R1 ∪ R2))q (19)

stems from properties (11,14) and (17). First we PF-transform (19) to

(TR1← R1) ∩ (TR2← R2) ⊆ T(R1 ∪ R2)← (R1 ∪ R2)

and reason:

(TR1← R1) ∩ (TR2← R2)

⊆ { (14) (twice) ; monotonicity of ∩ }

((TR1 ∪ TR2)← R1) ∩ ((TR1 ∪ TR2)← R2)

= { (17) }

(TR1 ∪ TR2)← (R1 ∪ R2)

⊆ { F is monotonic; (11) }

T(R1 ∪ R2)← (R1 ∪ R2)
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Bisimulation: Properties
• any coalgebra morphism is a bisimulation (why?)
• behavioural equivalence is a bisimulation.

p(T([(p)]◦ · [(q)])← [(p)]◦ · [(q)])q

⇔ { definition }

[(p)]◦ · [(q)] ⊆ p◦ · T([(p)]◦ · [(q)]) · q

⇔ { relators }

[(p)]◦ · [(q)] ⊆ p◦ · T[(p)]◦ · T[(q)] · q

⇔ { converse }

[(p)]◦ · [(q)] ⊆ (T[(p)] · p)◦ · T[(q)] · q

⇔ { universal property of coinductive extension }

[(p)]◦ · [(q)] ⊆ (ω · [(p)])◦ · ω · [(q)]

⇔ { converse }

[(p)]◦ · [(q)] ⊆ [(p)]◦ · ω◦ · ω · [(q)]

⇔ { Lambek (final coalgebra is an isomorphism) }

True
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Bisimilarity

Def. Two states, u and v , from the same or different coal-
gebras, are bisimilar iff they are related by a bisimulation,
i.e.,

u ∼ v ⇔ 〈∃ R : R ⊆ U × V : uRv ∧ R is a bisimulation〉

Th. Bisimilarity is an equivalence relation.

Th. The set of all bisimulations, defined between two coalge-
bras, over state spaces U and V , is a complete lattice, ordered
by ⊆, whose top is the restriction of ∼ to U × V .

Exercise. Prove both theorems.
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