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Moore transducers

Bisimulation and bisimilarity

state space V)
transition function x: UA «— U
attribute (or label) at: B «— U

ie.,
p = (AX,at): UAx B«— U

Notation:

a / —_— /
u—pu <& nNXua=u
ulpb & atu=0>



Moore and Mealy transducers

Moore transducers

The behaviour of p at (from) a state u € U is revealed by
successive observations (experiments) triggered on input of
different values a € A:

[(pPlu = [atu, at (AX uag), at (nx ("X uvag) a1), .|

(p)unil = atu

(pu(a:t) = [p)(nxua)t

which means that

Moore behaviours are elements of BA"
(depicted as rooted trees whose branches are labelled by se-
quences of inputs and leaves by B values)
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Moore morphisms

A morphism
h:q«—p
where
p= (Wat):UAx B« U
g = (W,at):VAxB«+—V

is a function h: V «— U such that

U—L>UAxB

|

V—>VAxB

To avoid the explicit use of exponentials, the diagram can be
decomposed into:
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Moore morphisms

U B
0o e
v B

Ux A2y

i | lh

V x A2

a
—_—

t
at’
— >

and

corresponding to

Bisimulation and bisimilarity
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Moore morphisms

Clearly, morphisms preserve attributes and transitions

u-25, 0 and ul,b
& { definition }

nx(u,a) =u' and atu = b
< { Liebniz }

hnx(u,a) = huv' and atu = b

& { his a morphism }
n(hu,a)=hv and at'hu = b
& { definition }

hu 254 hu' and hulgb



Moore and Mealy transducers

The final Moore transducer

Moore behaviours organise themselves into a final Moore
. *
machine over BA

w = (X, aty) : (BA)A x B — BA

where

at,f = fnil e, the value before any input

nX,fa = As. f(a:s) everyinput determines its evolution
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The final Moore transducer

Th: Coalgebra w is the final coalgebra for TX = XA x B

because

1. For any p = (nx, at), [[p)] is a Moore morphism [p)] : w «— p‘

at, - [p)] = at

& { introduction of variables }
aty([p)u) = atu

& { definition of at,, }
([p) u) il = atu

& { definition of [p)] }

TRUE
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The final Moore transducer

nx, - ([p) x id) = [p] - nx

& { introduction of variables and application }
nx,((p)u,a) = [(p)nx(u,a)

& { definition of nx,, }
As. ((phu)(a:s) = [pInx(u,a)

& { introduction of variables and application }
((pYu)(a:t) = (Kpinx(u,a))t

& { definition of [p)] }

TRUE
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The final Moore transducer

2. ... and is unique‘

Exercise. Prove uniqueness (by induction on A*)
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Instances of Moore transducers

Queue = (A%, at) : (E*)ETL x ((E +1) x 2) «— E*

with

at = (top, isempty?)
where tops = (s =nil — 13 *, t1(lasts) )
isempty? s = s = nil
nx = [eng,deq]-dI
where enq (s,e) = e:s
s

deq (s,%) = (s =nil — s, (blasts))
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Instances of Moore transducers

Make B=2in T X = X* x B.
The carrier (or state space) of the corresponding final coalgebra is

2 = pA*

and its dynamics is (AX,, at,) : (PA*)A x 2 «— PA*

where

at, L = nilel

X, L = Xa. {a€ A (a:s)el}
Exercise. ... what are we talking about?

Exercise. Make A=1in TX = X” x B. What comes up?
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Mealy transducers

<

state space
reactive transition function ~ ac: (U x B)A «—— U

Notation:



Moore and Mealy transducers

Mealy transducers

The behaviour of p at a state u € U is revealed by successive
observations (experiments) triggered on input of different values
aeA:

[(pJu = [m(aCuap),m(ac(m(acuao))ai,...]

(plulal = ma(acua)

(plu(a:t) = [pl(m(acua))t

which means that

: +
Mealy behaviours are elements of BA
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Mealy transducers

Mealy behaviours can alternatively be regarded as

’causal functions from A“ to B¥ \

A causal function f over streams is such that, for all s,t € A“ and
n €N,

(Vk : k<n: sk =tk) = (fsn= ftn)

i.e, the n-th element of f s depends only on the first n elements of
input stream s

. upon which the final Mealy automata can be defined:



Moore and Mealy transducers

The final Mealy transducer

Mealy behaviours organise themselves into a final Mealy
automata over I = {f : B¥ «— A¥| f is causal}

T:(TxBA—T

where
wfa = (As.tlf(a:s),hdf(a:r))

which means that
e the next state acts as f after a has been seen

e the output hd f(a: r) depends only on f and a; therefore, the
tail r of the input stream is irrelevant.
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Exercises

Exercise. Characterize Mealy morphisms. Draw the corresponding
diagram and derive an equational definition.

Exercise. Prove that the Mealy transducer over [ defined above is
final.
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Behavioural effects

Non-determinism

Further behavioural effects can be introduced in the basic
machines discussed so far by 'sophisticating’ the corresponding
signature functor. For example,

e non-determinism is captured by the powerset functor P

Automata TX = BxX | TX = P(BxX)
Moore transducer | TX = XAx B | TX = P(X)*" x B
Mealy transducer | TX = (X x B)* | TX = P(X x B)*
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Example: non-deterministic automata

Coalgebras
p:P(BxU)— U

as relations
P:BxU+—U

through the relational transpose

p=ANP & P=¢€p

Notation:

(b,x')Px < (b,x') € px & x'Ppx & x Lp X'
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Bisimulation and bisimilarity

Example: non-deterministic automata

Th: A morphism between two non-deterministic automata p
and g satisfies

(idxh)-P = Q- h (1)
because
(idxh)-P = Q-h
23 { relational transpose is an isomorphism }
A((idx h)-P) = A(Q- h)
&

{ A(f-R)=Pf-ANR and A(R-f)=AR-f and definition }
P(dx h)-A(e-p) = A(e-q)-h

N {AR-f)=AR-f }
PGdxh)y-Ne-p = ANe€-q-h
o (Ae=id }
Pldx h)-p =

qg-h



Behavioural effects

Example: non-deterministic automata

Function p, relation p and the B-indexed family of relations

{Ps| b € B}, all represent the same structure. Therefore, a
morphism between non-deterministic automata can be defined by
the commutativity of any of the following diagrams (of functions
or relations, respectively):

v——"— v uv—" v Uu—sv
Pidx h idxh
P(B x U) 2L pB x v) BxU—%BxV Uu—Lsv
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Example: non-deterministic automata

Therefore, equation (1) equivales to

h - Py Qp- h
Qp-h C h-Py

N

entailing, respectively, preservation of p-transitions and reflection
of g-transitions, i.e.,

(Vu,u’:u,u’eU:uLpu'ihquhu'> (2)

"L eVu: ui»p u AV =hudy)

3

NMu,v:ueUV ev: hqu vVi= (3u

because
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Behavioural effects The general case: coalgebras Bisimulation and bisimilarity

Example: non-deterministic automata

Proof of (2):

=

=

h-Pp, C Qy-h
{ shunting }

Py € h°-Qp-h
{ PF transform }

NVud uu €eU: v Pyu= U(h Q- h)u)
{ "guardanapo” rule }

NVud s ud eU: v Pyu= (hu)Qp(hu))
(Po= (") )

b b
NVud u €U u—, v = hu—"q hd)
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Example: non-deterministic automata

Proof of (2):

Qp-h C h-Py
& { RF/R}

Qs C (h-Ps)/h
& { definition of left division and PF transform }

NVMv,v t vV eV VQv=Nu:uclU: v=hu= V(h Ppu))
& { quantifier trading (twice) }

~VMv,v v,V eVAVQuv: Vu : ueUAv=nhu: V(h-Py)u))
o { quantifier nesting (twice, in opposite directions) }

NVuv i ueUAV EV: Vv i veEVAv=huAVQyu: V/(h-Pp)u))
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Example: non-deterministic automata

NVuv tueUAV EV: (Yv i vEVAv=huAVQpy: V/(h-Py)u))
RN { quantifier trading }

NVuv tueUAV eEV: Yv i v=hu: (vE VAV Q)= V(h-Py)u))
& { quantifier one-point rule }

NMu v cueUAV eV: (hue VAV Qy(hu))=Vv'(h-Pp)u)
22N { h type and definition of relational composition }

NMuv tueUAV eV: VQuv=3u : v eU: v =hunuPpu))
& {P=(") )

NVuv i ueUAV eV: VQuv=3dJ : v eU: v':hu/\uLp u'y)



Behavioural effects

Partiality

Automata TX = Bx X
Moore transducer | TX = XA x B
Mealy transducer | TX = (X x B)A

TX = (BxX)+1
TX = (X+1)*x B
TX = (X x B) +1)A
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In general: monads introduce behaviour

Automata TX = Bx X TX = B(B x X)
Moore transducer | TX = XA x B | TX = B(X)* x B
Mealy transducer | TX = (X x B)A | TX = B(X x B)A

where B is a strong monad capturing a particular behavioural
effect.
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Behaviour monads

e Partiality: B=Id+1

e Non determinism: B =P

e Ordered non determinism: B = Id*

e Monoidal labelling: B =Id x M, with M a monoid.

e ‘Metric’ non determinism: B = Bagy, based on (M, ®, ®),
where ® distributes over @, both defining Abelian monoids
over M.
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Behaviour monads

(B, m, )

where

n : ld<=B (to make a behavioural annotation)
i BB<=B (to flatten nested annotations)

being strong entails the presence of right and left strength for
context handling:

B(ldx —):Bx —<«<—=Bx —
B(—xIld): —xB<«=—-xB
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Behaviour monads

Furthermore, Kleisli compositions

(5’"/7_/ = Tr,J.T/B,,J and (5//7J:7'/”J.Tr,YBJ

map
B/ x BJ to B(I x J)

specifying a sort of sequential composition of B-computations

B is a commutative monad if r; ; = 61 4

... plus a handful of equational laws
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Algebras
M
a tool box: [T]
. a M .
an assembly process: artifact «—[]] artifact

e algebras describe assembly processes
e and abstract data types as (initial) algebras (term algebras)

e emphasis is on construction
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a lens: O—~0O

. . C .
an observation structure: (O~ universe «— universe

e coalgebras describe observation structures (i.e., transition
systems)
e and abstract behaviour types as (final) coalgebras

e emphasis is on observation
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Typical lens

e ‘opaque’

O~0OU =1
e black & white

O~OU =2

e colouring

O~OU =0

in each case the colour set acts as a space classifier
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Typical lens

partiality
O~OU=U+1

visible attributes

O~OU = 0xU

external stimulus

O~OU = U

non determinism

O~OU = PU

Bisimulation and bisimilarity



The general case: coalgebras

Question

Which lens shall we seek?

e The main criteria is to choose functors for which the final
coalgebra does exist

e Such is the case of the all polynomial functors as well as finite
powerset functor



The general case: coalgebras

Coalgebras

A coalgebra for a functor T is any function from a set U (its
carrier) to TU:
a:TU—U

For any functor T, if its space of behaviours can be made a
T-coalgebra itself
wt Tvr «— vt

this is the final coalgebra: from any other T-coalgebra p there is a
unique morphism [(p)] making the following diagram to commute:
vt T Tvr
KP)]T TT[(P)]

U—"-TuU
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Coalgebras

The universal property is equivalently captured by the following
law:

k=[p)] © wr-k=Tk-p

e Existence < definition principle (co-recursion)

e Uniqueness < proof principle (co-induction)

From which:

cancellation  wt - [p

e

= Tlp)-p
reflection  [(wt

fusion  [p) -

> =
(I
5
S

(g if p-h=Th-gq
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Coalgebras

Example: fusion law ‘

Bisimulation and bisimilarity
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Coalgebras

Example: fusion law ‘

(p)-h = [q]

& { universal law }
w-[p)-h = T((pY-h)-q

< { cancellation law and T functor }
T(p)Y-p-h = Tlp)-Th-q

= { function equality }



The general case: coalgebras

Coalgebras

From which one may generalise the fundamental result (proved
above for the case of streams)

Th: morphisms preserve behaviour: [p)] = [(q)] - h
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Proof by coinduction

Example: map, and generic Iaws‘

maps., = mMaps - map,
defining map; as follows:

wB

B« B x B¥

map,T Tidxmapf
f xid

Av A A A — 0 A e
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Proof by coinduction

maps., = maps - map,
s { map definition }

(((f-g) xid)-w)] = [(f xid) w]-mapg
g { coinduction fusion law }

(f xid)-w-map, = (id x map,) - ((f-g) x id) - w
RN { coinduction cancellation law }

(f xid) - (id x map,) - (g x id) -w = (id x map,) - ((f - g) x id) - w
RN { functoriality }

((f-g) xmap,) w = ((f-g) x mapg) - w
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Proof by coinduction

but this is just an instance of a more general result:

mapt (g-f) = mapt g-mapy f

wT
vT B

Tg 1,

map+ fT TTB mapt f
WT 4 T (fvidmap-r A)
VTAHTAVTA—> B VT,



The general case: coalgebras

Proof by coinduction

In general one also gets: ‘

maptida = idmapTA

mapy f - [(plr = (T (f,id) - p)+

e function map extends to a functor mapping a set A into the
behaviour space of T-coalgebras parametric on A

e the last equation acts as an absorption law for coinductive
extension
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Proof by coinduction

Example: Lambek’s Lemma
The dynamics of the final coalgebra is an isomorphism

proof idea:

e Assume the existence of an inverse aT to wt : Tt «+— vT.
Then, aT - Wt = idl,T and WwT a1 = idTl/T

e Take one of this requirements and use it to conjecture a
definition for ag (or an implementation ...)
Note the use of the reflection law to introduce an
anamorphism in the calculation, instead of eliminating one

e Then check the validity of this conjecture by verifying with it
the other requirement



Moore and Mealy transducers

aT

aT

wT

wT -

Behavioural effects The general case: coalgebras Bisimulation and bisimilarity

Proof by coinduction

cwT = idy,

{ reflection law }

wr = [wr]]

{ universal law }

-aT-wT:T(aT-wT)-wT

{ as a functor T preserves composition }
aT - WT :TaT-TwT-wT

{ cancel wt from both sides & universal law }

at = [Twr)
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Proof by coinduction

wT - aT

= { replace a1 by the derived conjecture }
wT - [(TwT)]

= { [Twrt) is a morphism }
T(Twr) - Twr

= { as a functor T preserves composition }
T((Twr) - wr)

= { just proved }
T idy,

= { as a functor T preserves identities }

id(Tid, )
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Question

The powerset functor has not a final coalgebra. Why?
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Bisimulation and bisimilarity

Bisimulation

A bisimulation is a relation over the state spaces of two coal-
gebras, p and g, which is closed for their dynamics, i.e.

(x,y)€R = (px,qy) €TR
which is PF-transformed to
RCp®-(TR)-q

Shunting on p° yields

p-RC(TR) q

Note: signature functor T is now extended to a relator.
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Example: TX = B x X

p-RC(dxR)-q
& { shunting }
RCp® (idxR)-q
B3 { introducing variables }
NVMuv:uveUveV: uRv = u(p®-(idx R)-q)v)
& { "guardanapo” rule }
NMuv:veUveV: uRv = pu(idxR)qv)
& { product }

NMuv :uvelUveV: uRv = m(pu)=m1(qv) A m(pu) Rm(qv))



Bisimulation and bisimilarity

Example: TX = PX

e Note that every powerset coalgebra can be regarded as the
transpose of a binary relation through isomorphism

f=AR & R=¢c-f (4)

e The powerset relator is defined by
PR = (e\(R-€))n(e\(R" €)) (5)

where N denotes relation intersection and R\ S denotes
relational division,

a(R\S)c & (Vb : bRa: bSc)
a relational operator whose semantics is captured by universal
property
R-XCS & XCR\S (6)

Then,



Moore and Mealy transducers Behavioural effects The general case: coalgebras Bisimulation and bisimilarity

Example: TX = PX

p-RC(PR) q
o { let p,q :=AP,AQ, unfold PR (5) }
(AP)-RC (e \(R-€))N(e\(R® €))°-(AQ)
& { distribution (since AQ is a function) }
(AP)-RC (€\(R-€))-(AQ) A (AP)-RC (€\(R® €))°-(AQ)
< { property R\ (S-f)=(R\S)-f; converses }
(AP)-RC e\ (R €-AQ) A R°-(AP)° C (AQ)°-(e\ (R° €))
& { shunting and property above }
(AP)-RC e\ (R €-AQ) A (AQ)-R® C €\ (R® € AP)
o { (6) twice }
€-(AP)-RCR €-AQ AN €-(AQ)-R°C R° € AP
& { cancellation € - (AR) = R four times }
P.RCR-QAQ-RCR°-P



Bisimulation and bisimilarity

Example: TX = PX

The two conjuncts state that R and its converse are simulations
between state transition relations P and @, which corresponds to
the Park-Milner definition:

e a bisimulation is a simulation such that its converse is
also a simulation

e a simulation between relations P and Q is a relation R
such that, if (p, g) € R, then for all p’ such that
(p',p) € P, then there is a ¢’ such that (p’,q') € R
and (¢',9) € Q

because
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Example: TX = PX

P.RCR-Q
& { S FR\}

R € P\(R-Q)
& { PF transform }

Muv :uvueUAveV: uRv=u(P\(R-Q))v)
& { definition of right division }

NMuv:ueUAveEV: uRv= VU : v eUAUPu: U(R-Q)v))
= { quantifier trading, nesting and trading again }

NVud,v i uu €UAVEV: uRvAUPu= U (R-Q)v)
& { relational composition }

NVud,viud eUAvEV: uRvAUPu= 3V : vV eV: VR AVQV))
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Example: TX = PX

and
Q- R°CR°-P

=3 { by a similar argument }

NVuv,v s ueUAv,V EV: uRVAV Q=3 d v eU: RV AU PU))

which jointly states that both R and R° are simulations



Bisimulation and bisimilarity

Example: TX = P(B x X)

This result scales easily for T X = P(B x X) coalgebras, where it
is usually expressed in terms of B-indexed families of transition
relations:

e R is a simulation between coalgebras p and g as before iff, for
albe B, u,v’ e Uand v eV,

uRv/\u’Lp u= 3V VvV eVv: u’Rv’/\v’Lq v)

e R is a bisimulation iff both R and R° are simulations

which leads to the usual definition of bisimulation in process
algebra (cf, [Milner, 80])
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Example: TX = P(B x X)

states qg and pg in coalgebras

a1 L (o)) P2

are related by simulation

{(qo0, Po), (a1, p1), (94, p1), (G2, P2), (q3, P3) }



Bisimulation and bisimilarity

Example: TX = P(B x X)

Note, however, that, although there are simulations R and S
containing pairs (go, po) and (po, qo) in

do po —2>p1 —2 ps

qz—b>Q3

the two states are not bisimilar.

Exercise. Compute relations R and S above and explain why qg
and pg are not bisimilar.

Exercise. Compute the definition of bisimulation for the signature
functor of a Moore and a Mealy transducer, respectively.



Bisimulation and bisimilarity

Bisimulation as a Reynolds arrow

The definition of bisimulation brings to mind the “Reynolds arrow
combinator” -pattern:

f(R—S)g & -SCR-g
leading to

Ris a bisimulation < p(TR < R)q (7)

Note: Reynolds' arrow combinator is a relation on functions
useful in expressing properties of functions, notably the “free
theorem” of a polymorphic function f:

GA<fiTA polymorphic < (VR :: f(GR« TR)f)
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Reynolds-arrow laws

id —id = id (8)

(R—S)P° = R°«—S° (9)
(R=V)-(S<U) € (R-S)—=(V-U)  (10)
R—S C V—U <« RCVAUCS (11)
k(f —g)h < k-g=f-h (12)
(f—g)h = f-h-g (13)
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Reynolds-arrow laws

Property (11) entails monotonicity on the left hand side, thus,

S—R C (SUV)«R (14)
TS =T (15)

and anti-monotonicity on the right hand side:
R—~1 = T (16)
as well as two distributive properties:

S—(RIUR) = (S—R1)N(S—R) (17)
(51(752)<—R = (51<—R)ﬂ(52%R) (18)
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Bisimulation: Properties

e The converse of a bisimulation is also a bisimulation

R is a bisimulation

& (M P((TR)® — R°)q
p(TR — R)q = { relator T }

& { converse } q(T(R°) — R°)p
qg(TR—R)°p =4 { (7) }

& {(9) 1} R® is a bisimulation

e Composition of bisimulations is a bisimulation
by property (10), as can be checked by parsing its pointwise version: for all
suitably typed coalgebras p and q,

(Fz:: p(TS—=S)zAz(TR—R)q) = p(T(S-R)—(S5-R))q



Moore and Mealy transducers Behavioural effects The general case: coalgebras

Bisimulation: Properties
e the identity relation id is a bisimulation

p(Tid — id)q

& { relator T }
p(id — id)q

& { (8}
p=gq

e the empty relation L is a bisimulation

VY pg i p(TL— 1)g)
RN { PF-transform }

(Vp,q :: p(TL«— L)g< TRUE)

23 { PF-transform }
TL—1=T
& { (16) }

TRUE

Bisimulation and bisimilarity
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Bisimulation: Properties
e bisimulations are closed under union
(TR — R)GAP(TR: — R))g = p(T(RLUR:) — (R1UR.))g (19)
stems from properties (11,14) and (17). First we PF-transform (19) to
(TRi—R)N(TR —R) C T(RIUR)—(RiUR)
and reason:

(TR1 — Rl) N (TR2 — R2)

- { (14) (twice) ; monotonicity of N }
(TRLUTRy) — R)) N ((TRLUTR:) — Ry)

- )
(TRLUTR,) — (RL U R2)

C { Fis monotonic; (11) }

T(R1 @] Rz) — (R1 @] RQ)
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Bisimulation: Properties

e any coalgebra morphism is a bisimulation (why?)
e behavioural equivalence is a bisimulation.

p(T((PY° - (@) < [PX° - (a)a

< { definition }
(PY° - Ka)d € p° - T(PY° - [a)) - q
& { relators }
(PY° - [a)l € p° - TLP)® - Tha) - q
& { converse }
(PX° - [q)] € (TLpY-P)° - Ta)-q
& { universal property of coinductive extension }
(PY° - [(a)l € (w- PN - w-[q)
& { converse }
(PY° - [a)l € [(P)° - w® - w-[q)
& { Lambek (final coalgebra is an isomorphism) }

TRUE



Bisimulation and bisimilarity

Bisimilarity

Def. Two states, u and v, from the same or different coal-
gebras, are bisimilar iff they are related by a bisimulation,
ie.,

u~v < (3R : RCUxV: uRvARis a bisimulation)

Th. Bisimilarity is an equivalence relation. |

Th. The set of all bisimulations, defined between two coalge-
bras, over state spaces U and V/, is a complete lattice, ordered
by C, whose top is the restriction of ~ to U x V.

Exercise. Prove both theorems.
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