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Devices connected to the physical world

• Better described by its world interaction

• Interaction via sensors and actuators

• Embedded systems

• Control programs

• Modes
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Try to apply formal methods

Scenario:
ESA will deploy a robot with a drill in the moon. It should drill x
centimeters long and stop.

Problem:

• What are the pre and post conditions?

• How could we check them?

• Possible solutions?

• How to model?
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Add the Real-Time Dimension

• Scheduling issues

• Time dependability

• Hard/Soft deadlines

• Periodicity
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Also the Distributed Dimension

• Synchronous/Asynchronous

• Physical vs Logical Time

• Communication Pattern
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Worst Hybrid Systems!

Discrete/Continue Modeling

Figure: The water tank example
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Changes start early

Requirements
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Industrially Valid Approach

VDM

• VICE

• CSK successes
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VDM Concurrency

• Concurrency in VDM++ is based on threads

• Threads communicate using shared objects

• Synchronization on shared objects is specified using permission
predicates
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Threading

Threads

thread
(

dcl id := threadid;
...

while true do
...

)

Interpreter Commands

• threads

• curthread ( threadid )

• selthreadid
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Synchronization

• sync

• mutex

• history counters

• per
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History Counters

#req op The number of times that op has been requested
#act op The number of times that op has been activated
#fin op The number of times that op has been finalized
#active op The number of active executions of op



Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Synchronization Examples

A buffer with Put and Get operations

sync

per Put => #active(Get) = 0

per Get => #active(Put) = 0

per Get => buffer <> []

Or

sync

mutex(Put, Get)
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VDM VICE Extension

• New primitives

• Methodology

• Toolbox extension

• Validation support
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Language Extensions

Concurrency

• periodic (threads)

• async

Real-Time

• time

• duration

• cycles

Distribution

• system

• CPU

• BUS
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Model paradigm
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Model paradigm
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Incremental Development

• VDM-SL

• Sequential

• Concurrent

• Distributed Real-Time
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Problem Domain

• I’m not a physician!

• Bradycardia
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Problem Domain

• Operating modes

• External unit

• Accelerometer
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DOO operating mode

D: Pace Atria and Ventricle

O: Ignore Atria senses

O: Ignore Ventricle senses
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Requirements

FixedAV: There must be a 1500 ms period between an atrial event
and a ventricular pace.

LRL: The number of pulses per minute delivered in atria must
be at least 60.

URL: The number of pulses per minute delivered in ventricle
must be at most 120.
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Abstract

• Eliciting requirements

• Single function

• DC
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Example: DOO Mode

Chamber = <ATRIA> | <VENTRICLE>;

SensedTimeline = set of (Chamber * Time);

ReactionTimeline = set of (Chamber * Time);

Pacemaker (mk_(inp,n) : SensedTimeline * Time) r : ReactionTimeline
post let nPulsesAtria = card {i | i in set r & i.#1 = <ATRIA>},

nPulsesVentricle = card {i | i in set r & i.#1 = <VENTRICLE>}

in nPulsesAtria / n >= (LRL / 60) / 1000
and
nPulsesVentricle / n <= (URL / 120) / 1000

and

forall mk_(<ATRIA>,ta) in set r &
(exists mk_(<VENTRICLE>,tv) in set r & tv = ta + FixedAV) ;
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Sequential

• OO model

• Sequential DR-T

• Env/System

• CCS
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Example: Environment

public
Run: () ==> ()
Run () ==

(
while not (isFinished())
do

(
createSignal();
Pacemaker‘rateController.Step();
Pacemaker‘heartController.Step();
World‘timerRef.StepTime();

);
);



Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Concurrent

• Free the concurrency

• Wait/Notify

• Permission predicates
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Example: Environment

thread
(
start(new ClockTick(threadid));

while not finished() do
( if busy

then createSignal();

World‘timerRef.NotifyAndIncTime();
World‘timerRef.WaitRelative(0);

);

);

sync
mutex (handleEvent,showResult);
mutex (createSignal);

per isFinished => not busy and time >= simtime;
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Distributed Real-Time

• Time modelling

• Physical architecture

• VDMTools time
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Examples

Environment

thread
periodic (1000,10,900,0) (createSignal);

Lead
Requirement: Pulses must have 4 ms width.

private
dischargePulse : Pulse * Chamber ==> ()
dischargePulse (p,c) ==

duration(4)

World‘env.handleEvent(p,c,time);
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Examples

System

instance variables

cpu1 : CPU := new CPU(<FCFS>,1E6);
cpu2 : CPU := new CPU(<FCFS>,1E6);
cpu3 : CPU := new CPU(<FCFS>,1E6);
cpu4 : CPU := new CPU(<FP>,1E6);

Connecting CPU’s

-- Lead (artia) <-> HeartController
bus1 : BUS := new BUS(<FCFS>,1E6,{cpu1,cpu4});

-- Lead (ventricle) <-> HeartController
bus2 : BUS := new BUS(<FCFS>,1E6,{cpu2,cpu4});

-- Accelerometer <-> RateController
bus3 : BUS := new BUS(<FCFS>,1E6,{cpu3,cpu4});
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Architecture Visualization
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Validation
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A Simple ABS System

A typical ABS is composed of a central electronic unit, four speed sensors
(one for each wheel), and two or more hydraulic valves on the brake
circuit. The electronic unit constantly monitors the rotation speed of
each wheel. When it senses that any number of wheels are rotating
considerably slower than the others it moves the valves to decrease the
pressure on the braking circuit, effectively reducing the braking force on
that wheel. This process is repeated continuously, and this causes the
characteristic pulsing feel through the brake pedal. A typical anti-lock
system can apply and release braking pressure up to 20 times a second.
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