
Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Formal Methods for Exquisite Systems
Embedded and Distributed Real-Time

Hugo Macedo

Universidade do Minho

January 24, 2008

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Table of contents

Motivation

VDM Concurrency

VDM VICE

Pacemaker Case-Study

Exercise Case-Study

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Plan

Motivation

VDM Concurrency

VDM VICE

Pacemaker Case-Study

Exercise Case-Study

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Devices connected to the physical world

• Better described by its world interaction

• Interaction via sensors and actuators

• Embedded systems

• Control programs

• Modes

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Try to apply formal methods

Scenario:
ESA will deploy a robot with a drill in the moon. It should drill x
centimeters long and stop.

Problem:

• What are the pre and post conditions?

• How could we check them?

• Possible solutions?

• How to model?

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Add the Real-Time Dimension

• Scheduling issues

• Time dependability

• Hard/Soft deadlines

• Periodicity

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Also the Distributed Dimension

• Synchronous/Asynchronous

• Physical vs Logical Time

• Communication Pattern

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Worst Hybrid Systems!

Discrete/Continue Modeling

Figure: The water tank example

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Changes start early

Requirements

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Industrially Valid Approach

VDM

• VICE

• CSK successes

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Plan

Motivation

VDM Concurrency

VDM VICE

Pacemaker Case-Study

Exercise Case-Study

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

VDM Concurrency

• Concurrency in VDM++ is based on threads

• Threads communicate using shared objects

• Synchronization on shared objects is specified using permission
predicates

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Threading

Threads

thread
(

dcl id := threadid;
...

while true do
...

)

Interpreter Commands

• threads

• curthread (threadid)

• selthreadid

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Synchronization

• sync

• mutex

• history counters

• per

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

History Counters

#req op The number of times that op has been requested
#act op The number of times that op has been activated
#fin op The number of times that op has been finalized
#active op The number of active executions of op

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Synchronization Examples

A buffer with Put and Get operations

sync

per Put => #active(Get) = 0

per Get => #active(Put) = 0

per Get => buffer <> []

Or

sync

mutex(Put, Get)

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Synchronization Examples

A buffer with Put and Get operations

sync

per Put => #active(Get) = 0

per Get => #active(Put) = 0

per Get => buffer <> []

Or

sync

mutex(Put, Get)

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Plan

Motivation

VDM Concurrency

VDM VICE

Pacemaker Case-Study

Exercise Case-Study

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

VDM VICE Extension

• New primitives

• Methodology

• Toolbox extension

• Validation support

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Language Extensions

Concurrency

• periodic (threads)

• async

Real-Time

• time

• duration

• cycles

Distribution

• system

• CPU

• BUS

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Model paradigm

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Model paradigm

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Incremental Development

• VDM-SL

• Sequential

• Concurrent

• Distributed Real-Time

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Plan

Motivation

VDM Concurrency

VDM VICE

Pacemaker Case-Study

Exercise Case-Study

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Problem Domain

• I’m not a physician!

• Bradycardia

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Problem Domain

• Operating modes

• External unit

• Accelerometer

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

DOO operating mode

D: Pace Atria and Ventricle

O: Ignore Atria senses

O: Ignore Ventricle senses

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Requirements

FixedAV: There must be a 1500 ms period between an atrial event
and a ventricular pace.

LRL: The number of pulses per minute delivered in atria must
be at least 60.

URL: The number of pulses per minute delivered in ventricle
must be at most 120.

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Abstract

• Eliciting requirements

• Single function

• DC

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Example: DOO Mode

Chamber = <ATRIA> | <VENTRICLE>;

SensedTimeline = set of (Chamber * Time);

ReactionTimeline = set of (Chamber * Time);

Pacemaker (mk_(inp,n) : SensedTimeline * Time) r : ReactionTimeline
post let nPulsesAtria = card {i | i in set r & i.#1 = <ATRIA>},

nPulsesVentricle = card {i | i in set r & i.#1 = <VENTRICLE>}

in nPulsesAtria / n >= (LRL / 60) / 1000
and
nPulsesVentricle / n <= (URL / 120) / 1000

and

forall mk_(<ATRIA>,ta) in set r &
(exists mk_(<VENTRICLE>,tv) in set r & tv = ta + FixedAV) ;

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Example: DOO Mode

Chamber = <ATRIA> | <VENTRICLE>;

SensedTimeline = set of (Chamber * Time);

ReactionTimeline = set of (Chamber * Time);

Pacemaker (mk_(inp,n) : SensedTimeline * Time) r : ReactionTimeline
post let nPulsesAtria = card {i | i in set r & i.#1 = <ATRIA>},

nPulsesVentricle = card {i | i in set r & i.#1 = <VENTRICLE>}

in nPulsesAtria / n >= (LRL / 60) / 1000
and
nPulsesVentricle / n <= (URL / 120) / 1000

and

forall mk_(<ATRIA>,ta) in set r &
(exists mk_(<VENTRICLE>,tv) in set r & tv = ta + FixedAV) ;

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Example: DOO Mode

Chamber = <ATRIA> | <VENTRICLE>;

SensedTimeline = set of (Chamber * Time);

ReactionTimeline = set of (Chamber * Time);

Pacemaker (mk_(inp,n) : SensedTimeline * Time) r : ReactionTimeline
post let nPulsesAtria = card {i | i in set r & i.#1 = <ATRIA>},

nPulsesVentricle = card {i | i in set r & i.#1 = <VENTRICLE>}

in nPulsesAtria / n >= (LRL / 60) / 1000
and
nPulsesVentricle / n <= (URL / 120) / 1000

and

forall mk_(<ATRIA>,ta) in set r &
(exists mk_(<VENTRICLE>,tv) in set r & tv = ta + FixedAV) ;

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Sequential

• OO model

• Sequential DR-T

• Env/System

• CCS

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Sequential

• OO model

• Sequential DR-T

• Env/System

• CCS

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Example: Environment

public
Run: () ==> ()
Run () ==

(
while not (isFinished())
do

(
createSignal();
Pacemaker‘rateController.Step();
Pacemaker‘heartController.Step();
World‘timerRef.StepTime();

);
);

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Concurrent

• Free the concurrency

• Wait/Notify

• Permission predicates

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Example: Environment

thread
(
start(new ClockTick(threadid));

while not finished() do
(if busy

then createSignal();

World‘timerRef.NotifyAndIncTime();
World‘timerRef.WaitRelative(0);

);

);

sync
mutex (handleEvent,showResult);
mutex (createSignal);

per isFinished => not busy and time >= simtime;

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Example: Environment

thread
(
start(new ClockTick(threadid));

while not finished() do
(if busy

then createSignal();

World‘timerRef.NotifyAndIncTime();
World‘timerRef.WaitRelative(0);

);

);

sync
mutex (handleEvent,showResult);
mutex (createSignal);

per isFinished => not busy and time >= simtime;

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Distributed Real-Time

• Time modelling

• Physical architecture

• VDMTools time

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Examples

Environment

thread
periodic (1000,10,900,0) (createSignal);

Lead
Requirement: Pulses must have 4 ms width.

private
dischargePulse : Pulse * Chamber ==> ()
dischargePulse (p,c) ==

duration(4)

World‘env.handleEvent(p,c,time);

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Examples

Environment

thread
periodic (1000,10,900,0) (createSignal);

Lead
Requirement: Pulses must have 4 ms width.

private
dischargePulse : Pulse * Chamber ==> ()
dischargePulse (p,c) ==

duration(4)

World‘env.handleEvent(p,c,time);

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Examples

System

instance variables

cpu1 : CPU := new CPU(<FCFS>,1E6);
cpu2 : CPU := new CPU(<FCFS>,1E6);
cpu3 : CPU := new CPU(<FCFS>,1E6);
cpu4 : CPU := new CPU(<FP>,1E6);

Connecting CPU’s

-- Lead (artia) <-> HeartController
bus1 : BUS := new BUS(<FCFS>,1E6,{cpu1,cpu4});

-- Lead (ventricle) <-> HeartController
bus2 : BUS := new BUS(<FCFS>,1E6,{cpu2,cpu4});

-- Accelerometer <-> RateController
bus3 : BUS := new BUS(<FCFS>,1E6,{cpu3,cpu4});

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Examples

System

instance variables

cpu1 : CPU := new CPU(<FCFS>,1E6);
cpu2 : CPU := new CPU(<FCFS>,1E6);
cpu3 : CPU := new CPU(<FCFS>,1E6);
cpu4 : CPU := new CPU(<FP>,1E6);

Connecting CPU’s

-- Lead (artia) <-> HeartController
bus1 : BUS := new BUS(<FCFS>,1E6,{cpu1,cpu4});

-- Lead (ventricle) <-> HeartController
bus2 : BUS := new BUS(<FCFS>,1E6,{cpu2,cpu4});

-- Accelerometer <-> RateController
bus3 : BUS := new BUS(<FCFS>,1E6,{cpu3,cpu4});

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Architecture Visualization

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Validation

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

Plan

Motivation

VDM Concurrency

VDM VICE

Pacemaker Case-Study

Exercise Case-Study

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

A Simple ABS System

A typical ABS is composed of a central electronic unit, four speed sensors
(one for each wheel), and two or more hydraulic valves on the brake
circuit. The electronic unit constantly monitors the rotation speed of
each wheel. When it senses that any number of wheels are rotating
considerably slower than the others it moves the valves to decrease the
pressure on the braking circuit, effectively reducing the braking force on
that wheel. This process is repeated continuously, and this causes the
characteristic pulsing feel through the brake pedal. A typical anti-lock
system can apply and release braking pressure up to 20 times a second.

Motivation VDM Concurrency VDM VICE Pacemaker Case-Study Exercise Case-Study

	Motivation
	VDM Concurrency
	VDM VICE
	Pacemaker Case-Study
	Exercise Case-Study

