
Arent Janszoon Ernststraat 595-H
NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

November 2007

Joost Visser

Software Analysis and Testing

Métodos Formais em Engenharia de Software

2 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Improvement Group

Company

• Spin-off from CWI in 2000, self-owned, independent

• Management consultancy grounded in source code analysis

• Winner of the Innovator Award 2007

Services

• Software Risk Assessments (snapshot) and Software Monitoring (continuous)

• Toolset enables to analyze source code in an automated manner

• Experienced staff transforms analysis data into recommendations

• We analyze over 50 systems annually

• Focus on technical quality, primarily maintainability / evolvability

3 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Who is using our services?

Government
Government

Logistical
Logistical

IT
IT

Other
Other

Financials / Insurance companies
Financials / Insurance companies

4 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Our services

Software Risk

Assessment

Remeasurement

Monitor

Portfolio Monitor
Software

Analysis

Toolkit

5 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Risk Assessment

D
o
c
u
m

e
n
ta

tio
n

In
t e

rv
i e

w
s

Facts

Interpretation, reconciliation, evaluation

Presentation

Facts

Automated

analysis

Report

“Facts”

Benchmark Source code

6 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Quality Monitor

Quarterly Report

Annual Report

Source code

Web portal

Board

IT Management

Software Engineers
Monitor

Interpretation

by SIG experts

7 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Structure of the lectures

Today

• Introduction SIG

• General overview of software analysis and testing

• Testing

• Patterns

Next week

• Quality & metrics

• Reverse engineering

• …

8 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Engineering

requirements analysis

design, code, compile

configure, install

Create Change Analyze

refactor, fix, patch

maintain, renovate

evolve, update, improve

understand, assess

evaluate, test

measure, audit

9 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Analysis

(and Testing)

Analysis

Static
Analysis

Dynamic
Analysis

syntax checking
type checking
code metrics

style checking
verification

reverse engineering

decompilation

testing
debugging

program spectra
instrumentation

profiling
benchmarking
log analysis

10 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,

 but never to show their absence!”

Notes On Structured Programming, 1970

• “Program testing can be a very effective way to show the presence of bugs,

 but is hopelessly inadequate for showing their absence.”

The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”

11 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Is testing un-cool?

Industry

• Testers earn less then developers

• Testing is “mechanical”, developing is “creative”

• Testing is done with what remains of the budget in what remains of the time

Academia

• Testing is not part of the curriculum, or very minor part

• Verification is superior to testing

• Verification is more challenging than testing

12 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Analysis. How much?

50 - 75%

13 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Analysis. Enough?

 $60 ! 109

14 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Analysis. More?

high profile
low frequency

15 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Analysis

Room for improvement?

Standish Group, “The CHAOS Report”

1994

Succeeded
16%

Challenged
53%

Failed
31%

2004

Succeeded
29%

Challenged
53%

Failed
18%

16 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

So

• Testing " Dynamic analysis " Analysis " S.E.

• Analysis is a major and essential part of software engineering

• Inadequate analysis costs billions

#

• More effective and more efficient methods are needed

• Interest will keep growing in both industry and research

17 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

18 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

TESTING

19 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Testing

Kinds

• Conformance

• Interoperability

• Performance

• Functional

• White-box

• Black-box

• Acceptance

• Integration

• Unit

• Component

• System

• Smoke

• Stress

Ways

• Manual

• Automated

• Randomized

• Independent

• User

• Developer

With

• Plans

• Harness

• Data

• Method

• Frameworks

20 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Testing

V-model

V-model =
 waterfall-1 • waterfall

No testing while

programming!

21 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Testing

Eliminate waste

Waste

• Coding and debugging go hand-in-hand

• Coding effort materializes in the delivered program

• Debugging effort? Evaporates!

Automated tests

• Small programs that capture debugging effort.

• Invested effort is consolidated …

• … and can be re-used without effort ad-infinitum

Unit testing

22 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

What is unit testing?

A unit test is …

• fully automated and repeatable

• easy to write and maintain

• non-intrusive

• documenting

• applies to the simplest piece of software

Tool support

• JUnit and friends

TestCase

public void testMyMethod {

 X x = …;

 Y y = myMethod(x);

 Y yy = …;

 assertEquals(“WRONG”,yy,y)

}

23 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Testing goals

Unit testing has the following goals:

• Improve quality

• Test as specification

• Test as bug repellent

• Test as defect localization

• Help to understand

• Test as documentation

• Reduce risk

• Test as a safety net

• Remove fear of change

24 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Observing unit-testing maturity in the wild

(characterization of the population)

Organization

• public, financial, logistics

• under contract, in house, product software

• with test departments, without test departments

Architecture & Process

• under architecture, using software factories

• model driven, handwritten

• open source frameworks, other frameworks

• using use-cases/requirements

• with blackbox tools, t-map

Technology

• information systems, embedded

• webbased, desktop apps

• java, c#, 4GL’s, legacy

• latest trend: in-code asserts (java.spring)

25 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 1

No unit testing

Observations:

• Very few organizations use unit testing

• Also brand new OO systems without any unit tests

• Small software shops and internal IT departments

• In legacy environments: programmers describe in words what tests they have

done.

Symptoms:

• Code is instable and error-prone

• Lots of effort in post-development testing phases

26 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 1

No unit testing

Excuses:

• “It is just additional code to maintain”

• “The code is changing too much”

• “We have a testing department”

• “Testing can never prove the absence of errors”

• “Testing is too expensive, the customer does not want to pay for it”

• “We have black-box testing”

Action

• Provide standardized framework to lower

threshold

• Pay for unit tests as deliverable, not as effort

27 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 2

Unit test but no coverage measurement

Observations

• Contract requires unit testing, not enforced

• Revealed during conflicts

• Unit testing receives low priority

• Developers relapse into debugging practices without unit testing

• Good initial intentions, bad execution

• Large service providers

Symptoms:

• Some unit tests available

• Excluded from daily build

• No indication when unit testing is sufficient

• Producing unit test is an option, not a requirement

28 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 2

Unit test but no coverage measurement

Excuses:

• “There is no time, we are under pressure”

• “We are constantly stopped to fix bugs”

Actions

• Start measuring coverage

• Include coverage measurement into nightly build

• Include coverage result reports into process

29 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 3

Coverage, not approaching 100%

Observations

• Coverage is measured but gets stuck at 20%-50%

• Ambitious teams, lacking experience

• Code is not structured to be easily unit-testable

Symptoms:

• Complex code in GUI layer

• Libraries in daily build, custom code not in daily build

30 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 3

Coverage, not approaching 100%

Excuses

• “we test our libraries thoroughly, that effects more customers”

Actions:

• Refactor code to make it more easily testable

• Teach advance unit testing patterns

• Invest in set-up and mock-up

31 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 4

Approaching 100%, but no test quality

Observations

• Formal compliance with contract

• Gaming the metrics

• Off-shored, certified, bureaucratic software factories

Symptoms:

• Empty tests

• Tests without asserts.

• Tests on high-level methods, rather than basic units

• Need unit tests to test unit tests

32 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 4

Approaching 100%, but no test quality

Anecdotes:

• Tell me how you measure me, and I tell you how I behave

• We have generated our unit tests (at first this seems a stupid idea)

Action:

• Measure test quality

• Number of asserts per unit test

• Number of statements tested per unit test

• Ratio of number of execution paths versus number of tests

33 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 5

Measuring test quality

Enlightenment:

• Only one organization: a Swiss company

• Measure:

• Production code incorporated in tests

• number of assert and fail statements

• low complexity (not too many ifs)

• The process

• part of daily build

• “stop the line process”, fix bugs first by adding more tests

• happy path and exceptions

• code first, test first, either way

34 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Testing

Intermediate conclusion

Enormous potential for improvement:

• Do unit testing

• Measure coverage

• Measure test quality

• May not help Ariane 5

• Does increase success ratio for “normal” projects

35 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Randomized Testing

(quickcheck)

Randomized testing:

• QuickCheck: initially developed for Haskell

• Parameterize tests in the test data

• Property = parameterized test

• Generate test data randomly

• Test each property in 100 different ways each time

Test generation

Model-driven testing

Fault-injection

-- | Range of inverse is domain.

prop_RngInvDom r

 = rng (inv r) == dom r

 where

 types = r::Rel Int Integer

36 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Projects

Quality

Static
Analysis

Dynamic
Analysis

metrics testing

“interpretation of

source code clusters”

“evaluation of QuickCheck

solutions for Java”

37 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Evaluate QuickCheck tools for Java

QuickCheck

• Randomized testing

• Specify properties

• QuickCheck tests each property with 100 randomly generated cases

Problem

• Originally for Haskell, now also for Erlang

• Several initiatives to develop QuickCheck for Java

Question

• Which QuickCheck for Java is the best?

Fun

• Find bugs in our programs, and get rewarded for it!

38 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,

 but never to show their absence!”

Martin Fowler

• “Don’t let the fear that testing can’t catch all bugs stop you

from writing the tests that will catch most bugs.”

39 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns

40 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

PATTERNS

41 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Patterns

Coding style and coding standards

• E.g. layout, identifiers, method length, …

Secure coding guidelines

• E.g. SQL injection, stack trace visibility

Bug patterns

• E.g. null pointer dereferencing, bounds checking

Code smells

• E.g. “god class”, “greedy class”, ..

42 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Patterns

Style and standards

Checking coding style and coding standards

• Layout rules (boring)

• Identifier conventions

• Length of methods

• Depth of conditionals

Aim

• Consistency across different developers

• Ensure maintainability

Tools

• E.g. CheckStyle, PMD, …

• Integrated into IDE, into nightly build

• Can be customized

43 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Patterns

Secure coding

Checking secure coding guidelines

• SQL injection attack

• Storing and sending passwords

• Stack-trace leaking

• Cross-site scripting

Aim

• Ensure security

• Security = Confidentiality + Integrity + Availability

Tools

• E.g. Fortify

44 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Patterns

Bugs

Detecting bug patterns

• Null-dereferencing

• Lack of array bounds checking

• Buffer overflow

Aim

• Correctness

• Compensate for weak type checks

Tools:

• e.g. FindBugs

• Esp. for C, C++

