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Software Improvement Group

Company

• Spin-off from CWI in 2000, self-owned, independent

• Management consultancy grounded in source code analysis

• Winner of the Innovator Award 2007

Services

• Software Risk Assessments (snapshot) and Software Monitoring (continuous)

• Toolset enables to analyze source code in an automated manner

• Experienced staff transforms analysis data into recommendations

• We analyze over 50 systems annually

• Focus on technical quality, primarily maintainability / evolvability
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Who is using our services?

Government
Government

Logistical
Logistical

IT
IT

Other
Other

Financials / Insurance companies
Financials / Insurance companies
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Our services

Software Risk

Assessment

Remeasurement

Monitor

Portfolio Monitor
Software 

Analysis

Toolkit
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Software Risk Assessment
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Facts

Interpretation, reconciliation, evaluation 

Presentation

Facts

Automated

analysis

Report

“Facts”

Benchmark Source code
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Software Quality Monitor

Quarterly Report

Annual Report

Source code

Web portal

Board

IT Management

Software Engineers
Monitor

Interpretation

by SIG experts
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Structure of the lectures

Today

• Introduction SIG

• General overview of software analysis and testing

• Testing

• Patterns

Next week

• Quality & metrics

• Reverse engineering

• …
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Software Engineering

requirements analysis

design, code, compile

configure, install

Create Change Analyze

refactor, fix, patch

maintain, renovate

evolve, update, improve

understand, assess

evaluate, test

measure, audit 
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Software Analysis

(and Testing)

Analysis

Static
Analysis

Dynamic
Analysis

syntax checking
type checking
code metrics

style checking
verification

reverse engineering

decompilation

testing
debugging

program spectra
instrumentation

profiling
benchmarking
log analysis
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Is testing un-cool?

Edsger Wybe  Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,

 but never to show their absence!”

Notes On Structured Programming, 1970

• “Program testing can be a very effective way to show the presence of bugs,

 but is hopelessly inadequate for showing their absence.”

The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”
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Is testing un-cool?

Industry

• Testers earn less then developers

• Testing is “mechanical”, developing is “creative”

• Testing is done with what remains of the budget in what remains of the time

Academia

• Testing is not part of the curriculum, or very minor part

• Verification is superior to testing

• Verification is more challenging than testing
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Software Analysis. How much?

50 - 75%
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Software Analysis. Enough?

  $60 ! 109
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Software Analysis. More?

high profile
low frequency
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Software Analysis

Room for improvement?

Standish Group, “The CHAOS Report”

1994

Succeeded
16%

Challenged
53%

Failed
31%

2004

Succeeded
29%

Challenged
53%

Failed
18%
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So

• Testing " Dynamic analysis " Analysis " S.E.

• Analysis is a major and essential part of software engineering

• Inadequate analysis costs billions

#

• More effective and more efficient methods are needed

• Interest will keep growing in both industry and research
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Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns
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TESTING
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Testing

Kinds

• Conformance

• Interoperability

• Performance

• Functional

• White-box

• Black-box

• Acceptance

• Integration

• Unit

• Component

• System

• Smoke

• Stress

Ways

• Manual

• Automated

• Randomized

• Independent

• User

• Developer

With

• Plans

• Harness

• Data

• Method

• Frameworks
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Testing

V-model

V-model = 
   waterfall-1 • waterfall

No testing while

programming!
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Testing

Eliminate waste

Waste

• Coding and debugging go hand-in-hand

• Coding effort materializes in the delivered program

• Debugging effort? Evaporates!

Automated tests

• Small programs that capture debugging effort.

• Invested effort is consolidated …

• … and can be re-used without effort ad-infinitum

Unit testing
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What is unit testing?

A unit test is …

• fully automated and repeatable

• easy to write and maintain

• non-intrusive

• documenting

• applies to the simplest piece of software

Tool support

• JUnit and friends

TestCase

public void testMyMethod {

  X x = …;

  Y y = myMethod(x);

  Y yy = …;

  assertEquals(“WRONG”,yy,y)

}
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Testing goals

Unit testing has the following goals:

• Improve quality

• Test as specification

• Test as bug repellent

• Test as defect localization

• Help to understand

• Test as documentation

• Reduce risk

• Test as a safety net

• Remove fear of change
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Observing unit-testing maturity in the wild

(characterization of the population)

Organization

• public, financial, logistics

• under contract, in house, product software

• with test departments, without test departments

Architecture & Process

• under architecture, using software factories

• model driven, handwritten

• open source frameworks, other frameworks

• using use-cases/requirements

• with blackbox tools, t-map

Technology

• information systems, embedded

• webbased, desktop apps

• java, c#, 4GL’s, legacy

• latest trend: in-code asserts (java.spring)
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Stage 1

No unit testing

Observations:

• Very few organizations use unit testing

• Also brand new OO systems without any unit tests

• Small software shops and internal IT departments

• In legacy environments: programmers describe in words what tests they have

done.

Symptoms:

• Code is instable and error-prone

• Lots of effort in post-development testing phases

26 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 1

No unit testing

Excuses:

• “It is just additional code to maintain”

• “The code is changing too much”

• “We have a testing department”

• “Testing can never prove the absence of errors”

• “Testing is too expensive, the customer does not want to pay for it”

• “We have black-box testing”

Action

• Provide standardized framework to lower

threshold

• Pay for unit tests as deliverable, not as effort
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Stage 2

Unit test but no coverage measurement

Observations

• Contract requires unit testing, not enforced

• Revealed during conflicts

• Unit testing receives low priority

• Developers relapse into debugging practices without unit testing

• Good initial intentions, bad execution

• Large service providers

Symptoms:

• Some unit tests available

• Excluded from daily build

• No indication when unit testing is sufficient

• Producing unit test is an option, not a requirement
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Stage 2

Unit test but no coverage measurement

Excuses:

• “There is no time, we are under pressure”

• “We are constantly stopped to fix bugs”

Actions

• Start measuring coverage

• Include coverage measurement into nightly build

• Include coverage result reports into process
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Stage 3

Coverage, not approaching 100%

Observations

• Coverage is measured but gets stuck at 20%-50%

• Ambitious teams, lacking experience

• Code is not structured to be easily unit-testable

Symptoms:

• Complex code in GUI layer

• Libraries in daily build, custom code not in daily build
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Stage 3

Coverage, not approaching 100%

Excuses

• “we test our libraries thoroughly, that effects more customers”

Actions:

• Refactor code to make it more easily testable

• Teach advance unit testing patterns

• Invest in set-up and mock-up
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Stage 4

Approaching 100%, but no test quality

Observations

• Formal compliance with contract

• Gaming the metrics

• Off-shored, certified, bureaucratic software factories

Symptoms:

• Empty tests

• Tests without asserts.

• Tests on high-level methods, rather than basic units

• Need unit tests to test unit tests

32 I 97

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Stage 4

Approaching 100%, but no test quality

Anecdotes:

• Tell me how you measure me, and I tell you how I behave

• We have generated our unit tests (at first this seems a stupid idea)

Action:

• Measure test quality

• Number of asserts per unit test

• Number of statements tested per unit test

• Ratio of number of execution paths versus number of tests
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Stage 5

Measuring test quality

Enlightenment:

• Only one organization: a Swiss company

• Measure:

• Production code incorporated in tests

• number of assert and fail statements

• low complexity (not too many ifs)

• The process

• part of daily build

• “stop the line process”, fix bugs first by adding more tests

• happy path and exceptions

• code first, test first, either way
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Testing

Intermediate conclusion

Enormous potential for improvement:

• Do unit testing

• Measure coverage

• Measure test quality

• May not help Ariane 5

• Does increase success ratio for “normal” projects
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Randomized Testing

(quickcheck)

Randomized testing:

• QuickCheck: initially developed for Haskell

• Parameterize tests in the test data

• Property = parameterized test

• Generate test data randomly

• Test each property in 100 different ways each time

Test generation

Model-driven testing

Fault-injection

-- | Range of inverse is domain.

prop_RngInvDom r

  = rng (inv r) == dom r    

    where 

      types = r::Rel Int Integer
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Projects

Quality

Static
Analysis

Dynamic
Analysis

metrics testing

“interpretation of

source code clusters”

“evaluation of QuickCheck

solutions for Java”
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Evaluate QuickCheck tools for Java

QuickCheck

• Randomized testing

• Specify properties

• QuickCheck tests each property with 100 randomly generated cases

Problem

• Originally for Haskell, now also for Erlang

• Several initiatives to develop QuickCheck for Java

Question

• Which QuickCheck for Java is the best?

Fun

• Find bugs in our programs, and get rewarded for it!
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Is testing un-cool?

Edsger Wybe  Dijkstra (1930 - 2002)

• “Program testing can be used to show the presence of bugs,

 but never to show their absence!”

Martin Fowler

• “Don’t let the fear that testing can’t catch all bugs stop you

from writing the tests that will catch most bugs.”
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Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns
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PATTERNS
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Patterns

Coding style and coding standards

• E.g. layout, identifiers, method length, …

Secure coding guidelines

• E.g. SQL injection, stack trace visibility

Bug patterns

• E.g. null pointer dereferencing, bounds checking

Code smells

• E.g. “god class”, “greedy class”, ..
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Patterns

Style and standards

Checking coding style and coding standards

• Layout rules (boring)

• Identifier conventions

• Length of methods

• Depth of conditionals

Aim

• Consistency across different developers

• Ensure maintainability

Tools

• E.g. CheckStyle, PMD, …

• Integrated into IDE, into nightly build

• Can be customized
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Patterns

Secure coding

Checking secure coding guidelines

• SQL injection attack

• Storing and sending passwords

• Stack-trace leaking

• Cross-site scripting

Aim

• Ensure security

• Security = Confidentiality + Integrity + Availability

Tools

• E.g. Fortify
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Patterns

Bugs

Detecting bug patterns

• Null-dereferencing

• Lack of array bounds checking

• Buffer overflow

Aim

• Correctness

• Compensate for weak type checks

Tools:

• e.g. FindBugs

• Esp. for C, C++


