
Integration of OntoClean inXOL
XOL++

Laborat́orio de Métodos Formais, Mateḿatica e Cîencias da Computação,
Departamento de Inforḿatica, Universidade do Minho, Campus de Gualtar. Braga.

{marlene.azevedo}@correio.di.uminho.pt

7th March 2003

1

XOL++ 2

”What is essential is invisible to the eyes.”
by Antoine de Saint-Exupery

XOL++ 3

Dedication

To my mother and my sisters Elisabete and Rosa.
To all my colleagues of course.

And to my beloved Marco.

XOL++ 4

Acknowledgements

I want to leave registered my gratitude to all people who somehow had collaborated so that
this work arrived at the end.

In first place, I’d like to thank the chance that the professor José Nuno Oliveira gave me par-
ticipating in this project.

Finally, I want to thank in a special way my friends Nuno Rodrigues and Cândida Silva for
the patience and advice dispensed.

XOL++ 5

Contents

1 Introduction 8
1.1 Motivation . 8

2 The Ontology concept 9

3 XOL language 10
3.1 XOL Specification .11

3.1.1 Ontology .11
3.1.2 Class .12
3.1.3 Slot .13
3.1.4 Individual .13
3.1.5 Additional Rules .14

4 OntoClean method 15
4.1 Rigidity .15
4.2 Identity .16
4.3 Unity .16
4.4 Dependence .17
4.5 Constraints and assumptions .17
4.6 Metodology .19

5 XOL++ 21
5.1 An ontology-cleaning example .21

6 Conclusion 25
6.1 Future Work .25

A XOL DTD Specification 26
A.1 Additional Rules Governing XOL Documents29

A.1.1 FunctionsnameCC . 30
A.1.2 FunctionsnameSS . 30
A.1.3 FunctionsnameII . 30
A.1.4 FunctionsnameCS . 31
A.1.5 FunctionsnameCI . 31
A.1.6 FunctionsnameSI . 31
A.1.7 FunctionsubClass . 32
A.1.8 FunctiontransClass . 32
A.1.9 FunctiongetParents . 33
A.1.10 FunctiongetParents . 33
A.1.11 FunctiongetParentsI . 34

B XOL++ DTD 35

XOL++ 6

C XOL++ Specification 37
C.1 Types .37

C.1.1 Ontology .37
C.1.2 Class .37
C.1.3 Slot .38
C.1.4 Individual .39

C.2 Invariants Functions .40
C.2.1 FunctionsnameCC . 40
C.2.2 FunctionsnameSS . 40
C.2.3 FunctionsnameII . 41
C.2.4 FunctionsnameCS . 41
C.2.5 FunctionsnameCI . 41
C.2.6 FunctionsnameSI . 42
C.2.7 FunctionsubClass . 42
C.2.8 FunctiontransClass . 43
C.2.9 FunctiongetParents . 43
C.2.10 FunctiongetParents . 43
C.2.11 FunctiongetParents . 44
C.2.12 FunctionantiRig . 44
C.2.13 Functionunity . 45
C.2.14 Functionunity . 45
C.2.15 Functionident . 45
C.2.16 Functiondepend . 46

C.3 Operations .46
C.3.1 OperationinsertClass . 46
C.3.2 OperationremoveClass . 47
C.3.3 OperationinsertSlot . 47
C.3.4 OperationremoveSlot . 48
C.3.5 OperationinsertIndividual . 48
C.3.6 OperationremoveIndividual . 49

C.4 Values .50

D XOL++ Schema 54

E XML Example 60

XOL++ 7

Abstract

This project emerged by the framework of the EuropeanEUREKAproject E!2235
” IKF” (Intelligent Knowlege Fusion) that, at this moment in Portugal, counts on the par-
ticipation of the Computer Science Department of the Minho University, in the quality
of ”Technology Producers”. Therefore, and in this scope, theXOL++ project was devel-
oped for the school disciplineLaborat́orio de Métodos Formaislectured in the 5th year
of Mateḿatica e Cîencias de ComputaçãoDegree1.

The main goal ofEUREKAprojectIKF consists on the analysis, drawing and imple-
mentation of an surrounding innovator of Knowledge Warehousing, making use of ad-
vanced functionalities of Knowledge Management and Business Intelligence, guided for
specifics vertical application domains. This way, problems like the Information Acquisi-
ton Model, theIKF-CW repository, the specification of Topic Maps or the specification
of an ontology are in the line of theEUREKAproject aim.

1http://www.di.uminho.pt/ ˜jno/html/labmf.html#sec:0203

XOL++ 8

1 Introduction

TheXol++ project presents the results of using theXOL specification [11] with a well-
founded methodology for ontological analysis calledOntoClean[1].
Therefore, after a brief overview about theXOL Language [11] and theOntoClean
method, I present theDTD (Document Type Definition) specification ofXOL merged
with a set of OntoClean meta-properties that, in my opinion, will help to perceive and
clarify the nature of many ontological choices.

I’m certain that my work is very ambitious, as it necessarily faces already debated
philosophical and technical problems. So I’ve tried to be as humble as possivel, making
drastic simplifications whenever possivel, but trying however to save the logical rigor.
The most notorious simplification I’ve made is related to the treatment of time (in meta-
properties), which is very difficult to specify inVDM++ , the others simplifications will
be treated in the following sections.

1.1 Motivation

In the last years, the study onTopic Maps(TMs) has increased significantly.TMspro-
vide a new powerful way to organise and navigate large quantities of information. The
model is simple and flexible, enabling a wide range of potential applications and it can
be seen as an intelligent index providing easy access to resources. That is, aTM is a
model for mapping ’things’ into data structures. All these things are ’topics’ inTM; top-
ics are connected through ’associations’; ’occurrences’ are the places where these topics
are found.
Inside of this context, if we speak inTMs, we speak in ontologies, because these are
implicitly united to TMs. Besides, allTMs have associated, behind, the respective on-
tology. The projectEUREKA, in which this work is inserted, is developing a deep study
on TMs, so, if the idea of making theTMs VDM++ specification appeared, then, and
almost obligatory, it will also have to appear the ontologiesVDM++ specification.

XOL++ 9

2 The Ontology concept

An ontology is, simply, a specification of a conceptialization, that is, an ontology is a
description (like a formal specification of a program) of the concepts and relationships
that can exist for an agent or a community of agents. It is different from the way the
word is used in philosophy2. What is important is what the ontology is for.

Ontologies are about languages for expressing contracts between entities. Ontolo-
gies provide a way of capturing a shared understanding of terms that can be used by
humans and programs to aid in information exchange and gives a method of providing
a specification of a controlled vocabulary. For example, a taxonomy provide notions of
generality and term relations, but classical ontologies attempt to capture precise mean-
ings of terms. In order to specify meanings, an ontology language must be used.

Taxonomies are central to most ontologies. Well structured taxonomies help in
bringing substancial order to elements of a model. They are particularly useful in pre-
senting limited views of a model for human interpretation, and play a critical role in
reuse and integration tasks. By contrast, structured taxonomies have the opposite effect,
making models confusing and difficult to reuse or integrate.

2In philosophy an ontology is an systematic accout of Existence

XOL++ 10

3 XOL language

Before documentingXOL specification is necessary introduce some basic notions like:
introduceXOL, examine howXML3 can be used to express Ontology Languages and
compareDTD and Ontologies because it will complement the next section however for
a dip approach of these and others items is vital to consult [11]. Therefore:

XOL
The ontology definitions thatXOL is designed to encode include both schema in-
formation (meta-data), such as class definitions from object databases - as well
as non-schema information (ground facts) such as object definitions from object
databases.

The syntax ofXOL is based onXML. The modeling primitives and semantics
of XOL are based onOKBC-Lite, which is a simplified form of the knowledge
model for the Open Knowledge Base Connectivity (OKBC)4. OKBC is an appli-
cation program interface for accessing frame knowledge representation systems.
Its knowledge model supports features most commonly found in knowledge repre-
sentation systems, object databases, and relational databases.OKBC-Liteextracts
most of the essential features ofOKBC, but omits some of its more complex as-
pects.XOL was inspired by Ontolingua.XOL differs fromOntolingua, however,
as it has anXML-basedsyntax rather than aLisp-basedsyntax. Still, the seman-
tics of OKBC-Litewhich underlyXOL are extremely similar to the semantics of
Ontolingua.

The design ofXOL deliberately uses a generic approach to define ontologies,
meaning that the single set ofXML tags (defined by a singleXML DTD) defined
for XOL can describe any and every ontology. This approach contrasts with the
approaches taken by otherXML schema languages, in which a generic set of tags
is typically used to define the schema portion of the ontology and the schema itself
is used to generate a second set of application-specific tags (and an application-
specificDTD), which in turn are used to encode a separateXML file that contains
the data portion of the ontology.XOLappears rather promising because it provides
ontological modeling primitives expressed in one of the most important informa-
tion exchange standards:XML.

XML and Ontology Languages
XML is a tag-based language for describing tree structures with a linear syntax.
It is a successor ofSGML, which was developed long ago for describing docu-
ment structures.XML provides semantic information as a by-product of defining
the structure of the document. It prescribes a tree structure for documents and
the different leafs of the tree have well-defined tags and contexts in which the in-
formation can be understood. That is, structure and semantics of document are
interwoven.

Comparing DTD and Ontologies
The closest thing thatXML offers for ontological modeling is the Document Type
Definition (DTD) which defines the legal nestings of tags and introduces attributes

3http://www.w3.org/XML/
4http://www.ai.sri.com/˜okbc/

XOL++ 11

for them. Defining tags, their nesting, and attributes for tags may be seen as defin-
ing an ontology. However, there are significant differences between an ontology
and anDTD:

1. A DTD specifies the legal lexical nesting in a document, which may or may
not coincide with an ontological hierarchy (subclass relationship). That is,
there is nothing in aDTD that corresponds to the is-a relationship of classes
that is usually central in an ontology.

2. In consequence,DTDs lack any notion of inheritance. In an ontology, sub-
classes inherit attributes defined for their super classes and super classes in-
herit instances defined for their subclasses. Both inheritance mechanisms do
not exist forDTDs.

3. DTDsprovide a rather poor means for defining the semantics of elementary
tags. Basically, a tag can be defined as being composed of other tags or
being a string. Usually, ontologies provide a much richer typing concept for
describing elementary types.

4. DTDsdefine the order in which tags appear in a document. For ontologies,
in contrast, the ordering of attribute descriptions does not matter.

In a nutshell,DTDsare rather weak in regard to what can be expressed with them.
Work on XML-schemesmay well contribute to bridging the gap betweenDTDs
and ontologies.DTDsare therefore translated automatically into a representation
of an ontology in description logic. This ontology simply consists of each element
in theDTD.

3.1 XOL Specification

It is important to relate that, nor allXML documents are validXOL documents, insofar
as onlyXML documents that follow the structure ofXOL DTD are considered valid,
however allXOLdocuments must be validXML documents.
Therefore, theXOL DTD specification in appendix A embrace all the considerations
aboutXOLdocument and according that I will describe howXOLdefine ontologies and
parallelly I will justify the options taken for the respectiveVDM++ specification.

3.1.1 Ontology

In a first appreciation of theDTD we verify thatXOLdocument begins with theontology
element (but could begin optionally by any of these five elements:module, ontology,
kb, database,or dataset), which identifies the single ontology contained in thatXOL
file.
The name element within the ontology is required and specifies the name of the on-
tology. The remaining ontology elements (kb-type, db-type, package, versionand
documentation) are optional (but if provided, they must be inserted in this position, and
in this order).
Then come a number ofclasselements, which define classes within that ontology. A
series ofslot elements list the slots that are defined on those classes. Finally, a series of
individual elements define the objects within the ontology.
The follow example illustrate, in aXML language, how could be defined an ontology.

XOL++ 12

Exemplo 1

<ontology>
<name>...</name>
<kb-type>...</kb-type>
<package>...</package>
<version>...</version>
<documentation>...</documentation>
<class>...</class>
<class>...</class>
...
<slot>...</slot>
<slot>...</slot>
...
<individual>...</individual>
<individual>...</individual>
...

</ontology>

In this way, it was easy to arrive at the respective specification because it was enough
to consider that an ontology aggregates an elementNameand all the information of all
Classes, SlotsandIndividuals . Optionally we could include the other elements.
The invariant that follows was defined with the intention to garantee some additional
rules that will be treated aheah. Later and having in account theDTD, the name and the
others optinal elements were defined asStrings .

3.1.2 Class

A XOL class is defined by the elementname that is required and is the name of the
class. Then the element documentation that is optional and providesdocumentation
about the class. At last follow elements of three possible types:subclass-of, instance-
of andslot-values. A slot-values is defined by the elementname that is required and
is the name of the slot-value. Then one or morevalue elements that specify the one or
more values of that slot. Finally follow elements of eleven types:facet-values, value-
type, inverse, cardinality, maximum-cardinality, minimum-cardinality, numeric-
minimum, numeric-maximum, some-values, collection-typeanddocumentation-in-
frame.

Exemplo 2

<class>
<name>...</name>
<documentation>...</documentation>
<subclass-of>...</subclass-of>
</class>

The class element specification wasn’t so linear, because allClassesinformation is gath-
ered in a partial function mapping a class identifier to the respective class data: name,

XOL++ 13

documentation and the three possivel types.
This small alteration does not affect theDTD structure, instead guarantees the existence
of several classes in an ontology requested in the previous specification.
This would be the specification deduced through theDTD, however I added another field
to class data:C-Id , that defines the identifier of the ”father” class. Is important to un-
derline the fact that this new field does not affect theDTD structure, but enriches it, so
that helped in some invariantes definition.
The other aspect that is necessary to notice is the fact that I have considered the fields
subclass-ofand instance-of, equals to the fieldC-Id that defines the identifiers of the
”sons” classes .

3.1.3 Slot

A XOL slot is defined by the elementname that is required and is the name of the
slot. Then the element documentation that is optional and providesdocumentation
about the slot. At last follow elements of ten possible types:domain, slot-value-type,
slot-inverse, slot-cardinality, slot-maximum-cardinality, slot-minimum-cardinality,
slot-numeric-minimum, slot-numeric-maximum, slot-collection-typeandslot-values.

Exemplo 3

<slot>
<name>...</name>
<documentation>...</documentation>
<domain>...</domain>
<slot-value-type>...</slot-value-type>

</slot>

The previous example illustrates a possible definition of a slot. Its specification is anal-
ogous to the class specification assuming, on the one hand that the information is also
gathered in a partial function mapping a slot identifier to the respective slot data: name,
documentation and the ten possivel types (except the slot-values, they are all defined as
Strings), on the other hand the added field that defines the identifier of the ”father”
class, however, this is only complete after inserting a field relative to slot attribute.

The slot-values element aggregates the fields cited previously: the name, the documen-
tation and the eleven possible types, that are all defined asStrings except the facet-
values element that is defined by a name and a set of values.

3.1.4 Individual

A XOL individual is defined by the elementname that is required and is the name of
the individual. Then the element documentation that is optional and providesdocumen-
tation about the individual. At last follow elements of two possible types:type and
slot-values.
The follow example illustrate how could be defined an individual.

XOL++ 14

Exemplo 4

<individual>
<name>...</name>
<documentation>...</documentation>
<instance-of>...</instance-of>
<slot-values>

<name>...</name>
<value>...</value>

</slot-values>
</individual>

Similarly the two previous specifications, allIndividuals information is gathered in a
partial function mapping a individual identifier to the respective individual data: name,
documentation and the two possivel types.

3.1.5 Additional Rules

Inside the context of what was said relatively to comparison betweenDTDs and ontolo-
gies, is not excessive to point out thatDTD formalism cannot express all of the rules
necessary to define validXOL documents, that is,XML DTDs do not have sufficient
power to express all of the necessary constraints on the form ofXOLdocuments. There-
fore, the appendix A provides additional rules thatXOLdocuments must follow.

In the VDM++ specification this rules are seen as invariants. I don’t go to describe the
specification of all they, in a first place because some had been impossible to specify
and in a second place because the specification illustrates what really it is asked for.
However, and in my point of view, the fifth rule is sufficiently complex to perceive,
therefore I constructed a small diagram that it simplifies what it is intended.
The transistion E - F is redundant, because F already make reference to parents of C,

Figure 1:Diagram

where E is enclosed. The semantics load of this invariant is very significant, because
it marks the difference between aXML document and aXOL document relatively to its
woody structure. The first is always seen from top to bottom, while the second can also
be seen of low for top.

XOL++ 15

4 OntoClean method

OntoClean was been elaborated by the Ontology Group of the LADSEB-CNR in Padova
(Italy). It is a method to clean taxonomies according to notions such as:rigidity, identity,
unityanddependence.

These notions provide a solid logical framework within which the properties that
form a taxonomy can be analysed. This anaysis helps in rendering the intended meaning
more explicit in improving human understanding and in reducing the cost of the integra-
tion. The definition of that notions refer to properties of properties and that are called
meta-properties.

class Meta
Meta-Properties : : R : Rigidity

I : Identity
U : Unity
D : Dependence

4.1 Rigidity

This notion is defined based on the idea of essence. A property is essencial to an indi-
vidual if and only it is necessary to that undividual.

• A propertyφ is rigid, marked with (+R), if and only if is necessarily essential to
all instances:

2(∀x , a φ(x , a) → 2∀b φ(x , b))

• A property isnon-rigid, marked with (-R), if and only if is not essential to some
of its instances:

3(∃ x · , a φ(x , a)
∧

3∃ b · ¬φ(x , b))

• Finally, a property isanti-rigid, marked with (˜ R), if and only if is not essential to
all its instances.

2(∀x , a φ(x , a) → 3∃ b · ¬φ(x , b))

For example, the conceptperson is usually considered rigid, since every person is es-
sentially such, while the conceptstudent is not normally considered anti-rigid, since
every student can possibly be a non-student a few years later.

Rigidity = RIGID | NON RIGID | ANTI RIGID;

XOL++ 16

4.2 Identity

An identity condition, IC, is necessary if it satisfies (1) and sufficient if it satisfies (2),
and need not be both:

1. 2(∃ (· x , t)
∧

φ(x , t)
∧ ∃ (· y , t ′)

∧
φ(y , t ′)

∧
x = y → ∑

(x , y , t , t ′))

2. 2(∃ (· x , t)
∧

φ(x , t)
∧ ∃ (· y , t ′)

∧
φ(y , t ′)

∧∑
(x , y , t , t ′) → x = y)

• A propertycarries an IC, marked with (+I or -I otherwise) if and only if all its
instances can be (re)identified by means of situable ”sameness” relation.

• A propertysupplies an IC, marked with (+O or -O otherwise) if and only if such
criterion is not inherited by any subsuming property.

For example,person is usually considered a supplier of an identity criterion (for ex-
ample the fingerprint), whilestudent just inherits the identity criterion ofperson ,
whithout supplying any further identity criteria.

• Any propertycarriesan IC iff it is subsumed by a property supplying this IC;

• A propertyφ suppliesan IC iff

1. it is rigid;

2. there is an IC for it;

3. the same IC is not carried by all the properties subsumingφ. This means that,
if fi inherits different ICs from multiple properties, it still counts as supplying
an IC.

• An property carrying an IC is called asortal.

Identity = CARRIES IC | NOTCARRIES IC |
SUPPLIES IC | NOTSUPPLIES IC;

4.3 Unity

An individual is awholeif and only if it is made by a set of parts unified by relation R.
For example, the enterprise Iberia is a whole because it is composed by a set of people
that are linked by the relationhave the same president .

• A property P is saidcarry unity, marked with (+U or -U otherwise), if there is a
commonunifying relation R such that all the instances of P are wholes under R.
For example, the conceptenterprise-with-president carries unity be-
cause every enterprise with president is made up people linked through the relation
having the samepresident .

• A property carriesanti-unity, marked with (˜U) if all its instances can possible be
non-wholes (˜U implies -U). Properties that refer to amounts of matter, like gold,
water, etc., are good examples of anti-unity.

XOL++ 17

Depending on the ontological nature of the R relation, which can be understood as a
”generalized connection”, we may distinguish three main kinds of unity for concret en-
tities (i.e., those having a spatio-temporal location). Briefly, these are:

• Topological unity : based on some kind of topological or phisycal connec-
tion, such as the relationship between the parts of a piece of coal or an apple.

• Morphological unity : based on some combination of topological unity and
shape, such us a ball, or a morphological relation between wholes such as for a
constellation.

• Functional unity : based on a combination of other kinds of unity with some
notion of purpose as with artifacts such as hammers, or a functional relation be-
tween wholes as with artifacts such as a bikini.

Unity = CARRIES UC | NOTCARRIES UC | ANTI UNITY ;

4.4 Dependence

An individual x is constantly dependent ony if and only if, at any time,x cannot be
present unlessy is fully present, andy is not part ofx.

∀x2(φ(x) → ∃ y · ψ(y)
∧¬P(y , x)

∧¬C (y , x))

For example, a hole in a wall is constantly dependent on the wall. The hole cannot be
present if the wall is not present. A property P is constantly dependent if and only if, for
all its instances, there exists something they are constantly dependent on. For instance,
the concepthole is constantly dependent. A dependent property is marked with +D (or
-D otherwise).

Dependence = DEPENDENT| NON DEPENDENT

end Meta

4.5 Constraints and assumptions

The first observation descending immediately from the last definitions regards some
subsumption constraint. Ifφ andψ are two properties then the following constraints
hold:

1. φR̃ must subsumeψR̃, i.e.,φ+R can’t subsumeψR̃

2. φ+U must subsumeψ+U , i.e.,φ-U can’t subsumeψ+U

3. φŨ must subsumeψŨ , i.e.,φ+U can’t subsumeψŨ

4. φ+I must subsumeψ+I , i.e.,φ-I can’t subsumeψ+I

XOL++ 18

5. φ+D must subsumeψ+D , i.e.,φ-D can’t subsumeψ+D ;

6. Properties with imcomplete ICs/UCs are disjoint.

All these constraints but the last one are specifed more ahead through the following in-
variants:antiRig, unity, antiUnity, identanddepend, respectively.

Therefore, the formal ontology of properties distinguishes eight different kinds of prop-
erties based on the valid and most useful combinations of the meta-properties (see Figure
2). These property kinds enrich a modeler’s ability to specify the meaning of proper-
ties in an ontology, since the definition of each property kind includes an intuitive and
domain-independent description of how this kind of property should be used in an on-
tology.

Figure 2: All possible combinations of the meta-properties

Other assumptions must be considered:

• Sortal individuation: every domain element must instantiate some property carry-
ing an IC (+I).

• Sortal expandability: if two entities (instances of different properties) are the
same, they must be instances of a property carrying a condition for their identity.

4.6 Metodology

The specific steps to clean the wrong subclass of links in a taxonomy are:

1. Put tags to every property assigning meta-properties. This eases the analysis,
because all the meta-properties are simultaneously visible.

2. Focus just on the rigid properties. A taxonomy without rigid properties is called
backbone taxonomy. It is the base of the rest of the taxonomy, that is, the essential
part.

XOL++ 19

3. Evaluate the taxonomy taking into account principles based on the meta-properties.
For instance, a rule suggested in OntoClean is ” a property carrying anti-unity has
to be disjoint of a property carrying unity”. As consequence, ”a property carrying
unity cannot be a subclass of a property carrying anty-unity”. Therefore,bronze
statue (it carries unity) cannot be a subclass ofbronze (it carries anti-unity),
for example.

4. Consider non-rigid properties. When the backbone taxonomy has been examined,
the modeler has to evaluate the non-rigid properties. One of the proposed rules is:
”a non-rigid property and a anti-rigid property are ever disjoint”. A consequence,
”a non-rigid property cannot be a subcalss of an anti-rigid property”. Therefore,
person (rigid) cannot be a subclass ofstudent (anti-rigid).

5. Complete the taxomony with other concepts and relations. There can be several
reasons to introduce new concepts. One of them is the transformation of concepts
in relations, for example,student could be transformed into a relation between
person anduniversity .

XOL++ 20

5 XOL++

The OntoClean method is very simple, but very powerful.
Simple because is summarized in specifying the meta-properties type that aggregate the
properties:rigidity, identity, unity anddependence, and these are therefore expressed
according its definition (see sections 4.1, 4.2, 4.3 and 4.4), as you can observe in ap-
pendix C1.2.
Powerful because is enough:

• to add the field meta-properties to the class data;

• to have in attention the constraints and the assumptions focused previously that
will provoke the specification of new invariantes;

• to consider some basic design principles:

1. be clear about the domain

- particulars(individuals);

- universals (classes and relations);

- linguistic entities (nouns, verbs, adjectives...);

2. take identity seriously

- different identity criteria imply disjoint classes;

3. isolate a baic taxonomic structure

- only sortals like ”person” (as opposite to ”red”) are good candidates for

being taxons;

4. make an explicit distinction between types and roles (and other property
kinds);

and we get a well-founded ontology.
If to the XOL DTDspecification we increase these three previous points we obtain the
XOL++.

This is an excellentrecipe, and goes to the encounter of what was proposed me,
however is important to underline that it isone drop of water in an oceanof several
researches on the ontologies study preconised by innumerable experts.

5.1 An ontology-cleaning example

In this section I provide a brief example of the way my analysis can be used. A complete
version of this example is available in[5]. We begin with a set of properties arranged in
a taxonomy, as shown in Fig.3.

5http://www.cs.vassar.edu/faculty/welty/aaai-2000

XOL++ 21

Figure 3: A messy taxonomy

And assign the meta-properties.

Figure 4: A messy taxonomy

Then we must remove the non-rigid properties and analyze taxonomic links:

˜U can’t subsume +U
Living being can change parts and remain the same, butamounts of matter can
not (incompatible ICs) soliving being is constituted of matter.
Physical objectscan change parts and remain the same, butamounts of matter
can not (incompatible ICs) sophysical object is constituted of matter.
Meta-properties are fine but identity-check fails: when an entity stops being an
animal, it does not stop being aphysical object (when an animal dies, its body
remains). Therefore we have to give attention to the constitution.
A group, andgroup of people, can’t change parts - it becomes a different group.

XOL++ 22

A social entity can change parts - it’s more than just a group (incompatible IC).
Constitution again.

After this analysis, we obtain one taxonomy slightly different.

Figure 5: Taxonomic links analyzed

The next step is analyze the non-rigid properties:

˜R can’t subsume +R
Really want a type restriction: allagentsareanimalsor social entities. Subsump-
tion is not disjunction!
Another disjunction is that all legalagentsarepersonsor organizations.
Apple is not necessarilyfood. A poison-apple, e.g., is still an apple. ˜U can’t
subsume +U, socaterpillars are wholes,food is stuff.
Checking identity we verify that alocation can’t change parts... 2 senses ofcoun-
try : geographical regionandpolitical entity so we split the two senses into two
concepts, both rigid, both types. There is a relationship between the two, but not
subsumption.

Looking for missing types we notice thatcaterpillars andbutterflies cannot bever-
tebrate. There must a rigid property that subsumes the two, supplying identity across
temporary phases:Lepidopteran.

Finally we analyze attributions and there is no violations. Attributions are discouraged
and can be confusing so, often, is better to use attribute values (i.e. Apple color red).
The final corrected taxonomy is shown in Fig.6.

XOL++ 23

Figure 6: The backbone taxonomy

This example is too much generic and only illustrates the impact of taxonomic con-
straints on ontology design. That is, the stratification replaces the multiple inheri-
tance in many cases: simpler taxonomies, moderate proliferation of individuals and
co-localization of entities of different kind.
Non-taxonomic relations, become important: dependence, co-localization, constitution
and participation.

In this way, and with the intention to corroborate my data type the class Example is
specified (in apendix C.4) and translates the example supplied inXML (this also can be
consulted in annex in apendix E).

Comparativily with what it was said, we could insert the different values: class, slot,
individual through the respective functions of insertion, however a bad meta-properties
definition reports us for the same problems cited previously. The user is, therefore col-
lated with error messages provoked by the invariantes definition. Therefore:

Use OntoClean for all your ontology cleaning needs!

XOL++ 24

6 Conclusion

Developing a well-founded ontology is a very difficult task, that requires a carefully
designed methodology and rigorous formal framework. I hope to have contributed on
both these aspects, presenting in this report theXOL++ that implements OntoClean, the
method to clean Ontologies elaborated in the LADSEB-CNR of Padua(Italy).

The XOL++ has been built using as baseXOL DTD, specified in VDM++. I have
used theXML language to exemplify how I add it into the OntoClean evaluation rules
before specifying it in VDM++.
The main contributions that my work has accomplished are:

• to provide a stronger ontological commitments in order to get a ”disciplined” tax-
onomy;

• to reduce the risk of classification mistakes in the ontology development process;

• to simplify the update and maintenance process.

The knowledge used to evaluate ontologies is formally specified, which means that
new meta-properties could be added easily by just introducing new elements in the meta-
properties field. New invariants could also be added or modified to enrich the specifica-
tion.

6.1 Future Work

The OntoClean is use in severel places. At the Italian National Research Council Lab-
oratories (LADSEB-CNR and ITBM-CNR), in Padua and Rome, OntoClean is used in
the development of an upper-level ontology based on a restructuring of WordNet project.
Adding OntoClean top-level toXOL++ will bring added value to the specification.

The example that corroborated the data type is merely academic, but in case it has
great dimensions would be more viable to generate the values automatically. With the
purpose to reach this objective I started for generating the schema (see appendix D) of
the already definedDTD and applied it an example. The following step would be to con-
struct one stylesheet that applied to this schema originate an output file with the values
generated automatically. It was, in fact, a very simple process, but as my specification
does not respect the encapsulation rules I would have to modify almost all specification,
what I didn’t considered very viable staying for a future work.

XOL++ 25

A XOL DTD Specification

<!ELEMENT (module | ontology | kb | database | dataset)
(name, (kb-type | db-type)?, package?, version?,
documentation?, class*, slot*, individual*)>

– module, ontology, kb, database, dataset are all synonimous

class xol -Ontology
Ontology : : N : Name

C1 : [Kb-type | Db-type]
P : [Package]
V : [Version]
D : [Documentation]
C : Classes
S : Slots
I : Individuals

inv ont 4
snameCC (ont) ∧ snameSS (ont) ∧ snameII (ont) ∧
snameCS (ont) ∧
snameCI (ont) ∧ snameSI (ont) ∧
subClass (ont) ∧
transClass (ont);

<!ELEMENT name (#PCDATA)>
<!ELEMENT kb_type (#PCDATA)>
<!ELEMENT Db_type (#PCDATA)>
<!ELEMENT Versin (#PCDATA)>
<!ELEMENT documentation (#PCDATA)>

Name = char∗;
Kb-type = char∗;
Db-type = char∗;
Package = char∗;
Version = char∗;
Documentation = char∗;

<!ELEMENT class ((name, documentation?, (subclass-of |
instance-of | slot-values)*)>

Classes = C -Id m→ Class;

C -Id = token;

XOL++ 26

Class : : N : Name
D : [Documentation]
C2 : (C -Id | Slot-values)-set
P : [C -Id -set]

<!ELEMENT subclass-of (#PCDATA)>
<!ELEMENT instance-of (#PCDATA)>

Subclass-of = token;
Instance-of = token;

<!ELEMENT slot
(name, documentation?,

(domain |
slot-value-type | slot-inverse |
slot-cardinality |
slot-maximum-cardinality |
slot-minimum-cardinality |
slot-numeric-minimum |
slot-numeric-maximum |
slot-collection-type |
slot-values)* >

Slots = S -Id m→ Slot ;

S -Id = token;

Slot : : N : Name
D : [Documentation]
C3 : Slot-Ch-set
A : SlotAtt
P : [C -Id -set]

Slot-Ch = Domain | Slot-value-type | Slot-inverse |
Slot-cardinality | Slot-maximum-cardinality |
Slot-minimum-cardinality | Slot-numeric-minimum |
Slot-numeric-maximum | Slot-collection-type |
Slot-values;

<!ATTLIST slot
type (template | own) "own">

SlotAtt : : T : (Template | OWN);

XOL++ 27

Template = token;

<!ELEMENT domain (#PCDATA)>
<!ELEMENT slot_value_type (#PCDATA)>
<!ELEMENT slot_inverse (#PCDATA)>
<!ELEMENT slot_ardinality (#PCDATA)>
<!ELEMENT slot_maximum_cardinality (#PCDATA)>
<!ELEMENT slot_minimum_cardinality (#PCDATA)>
<!ELEMENT slot_numeric_minimum (#PCDATA)>
<!ELEMENT slot_numeric_maximum (#PCDATA)>
<!ELEMENT slot_collection_type (#PCDATA)>

Domain = char∗;
Slot-value-type = char∗;
Slot-inverse = char∗;
Slot-cardinality = char∗;
Slot-maximum-cardinality = char∗;
Slot-minimum-cardinality = char∗;
Slot-numeric-minimum = char∗;
Slot-numeric-maximum = char∗;
Slot-collection-type = char∗;

<!ELEMENT individual (name, documentation?,(type | slot-values)*>

Individuals = I -Id m→ Individual ;

I -Id = token;

Individual : : N : Name
D : [Documentation]
C4 : (Type | Slot-values)-set
P : [C -Id -set]

Type = token;

<!ELEMENT slot-values
(name, value*,

(facet-values |
value-type | inverse |
cardinality | maximum-cardinality | minimum-cardinality |
numeric-minimum | numeric-maximum | some-values |
collection-type | documentation-in-frame)*

)>

XOL++ 28

Slot-values : : N : Name
V : Value-set
C5 : Val -Ch-set

Val -Ch = Facet-values | Value-type | Inverse |
Cardinality | Maximum-cardinality |
Minimum-cardinality | Numeric-minimum |
Numeric-maximum | Some-values |
Collection-type | Documentation-in-frame;

<!ELEMENT facet-values (name, value*)>

Facet-values : : N : Name
V : Value-set

<!ELEMENT value-type (#PCDATA)>
<!ELEMENT inverse (#PCDATA)>
<!ELEMENT cardinality (#PCDATA)>
<!ELEMENT maximum-cardinality (#PCDATA)>
<!ELEMENT minimum-cardinality (#PCDATA)>
<!ELEMENT numeric-minimum (#PCDATA)>
<!ELEMENT numeric-maximum (#PCDATA)>
<!ELEMENT some-values (#PCDATA)>
<!ELEMENT collection-type (#PCDATA)>
<!ELEMENT documentation-in-frame (#PCDATA)>

Value = token;
Value-type = char∗;
Inverse = char∗;
Cardinality = char∗;
Maximum-cardinality = char∗;
Minimum-cardinality = char∗;
Numeric-minimum = char∗;
Numeric-maximum = char∗;
Some-values = char∗;
Collection-type = char∗;
Documentation-in-frame = char∗

A.1 Additional Rules Governing XOL Documents

1. The identifier provided in everyname element within allclass, individual and
slot elements must be unique within anXOL file. For example, the same name
may not be used for two individuals, or for a slot and a class, within the sameXOL
file.

XOL++ 29

A.1.1 Function snameCC

Specification:

snameCC : Ontology → B
snameCC (ont) 4
∀ c1 ∈ dom ont .C ·

(∀ c2 ∈ (dom ont .C) \ {c1} · ont .C (c1).N 6= ont .C (c2).N);

Description:

The same name may not be used for two classes

Calls:

Standard VDM-SL only

A.1.2 Function snameSS

Specification:

snameSS : Ontology → B
snameSS (ont) 4
∀ s1 ∈ dom ont .S ·

(∀ s2 ∈ (dom ont .S) \ {s1} · ont .S (s1).N 6= ont .S (s2).N);

Description:

The same name may not be used for two slots

Calls:

Standard VDM-SL only

A.1.3 Function snameII

Specification:

snameII : Ontology → B
snameII (ont) 4
∀ i1 ∈ dom ont .I ·

(∀ i2 ∈ (dom ont .I) \ {i1} · ont .I (i1).N 6= ont .I (i2).N);

Description:

The same name may not be used for two individuals

Calls:

Standard VDM-SL only

XOL++ 30

A.1.4 Function snameCS

Specification:

snameCS : Ontology → B
snameCS (ont) 4
∀ s ∈ rng ont .S · (∀ c1 ∈ dom ont .C · ont .C (c1).N 6= s.N);

Description:

The same name may not be used for class and a slot

Calls:

Standard VDM-SL only

A.1.5 Function snameCI

Specification:

snameCI : Ontology → B
snameCI (ont) 4
∀ i ∈ rng ont .I · (∀ c1 ∈ dom ont .C · ont .C (c1).N 6= i .N);

Description:

The same name may not be used for class and an individual

Calls:

Standard VDM-SL only

A.1.6 Function snameSI

Specification:

snameSI : Ontology → B
snameSI (ont) 4
∀ i ∈ rng ont .I · (∀ s1 ∈ dom ont .S · ont .S (s1).N 6= i .N);

Description:

The same name may not be used for a slot and an individual

Calls:

Standard VDM-SL only

2. Each class must be defined earlier in anXOLfile than is its subclasses.

XOL++ 31

A.1.7 Function subClass

Specification:

subClass : Ontology → B
subClass (ont) 4

(∀ c ∈ rng ont .C ·
(∀ tid ∈ c.C2 · is-Class (ont .C (tid)) ⇒

tid ∈ dom ont .C ∧
is-Slot (ont .S (tid)) ⇒
tid ∈ dom ont .S ∧
is-Individual (ont .I (tid)) ⇒
tid ∈ dom ont .I) ∧

c.P 6= nil ⇒
c.P ⊆ dom ont .C) ∧

(∀ s ∈ rng ont .S · s.P 6= nil ⇒ s.P ⊆ dom ont .C) ∧
(∀ i ∈ rng ont .I · i .P 6= nil ⇒ i .P ⊆ dom ont .C);

Description:

Each class must be defined earlier than a subclass

Calls:

Standard VDM-SL only

3. Each class must be defined earlier in anXOLfile than is its instances.

This rule is already guaranteed by the invariantsubclass.

4. The identifier provided within thesubclass-ofandinstance-ofelements must be identical to the iden-
tifier within thenameelement of a class that is defined in thatXOLfile.

Semantic questions of unicity of names are guaranteed when we use unique identifiers for
each ”node”.

5. Only the subclass-of and instance-of elements for direct relationships to a parent class must be in-
cluded inXOLfiles. Indirect relationships should not be included (e.g., if class A is a subclass of class
B, which in turn is a subclass of class C, only the subclass-of link between A and B should be included
in theXOLfile). n addition, the superclass-of and type-of links that are the inverses of the subclass-of
and instance-of links are optional.

A.1.8 Function transClass

Specification:

transClass : Ontology → B
transClass (ont) 4
∀ c ∈ (rng ont .C ∪ rng ont .S ∪ rng ont .I) ·⋂

getParentsC (ont .C , c) = {} ∧⋂
getParentsS (ont .C , c) = {} ∧⋂
getParentsI (ont .C , c) = {};

XOL++ 32

Description:

The getParents function is defined for each kind of possible element in
an Ontology, i.e., Class, Slot and Individual. This way, it calculates
a set of set of parents of the current node, using the relative level of
each parent to decide in wich set to put him. The result is a structure
describing each diferent level of parents the node has.

Calls:

Standard VDM-SL only

A.1.9 FunctiongetParents

Specification:

getParentsC : Classes × Class → C -Id -set-set
getParentsC (cs, c) 4

if (c.P 6= nil)
then {c.P} ∪⋃ {getParentsC (cs, cs (c)) | c ∈ c.P}
else {{}};

Description:

No description?

Calls:

Standard VDM-SL only

A.1.10 FunctiongetParents

Specification:

getParentsS : Classes × Slot → C -Id -set-set
getParentsS (cs, c) 4

if (c.P 6= nil)
then {c.P} ∪⋃ {getParentsC (cs, cs (c)) | c ∈ c.P}
else {{}};

Description:

No description?

Calls:

Standard VDM-SL only

XOL++ 33

A.1.11 FunctiongetParentsI

Specification:

getParentsI : Classes × Individual → C -Id -set-set
getParentsI (cs, c) 4

if (c.P 6= nil)
then {c.P} ∪⋃ {getParentsC (cs, cs (c)) | c ∈ c.P}
else {{}}

end xol-Ontology

Description:

No description?

Calls:

Standard VDM-SL only

6. The identifier provided within thename element of aslot-valueselement must be identical to the
identifier within thenameelement of a slot that is defined in thatXOLfile.

Semantic question treated by the programmer.

7. Slots may only be used in classes and instances within their domain [expand].

The firt part of this rule is already guaranteed by the invariantsubclassand the second part
are semantic questions treated by the programmer.

8. Values of a slot must obey the value-type definition for the slot.

Semantic questions treated by the programmer.

9. Each class must be defined earlier in anXOLfile than are its slots.

This rule is already guaranteed by the invariantsubclass.

XOL++ 34

B XOL++ DTD

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT ontology
(name, (kb-type | db-type)?, package?, version?, documentation?,

class*, slot*, individual*)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT kb-type (#PCDATA)>
<!ELEMENT db-type (#PCDATA)>
<!ELEMENT package (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT documentation (#PCDATA)>

<!ELEMENT class
(name, documentation?, (subclass-of | instance-of | slot-values)*,

((c-id)*)?, meta-properties)>

<!ELEMENT subclass-of (#PCDATA)>
<!ELEMENT instance-of (#PCDATA)>
<!ELEMENT c-id (#PCDATA)>

<!ELEMENT meta-properties (rigidity, identity, unity, dependence)>

<!ELEMENT rigidity (rigid | non-rigid | anty-rigid)>

<!ELEMENT identity (carries-ic | notcarries-ic |
supplies-ic | notsupplies-ic)>

<!ELEMENT unity (carries-uc | notcarries-uc | anty-unity)>

<!ELEMENT dependence (dependent | non-dependent)>

<!ELEMENT rigid (#PCDATA)>
<!ELEMENT non-rigid (#PCDATA)>
<!ELEMENT anty-rigid (#PCDATA)>
<!ELEMENT carries-ic (#PCDATA)>
<!ELEMENT notcarries-ic (#PCDATA)>
<!ELEMENT supplies-ic (#PCDATA)>
<!ELEMENT notsupplies-ic (#PCDATA)>
<!ELEMENT carries-uc (#PCDATA)>
<!ELEMENT notcarries-uc (#PCDATA)>
<!ELEMENT anty-unity (#PCDATA)>
<!ELEMENT dependent (#PCDATA)>
<!ELEMENT non-dependent (#PCDATA)>

<!ELEMENT slot

XOL++ 35

(name, documentation?, (domain | slot-value-type | slot-inverse |
slot-cardinality | slot-maximum-cardinality |
slot-minimum-cardinality | slot-numeric-minimum |
slot-numeric-maximum | slot-collection-type |
slot-values)*, ((s-id)*)?)>

<!ELEMENT s-id (#PCDATA)>

<!ATTLIST slot type (template | own) "own">

<!ELEMENT individual
(name, documentation?, (type | slot-values)*, ((i-id)*)?) >

<!ELEMENT type (#PCDATA)>
<!ELEMENT template (#PCDATA)>
<!ELEMENT i-id (#PCDATA)>

<!ELEMENT domain (#PCDATA)>
<!ELEMENT slot-value-type (#PCDATA)>
<!ELEMENT slot-inverse (#PCDATA)>
<!ELEMENT slot-cardinality (#PCDATA)>
<!ELEMENT slot-maximum-cardinality (#PCDATA)>
<!ELEMENT slot-minimum-cardinality (#PCDATA)>
<!ELEMENT slot-numeric-minimum (#PCDATA)>
<!ELEMENT slot-numeric-maximum (#PCDATA)>
<!ELEMENT slot-collection-type (#PCDATA)>

<!ELEMENT slot-values
(name, value*, (facet-values | value-type | inverse | cardinality |

maximum-cardinality | minimum-cardinality | numeric-minimum |
numeric-maximum | some-values | collection-type |
documentation-in-frame)*)>

<!ELEMENT facet-values (name, value*)>

<!ELEMENT value (#PCDATA)>
<!ELEMENT value-type (#PCDATA)>
<!ELEMENT inverse (#PCDATA)>
<!ELEMENT cardinality (#PCDATA)>
<!ELEMENT maximum-cardinality (#PCDATA)>
<!ELEMENT minimum-cardinality (#PCDATA)>
<!ELEMENT numeric-minimum (#PCDATA)>
<!ELEMENT numeric-maximum (#PCDATA)>
<!ELEMENT some-values (#PCDATA)>
<!ELEMENT collection-type (#PCDATA)>
<!ELEMENT documentation-in-frame (#PCDATA)>

XOL++ 36

C XOL++ Specification

C.1 Types

C.1.1 Ontology

class Ontology
Ontology : : N : Name

C1 : [Kb-type | Db-type]
P : [Package]
V : [Version]
D : [Documentation]
C : Classes
S : Slots
I : Individuals

inv ont 4
snameCC (ont) ∧ snameSS (ont) ∧ snameII (ont) ∧
snameCS (ont) ∧
snameCI (ont) ∧ snameSI (ont) ∧
subClass (ont) ∧
transClass (ont) ∧ antiRig (ont) ∧
unity (ont) ∧ antiUnity (ont) ∧ ident (ont) ∧
depend (ont);

Name = char∗;
Kb-type = char∗;
Db-type = char∗;
Package = char∗;
Version = char∗;
Documentation = char∗;

C.1.2 Class

Classes = C -Id m→ Class;

C -Id = Z;

Class : : N : Name
D : [Documentation]
C2 : (C -Id | Slot-values)-set
P : [C -Id -set]
M : Meta-Properties

XOL++ 37

Meta-Properties : : R : Rigidity
I : Identity
U : Unity
D : Dependence

Rigidity = RIGID | NON RIGID | ANTI RIGID;

Identity = CARRIES IC | NOTCARRIES IC |
SUPPLIES IC | NOTSUPPLIES IC;

Unity = CARRIES UC | NOTCARRIES UC | ANTI UNITY ;

Dependence = DEPENDENT| NON DEPENDENT;

C.1.3 Slot

Slots = S -Id m→ Slot ;

S -Id = Z;

Slot : : N : Name
D : [Documentation]
C3 : Slot-Ch-set
A : SlotAtt
P : [C -Id -set]

Slot-Ch = Domain | Slot-value-type | Slot-inverse |
Slot-cardinality | Slot-maximum-cardinality |
Slot-minimum-cardinality | Slot-numeric-minimum |
Slot-numeric-maximum | Slot-collection-type |
Slot-values;

SlotAtt : : T : (Template | OWN);

Template = token;

XOL++ 38

Domain = char∗;
Slot-value-type = char∗;
Slot-inverSlot-numeric-minimumse = char∗;
Slot-cardinality = char∗;
Slot-maximum-cardinality = char∗;
Slot-minimum-cardinality = char∗;
Slot-numeric-minimum = char∗;
Slot-numeric-maximum = char∗;
Slot-collection-type = char∗;
Slot-inverse = char∗;

C.1.4 Individual

Individuals = I -Id m→ Individual ;

I -Id = Z;

Individual : : N : Name
D : [Documentation]
C4 : (Type | Slot-values)-set
P : [C -Id -set]

Type = token;

Slot-values : : N : Name
V : Value-set
C5 : Val -Ch-set

Val -Ch = Facet-values | Value-type | Inverse |
Cardinality | Maximum-cardinality |
Minimum-cardinality | Numeric-minimum |
Numeric-maximum | Some-values |
Collection-type | Documentation-in-frame;

Facet-values : : N : Name
V : Value-set

XOL++ 39

Value = char∗;
Value-type = char∗;
Inverse = char∗;
Cardinality = char∗;
Maximum-cardinality = char∗;
Minimum-cardinality = char∗;
Numeric-minimum = char∗;
Numeric-maximum = char∗;
Some-values = char∗;
Collection-type = char∗;
Documentation-in-frame = char∗;

ClassTuple = C -Id ×Name × [Documentation]× (C -Id | Slot-values)-set×
[C -Id -set]×Meta-Properties;

SlotTuple = S -Id × Name × [Documentation] × Slot-Ch-set × SlotAtt ×
[C -Id -set];

IndividualTuple = I -Id × Name × [Documentation] × (Type |
Slot-values)-set× [C -Id -set]

C.2 Invariants Functions

C.2.1 FunctionsnameCC

Specification:

snameCC : Ontology → B
snameCC (ont) 4
∀ c1 ∈ dom ont .C ·

(∀ c2 ∈ (dom ont .C) \ {c1} · ont .C (c1).N 6= ont .C (c2).N);

Description:

The same name may not be used for two classes

Calls:

Standard VDM-SL only

C.2.2 FunctionsnameSS

Specification:

snameSS : Ontology → B
snameSS (ont) 4
∀ s1 ∈ dom ont .S ·

(∀ s2 ∈ (dom ont .S) \ {s1} · ont .S (s1).N 6= ont .S (s2).N);

Description:

XOL++ 40

The same name may not be used for two slots

Calls:

Standard VDM-SL only

C.2.3 FunctionsnameII

Specification:

snameII : Ontology → B
snameII (ont) 4
∀ i1 ∈ dom ont .I ·

(∀ i2 ∈ (dom ont .I) \ {i1} · ont .I (i1).N 6= ont .I (i2).N);

Description:

The same name may not be used for two individuals

Calls:

Standard VDM-SL only

C.2.4 FunctionsnameCS

Specification:

snameCS : Ontology → B
snameCS (ont) 4
∀ s ∈ rng ont .S · (∀ c1 ∈ dom ont .C · ont .C (c1).N 6= s.N);

Description:

The same name may not be used for class and a slot

Calls:

Standard VDM-SL only

C.2.5 FunctionsnameCI

Specification:

snameCI : Ontology → B
snameCI (ont) 4
∀ i ∈ rng ont .I · (∀ c1 ∈ dom ont .C · ont .C (c1).N 6= i .N);

Description:

The same name may not be used for class and an individual

XOL++ 41

Calls:

Standard VDM-SL only

C.2.6 FunctionsnameSI

Specification:

snameSI : Ontology → B
snameSI (ont) 4
∀ i ∈ rng ont .I · (∀ s1 ∈ dom ont .S · ont .S (s1).N 6= i .N);

Description:

The same name may not be used for a slot and an individual

Calls:

Standard VDM-SL only

C.2.7 FunctionsubClass

Specification:

subClass : Ontology → B
subClass (ont) 4

(∀ c ∈ rng ont .C ·
(∀ tid ∈ c.C2 · is-Class (ont .C (tid)) ⇒

tid ∈ dom ont .C ∧
is-Slot (ont .S (tid)) ⇒
tid ∈ dom ont .S ∧
is-Individual (ont .I (tid)) ⇒
tid ∈ dom ont .I) ∧

c.P 6= nil ⇒
c.P ⊆ dom ont .C) ∧

(∀ s ∈ rng ont .S · s.P 6= nil ⇒ s.P ⊆ dom ont .C) ∧
(∀ i ∈ rng ont .I · i .P 6= nil ⇒ i .P ⊆ dom ont .C);

Description:

Each class must be defined earlier than a subclass

Calls:

Standard VDM-SL only

XOL++ 42

C.2.8 FunctiontransClass

Specification:

transClass : Ontology → B
transClass (ont) 4
∀ c ∈ (rng ont .C ∪ rng ont .S ∪ rng ont .I) ·⋂

getParentsC (ont .C , c) = {} ∧⋂
getParentsS (ont .C , c) = {} ∧⋂
getParentsI (ont .C , c) = {};

Description:

This invariant garantees that if class A is a subclass of class B, which in turn
is a subclass of class C, only the subclass-of link between A and B should be
included in the XOL file. The getParents function is defined for each kind of
possible element in an Ontology, i.e., Class, Slot and Individual. This way,
it calculates a set of set of parents of the current node, using the relative
level of each parent to decide in wich set to put him. The result is a structure
describing each diferent level of parents the node has.

Calls:

Standard VDM-SL only

C.2.9 FunctiongetParents

Specification:

getParentsC : Classes × Class → C -Id -set-set
getParentsC (cs, c) 4

if (c.P 6= nil)
then {c.P} ∪⋃ {getParentsC (cs, cs (c)) | c ∈ c.P}
else {{}};

Description:

No description?

Calls:

Standard VDM-SL only

C.2.10 FunctiongetParents

Specification:

XOL++ 43

getParentsS : Classes × Slot → C -Id -set-set
getParentsS (cs, c) 4

if (c.P 6= nil)
then {c.P} ∪⋃ {getParentsC (cs, cs (c)) | c ∈ c.P}
else {{}};

Description:

No description?

Calls:

Standard VDM-SL only

C.2.11 FunctiongetParents

Specification:

getParentsI : Classes × Individual → C -Id -set-set
getParentsI (cs, c) 4

if (c.P 6= nil)
then {c.P} ∪⋃ {getParentsC (cs, cs (c)) | c ∈ c.P}
else {{}};

Description:

No description?

Calls:

Standard VDM-SL only

C.2.12 FunctionantiRig

Specification:

antiRig : Ontology → B
antiRig (ont) 4
∀ c ∈ rng ont .C ·

(c.M).R = ANTI RIGID ⇒ ∀ cid ∈ c.C2 ·
cid ∈ dom ont .C ⇒ (ont .C (cid).M).R 6= RIGID;

Description:

A Anti-Rigid class cannot have aRigig subclass.

Calls:

Standard VDM-SL only

XOL++ 44

C.2.13 Functionunity

Specification:

unity : Ontology → B
unity (ont) 4
∀ c ∈ rng ont .C ·

(c.M).U = CARRIES UC ⇒ ∀ cid ∈ c.C2 ·
cid ∈ dom ont .C ⇒ (ont .C (cid).M).U 6= NOTCARRIES UC;

Description:

A Carries-UC class cannot have aNotCarries-UC subclass.

Calls:

Standard VDM-SL only

C.2.14 Functionunity

Specification:

antiUnity : Ontology → B
antiUnity (ont) 4
∀ c ∈ rng ont .C ·

(c.M).U = ANTI UNITY ⇒ ∀ cid ∈ c.C2 ·
cid ∈ dom ont .C ⇒ (ont .C (cid).M).U 6= CARRIES UC;

Description:

AAnti-Unity class cannot have aCarries-UC subclass.

Calls:

Standard VDM-SL only

C.2.15 Functionident

Specification:

ident : Ontology → B
ident (ont) 4
∀ c ∈ rng ont .C ·

(c.M).I = CARRIES IC ⇒ ∀ cid ∈ c.C2 ·
cid ∈ dom ont .C ⇒ (ont .C (cid).M).I 6= NOTCARRIES IC;

Description:

A Carries-IC class cannot have aNotCarries-IC subclass.

Calls:

Standard VDM-SL only

XOL++ 45

C.2.16 Functiondepend

Specification:

depend : Ontology → B
depend (ont) 4
∀ c ∈ rng ont .C ·

(c.M).D = DEPENDENT ⇒ ∀ cid ∈ c.C2 ·
cid ∈ dom ont .C ⇒ (ont .C (cid).M).D 6= NON DEPENDENT

end Ontology

Description:

A Dependent class cannot have aNon-Dependent subclass.

Calls:

Standard VDM-SL only

C.3 Operations

class Variables
instance variables

ontology : Ontology ‘Ontology := Example‘ontology ;

C.3.1 OperationinsertClass

Specification:

insertClass : Ontology ‘ClassTuple o→ ()
insertClass (mk- (cid ,n, d , ch, cId ,mp)) 4

ontology := mk-Ontology ‘Ontology (ontology .N ,
ontology .C1,
ontology .P ,
ontology .V ,
ontology .D ,
ontology .C m

⋃ {cid 7→
mk-Ontology ‘Class (n, d , ch, cId ,mp)},

ontology .S ,
ontology .I);

Description:

No description?

Calls:

XOL++ 46

Standard VDM-SL only

C.3.2 OperationremoveClass

Specification:

removeClass : Ontology ‘C -Id o→ ()
removeClass (cid) 4

ontology := mk-Ontology ‘Ontology (ontology .N ,
ontology .C1,
ontology .P ,
ontology .V ,
ontology .D ,
{cid} −C ontology .C ,
ontology .S ,
ontology .I);

Description:

No description?

Calls:

Standard VDM-SL only

C.3.3 OperationinsertSlot

Specification:

insertSlot : Ontology ‘SlotTuple o→ ()
insertSlot (mk- (sid ,n, d , ch, sa, cId)) 4

ontology := mk-Ontology ‘Ontology (ontology .N ,
ontology .C1,
ontology .P ,
ontology .V ,
ontology .D ,
ontology .C ,
ontology .S m

⋃ {sid 7→
mk-Ontology ‘Slot (n, d , ch, sa, cId)},

ontology .I);

Description:

No description?

Calls:

Standard VDM-SL only

XOL++ 47

C.3.4 OperationremoveSlot

Specification:

removeSlot : Ontology ‘S -Id o→ ()
removeSlot (sid) 4

ontology := mk-Ontology ‘Ontology (ontology .N ,
ontology .C1,
ontology .P ,
ontology .V ,
ontology .D ,
ontology .C ,
{sid} −C ontology .S ,
ontology .I);

Description:

No description?

Calls:

Standard VDM-SL only

C.3.5 OperationinsertIndividual

Specification:

insertIndividual : Ontology ‘IndividualTuple o→ ()
insertIndividual (mk- (iid ,n, d , ch, cId)) 4

ontology := mk-Ontology ‘Ontology (ontology .N ,
ontology .C1,
ontology .P ,
ontology .V ,
ontology .D ,
ontology .C ,
ontology .S ,
ontology .I m

⋃ {iid 7→
mk-Ontology ‘Individual (n, d , ch, cId)});

Description:

No description?

Calls:

Standard VDM-SL only

XOL++ 48

C.3.6 OperationremoveIndividual

Specification:

removeIndividual : Ontology ‘I -Id o→ ()
removeIndividual (iid) 4

ontology := mk-Ontology ‘Ontology (ontology .N ,
ontology .C1,
ontology .P ,
ontology .V ,
ontology .D ,
ontology .C ,
ontology .S ,
{iid} −C ontology .I)

end Variables

Description:

No description?

Calls:

Standard VDM-SL only

XOL++ 49

C.4 Values

class Example
values

classes : Ontology ‘Classes = {1 7→ mk-Ontology ‘Class
(
" Person" ,
" The class of all persons" ,
{2, 3},
nil ,
mk-Ontology ‘Meta-Properties (RIGID,

NOTCARRIES IC,
CARRIES UC,
NON DEPENDENT)),

2 7→ mk-Ontology ‘Class
(
" man" ,
" The class whose sex is male" ,
{},
{1},
mk-Ontology ‘Meta-Properties (RIGID,

SUPPLIES IC,
CARRIES UC,
NON DEPENDENT)),

3 7→ mk-Ontology ‘Class
(
" woman" ,
" The class whose sex is female" ,
{},
{1},
mk-Ontology ‘Meta-Properties (RIGID,

SUPPLIES IC,
CARRIES UC,
NON DEPENDENT))};

XOL++ 50

slots : Ontology ‘Slots = {1 7→ mk-Ontology ‘Slot
(
" year -of -birth" ,
" An integer that represents the year the person was born" ,
{" person" , " 1" , " 1800" , " integer" },
mk-Ontology ‘SlotAtt (OWN),
{1}),

2 7→ mk-Ontology ‘Slot
(
" brothers" ,
" The brothers of a person" ,
{" person" , " man" },
mk-Ontology ‘SlotAtt (OWN),
{1}),

3 7→ mk-Ontology ‘Slot
(
" citizenship" ,
" Describes the citizenship status of a person" ,
{" person" , " set-of citizen resident-alien permanent-resident" },
mk-Ontology ‘SlotAtt (OWN),
{1}),

4 7→ mk-Ontology ‘Slot
(
" life-history" ,
" A written history of a person’s life" ,
{" string" },
mk-Ontology ‘SlotAtt (OWN),
{1}),

5 7→ mk-Ontology ‘Slot
(
" father -of " ,
" father -of (X ,Y) holds when X is the father of Y " ,
{" man" , " person" , " father " },
mk-Ontology ‘SlotAtt (OWN),
{2}),

6 7→ mk-Ontology ‘Slot
(
" has-father " ,
" has-father(X ,Y) holds when the father of X is Y " ,
{" person" , " man" , " father -of " },
mk-Ontology ‘SlotAtt (OWN),
{1})};

XOL++ 51

individuals : Ontology ‘Individuals = {1 7→ mk-Ontology ‘Individual
(
" John" ,
nil ,
{mk-Ontology ‘Slot-values

(
" year -of -birth" ,
{" 1987" },
{}),

mk-Ontology ‘Slot-values
(
" citizenship" ,
{" permanent-resident" },
{}),

mk-Ontology ‘Slot-values
(
" has-father " ,
{" Carl" },
{})},

{2}),
2 7→ mk-Ontology ‘Individual

(
" Carl" ,
nil ,
{mk-Ontology ‘Slot-values

(
" year -of -birth" ,
{" 1961" },
{}),

mk-Ontology ‘Slot-values
(
" father -of " ,
{" John" },
{}),

mk-Ontology ‘Slot-values
(
" life-history" ,
{" Carl worked hard all his life" },
{})},

{2})};

XOL++ 52

ontology : Ontology ‘Ontology = mk-Ontology ‘Ontology
(
" Genealogy" ,
" ocelot" ,
" user " ,
"" ,
"" ,
classes,
slots,
individuals)

end Example

XOL++ 53

D XOL++ Schema

<?xml version="1.0" encoding="UTF-8"?>
<!--W3C Schema generated by XMLSPY v5 U (http://www.xmlspy.com)-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:complexType name="MclassType">
<xs:sequence>

<xs:element ref="c-id"/>
<xs:element name="class" type="classType"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="MindType">

<xs:sequence>
<xs:element ref="i-id"/>
<xs:element name="individual"

type="individualType"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="MslotType">

<xs:sequence>
<xs:element ref="c-id"/>
<xs:element name="slot" type="slotType"/>

</xs:sequence>
</xs:complexType>
<xs:element name="anty-rigid">

<xs:complexType/>
</xs:element>
<xs:element name="anty-unity">

<xs:complexType/>
</xs:element>
<xs:element name="c-id" type="xs:string"/>
<xs:element name="cardinality" type="xs:string"/>
<xs:element name="carries-ic">

<xs:complexType/>
</xs:element>
<xs:element name="carries-uc">

<xs:complexType/>
</xs:element>
<xs:complexType name="classType">

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="documentation"

minOccurs="0"/>
<xs:choice minOccurs="0"

maxOccurs="unbounded">
<xs:element ref="c-id"/>
<xs:element name="slot-values"

type="slot-valuesType"/>

XOL++ 54

</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="c-id"/>
</xs:choice>
<xs:element name="meta-properties"

type="meta-propertiesType"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="classesType">

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Mclass" type="MclassType"/>

</xs:sequence>
</xs:complexType>
<xs:element name="collection-type" type="xs:string"/>
<xs:element name="db-type" type="xs:string"/>
<xs:complexType name="dependenceType">

<xs:choice>
<xs:element ref="dependent"/>
<xs:element ref="non-dependent"/>

</xs:choice>
</xs:complexType>
<xs:element name="dependent">

<xs:complexType/>
</xs:element>
<xs:element name="documentation" type="xs:string"/>
<xs:element name="documentation-in-frame" type="xs:string"/>
<xs:element name="domain" type="xs:string"/>
<xs:complexType name="facet-valuesType">

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="value" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:element name="i-id" type="xs:string"/>
<xs:complexType name="identityType">

<xs:choice>
<xs:element ref="carries-ic"/>
<xs:element ref="notcarries-ic"/>
<xs:element ref="supplies-ic"/>
<xs:element ref="notsupplies-ic"/>

</xs:choice>
</xs:complexType>
<xs:complexType name="individualType">

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="documentation" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="type"/>

XOL++ 55

<xs:element name="slot-values"
type="slot-valuesType"/>

</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="i-id"/>
</xs:choice>

</xs:sequence>
</xs:complexType>
<xs:complexType name="individualsType">

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Mind" type="MindType"/>

</xs:sequence>
</xs:complexType>
<xs:element name="instance-of" type="xs:string"/>
<xs:element name="inverse" type="xs:string"/>
<xs:element name="kb-type" type="xs:string"/>
<xs:element name="maximum-cardinality" type="xs:string"/>
<xs:complexType name="meta-propertiesType">

<xs:sequence>
<xs:element name="rigidity" type="rigidityType"/>
<xs:element name="identity" type="identityType"/>
<xs:element name="unity" type="unityType"/>
<xs:element name="dependence"

type="dependenceType"/>
</xs:sequence>

</xs:complexType>
<xs:element name="minimum-cardinality" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="non-dependent">

<xs:complexType/>
</xs:element>
<xs:element name="non-rigid">

<xs:complexType/>
</xs:element>
<xs:element name="notcarries-ic">

<xs:complexType/>
</xs:element>
<xs:element name="notcarries-uc">

<xs:complexType/>
</xs:element>
<xs:element name="notsupplies-ic">

<xs:complexType/>
</xs:element>
<xs:element name="numeric-maximum" type="xs:string"/>
<xs:element name="numeric-minimum" type="xs:string"/>
<xs:element name="ontology">

<xs:complexType>
<xs:sequence>

<xs:element ref="name"/>

XOL++ 56

<xs:choice minOccurs="0">
<xs:element ref="kb-type"/>
<xs:element ref="db-type"/>

</xs:choice>
<xs:element ref="package" minOccurs="0"/>
<xs:element ref="version" minOccurs="0"/>
<xs:element ref="documentation"

minOccurs="0"/>
<xs:element name="classes"

type="classesType"/>
<xs:element name="slots"

type="slotsType"/>
<xs:element name="individuals"

type="individualsType"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="package" type="xs:string"/>
<xs:element name="rigid">

<xs:complexType/>
</xs:element>
<xs:complexType name="rigidityType">

<xs:choice>
<xs:element ref="rigid"/>
<xs:element ref="non-rigid"/>
<xs:element ref="anty-rigid"/>

</xs:choice>
</xs:complexType>
<xs:element name="s-id" type="xs:string"/>
<xs:complexType name="slotType">

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="documentation" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="domain"/>
<xs:element ref="slot-value-type"/>
<xs:element ref="slot-inverse"/>
<xs:element ref="slot-cardinality"/>
<xs:element ref="slot-maximum-cardinality"/>
<xs:element ref="slot-minimum-cardinality"/>
<xs:element ref="slot-numeric-minimum"/>
<xs:element ref="slot-numeric-maximum"/>
<xs:element ref="slot-collection-type"/>
<xs:element name="slot-values"

type="slot-valuesType"/>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="s-id"/>
</xs:choice>

XOL++ 57

</xs:sequence>
<xs:attribute name="type" default="own">

<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="template"/>
<xs:enumeration value="own"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:element name="slot-cardinality" type="xs:string"/>
<xs:element name="slot-collection-type" type="xs:string"/>
<xs:element name="slot-inverse" type="xs:string"/>
<xs:element name="slot-maximum-cardinality" type="xs:string"/>
<xs:element name="slot-minimum-cardinality" type="xs:string"/>
<xs:element name="slot-numeric-maximum" type="xs:string"/>
<xs:element name="slot-numeric-minimum" type="xs:string"/>
<xs:element name="slot-value-type" type="xs:string"/>
<xs:complexType name="slot-valuesType">

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="value" minOccurs="0"

maxOccurs="unbounded"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="facet-values"
type="facet-valuesType"/>

<xs:element ref="value-type"/>
<xs:element ref="inverse"/>
<xs:element ref="cardinality"/>
<xs:element ref="maximum-cardinality"/>
<xs:element ref="minimum-cardinality"/>
<xs:element ref="numeric-minimum"/>
<xs:element ref="numeric-maximum"/>
<xs:element ref="some-values"/>
<xs:element ref="collection-type"/>
<xs:element ref="documentation-in-frame"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name="slotsType">

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Mslot" type="MslotType"/>

</xs:sequence>
</xs:complexType>
<xs:element name="some-values" type="xs:string"/>
<xs:element name="subclass-of" type="xs:string"/>
<xs:element name="supplies-ic">

<xs:complexType/>
</xs:element>

XOL++ 58

<xs:element name="template" type="xs:string"/>
<xs:element name="type" type="xs:string"/>
<xs:complexType name="unityType">

<xs:choice>
<xs:element ref="carries-uc"/>
<xs:element ref="notcarries-uc"/>
<xs:element ref="anty-unity"/>

</xs:choice>
</xs:complexType>
<xs:element name="value" type="xs:string"/>
<xs:element name="value-type" type="xs:string"/>
<xs:element name="version" type="xs:string"/>

</xs:schema>

XOL++ 59

E XML Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module SYSTEM "xolpp.dtd">

<ontology xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\Documents and Settings\Marlene\
My Documents\Marlene\5Ano\Lab.MFP\xolpp.xsd">

<name>genealogy</name>
<kb-type>ocelot-kb</kb-type>
<package>user</package>
<class>

<name>person</name>
<documentation>The class of all persons</documentation>
<meta-properties>

<rigidity>rigid</rididity>
<identity>notcarries-ic</identity>
<unity>carries-uc</unity>
<dependence>non-dependent</dependence>

</meta-properties>
</class>
<class>

<name>man</name>
<documentation>
The class of all persons whose sex is male.
</documentation>
<c-id>person</c-id>
<meta-properties>

<rigidity>rigid</rididity>
<identity>supplies-ic</identity>
<unity>carries-uc</unity>
<dependence>non-dependent</dependence>

</meta-properties>
</class>
<class>

<name>woman</name>
<documentation>
The class of all persons whose sex is female.
</documentation>
<c-id>person</c-id>
<meta-properties>

<rigidity>rigid</rididity>
<identity>supplies-ic</identity>
<unity>carries-uc</unity>
<dependence>non-dependent</dependence>

</meta-properties>
</class>
<slot>

XOL++ 60

<name>year-of-birth</name>
<documentation>
An integer that represents the year the person was born.
</documentation>
<domain>person</domain>
<slot-cardinality>1</slot-cardinality>
<slot-numeric-minimum>1800</slot-numeric-minimum>
<slot-value-type>integer</slot-value-type>

</slot>
<slot>

<name>brothers</name>
<documentation>The brothers of a person.</documentation>
<domain>person</domain>
<slot-value-type>man</slot-value-type>

</slot>
<slot>

<name>citizenship</name>
<documentation>
Describes the citizenship status of a person.
</documentation>
<domain>person</domain>
<slot-value-type>(
set-of citizen resident-alien permanent-resident)
</slot-value-type>

</slot>
<slot>

<name>life-history</name>
<documentation>
A written history of the person’s life.
</documentation>
<slot-value-type>string</slot-value-type>

</slot>
<slot>

<name>father-of</name>
<documentation>
father-of(X,Y) holds when X is the father of Y.
</documentation>
<domain>man</domain>
<slot-value-type>person</slot-value-type>
<slot-inverse>father</slot-inverse>

</slot>
<slot>

<name>has-father</name>
<documentation>
has-father(X,Y) holds when the father of X is Y.
</documentation>
<domain>person</domain>
<slot-value-type>man</slot-value-type>
<slot-inverse>father-of</slot-inverse>

XOL++ 61

</slot>
<individual>

<name>John</name>
<slot-values>

<name>year-of-birth</name>
<value>1987</value>

</slot-values>
<slot-values>

<name>citizenship</name>
<value>permanent-resident</value>

</slot-values>
<slot-values>

<name>has-father</name>
<value>Carl</value>

</slot-values>
</individual>
<individual>

<name>Carl</name>
<slot-values>

<name>year-of-birth</name>
<value>1961</value>

</slot-values>
<slot-values>

<name>father-of</name>
<value>John</value>

</slot-values>
<slot-values>

<name>life-history</name>
<value>Carl worked hard all his life.</value>

</slot-values>
</individual>

</module>

XOL++ 62

References

[1] Welty C. and Guarino N. Supporting ontological analysis of taxonomic relation-
ships.Data and Knowledge Engineering, 2001.

[2] Dieter Fensel. Relating ontology languages and web standards. pages 5–7, April
2000.

[3] Guarino N. Gangemi A. and Masolo C. Restructuring wordnet’s top-level: The
ontoclean approach oltramari.Proceedings of LREC2002 (OntoLex workshop),
2002.

[4] Guarino N. Gangemi A., Oltramari A. Masolo C., and Schneider L. Sweetening
ontologies with dolce.Proceedings of EKAW 2002, 2002.

[5] Pisanelli D. M. Gangemi A. and Steve G. A formal ontology framework to repre-
sent norm dynamics.Second International Workshop on Legal Ontologies, 2000.

[6] Masolo C. Guarino N. and Oltramari A. Understanding top-level ontological dis-
tinctions gangemi.Proc. of IJCAI 2001 workshop on Ontologies and Information
Sharing, 2001.

[7] Welty C. Guarino N., C. A. Bean R. Green, and S. Hyon Myaeng(eds.). Identity
and subsumption.The Semantics of Relationships: An Interdisciplinary Perspec-
tive, pages 111–126, 2001.

[8] Frank Mittelbach Michel Goossens and Alexander Samarin.The Latex Compan-
ion. Addison-Wesley Publishing Company, Reading, Massachusetts U.S.A., April
1994.

[9] Guarino N. and Welty C. A formal ontology of properties.R. Dieng and O. Corby
(eds.), Knowledge Engineering and Knowledge Management: Methods, Models
and Tools. 12th International Conference, EKAW2000, pages 97–112, 2000.

[10] Guarino N. and Welty C. Evaluating ontological decisions with ontoclean.Com-
munications of the ACM, 45(2), pages 61–65, 2002.

[11] Vinay K. Chaudhri Peter D. Karp and Jerome Thomere. Xml-based ontology ex-
change language. July 1999.

[12] Erik T. Ray. Learning XML: Guide to Creating Self-Describing Data. O’Reilly,
U.S.A., Canada and U.K., January 2001.

[13] Heather Williamson.XML: The Complete Reference. Corel VENTURA, Berkke-
ley California USA, 2001.

Index

ident , 45
antiRig , 44
depend , 46
getParents, 33, 43, 44
getParentsI , 34
insertClass, 46
insertIndividual , 48
insertSlot , 47
removeClass, 47
removeIndividual , 49
removeSlot , 48
snameCC , 30, 40
snameCI , 31, 41
snameCS , 31, 41
snameII , 30, 41
snameSI , 31, 42
snameSS , 30, 40
subClass, 32, 42
transClass, 32, 43
unity , 45

DTD, 8, 10, 12, 13, 21, 25

OKBC, 10
OntoClean, 8, 15

Dependence, 17, 19, 21
dependent, 17, 19
non-dependent, 17, 19

Identity, 16, 19, 21
carries-ic, 16, 19
notcarries-ic, 16, 19
notsupplies-ic, 16, 19
supplies-ic, 16, 19

Rigidity, 15, 19, 21
anti-rigid, 15, 19
non-rigid, 15, 19
ridig, 15, 19

Unity, 16, 19, 21
anti-unity, 16, 19
carries-uc, 16, 19
notcarries-uc, 16, 19

Ontolingua, 10

SGML, 10

TopicMap, 8

VDM++, 8, 11, 25

XML, 10, 12–14, 24
XOL, 8, 10, 12–14, 21, 25

class, 12
documentation, 12
instance-of, 12
name, 12
slot-values, 12
subclass-of, 12

individual, 13
documentation, 13
name, 13
slot-values, 13
type, 13

ontology
class, 11
documentation, 11
individual, 11
kb-type, 11
name, 11
slot, 11
version, 11

slot, 13
slot-collection-type, 13
documentation, 13
domain, 13
name, 13
slot-cardinality, 13
slot-inverse, 13
slot-maximum-cardinality, 13
slot-minimum-cardinality, 13
slot-numeric-maximum, 13
slot-numeric-minimum, 13
slot-value-type, 13
slot-values, 13

XOL++, 7, 8, 21, 25

63

