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Abstract
Research collaboration between industry and academia supports improvement and innovation
in industry and helps ensure the industrial relevance of academic research. However, many
researchers and practitioners in the community believe that the level of joint industry-academia
collaboration (IAC) projects in Software Engineering (SE) research is relatively low, creating a
barrier between research and practice. The goal of the empirical study reported in this paper is to
explore and characterize the state of IAC with respect to industrial needs, developed solutions,
impacts of the projects and also a set of challenges, patterns and anti-patterns identified by a
recent Systematic Literature Review (SLR) study. To address the above goal, we conducted an
opinion survey among researchers and practitioners with respect to their experience in IAC. Our
dataset includes 101 data points from IAC projects conducted in 21 different countries. Our
findings include: (1) the most popular topics of the IAC projects, in the dataset, are: software
testing, quality, process, and project managements; (2) over 90% of IAC projects result in at
least one publication; (3) almost 50% of IACs are initiated by industry, busting the myth that
industry tends to avoid IACs; and (4) 61% of the IAC projects report having a positive impact
on their industrial context, while 31% report no noticeable impacts or were “not sure”. To
improve this situation, we present evidence-based recommendations to increase the success of
IAC projects, such as the importance of testing pilot solutions before using them in industry.
This study aims to contribute to the body of evidence in the area of IAC, and benefit researchers
and practitioners. Using the data and evidence presented in this paper, they can conduct more
successful IAC projects in SE by being aware of the challenges and how to overcome them, by
applying best practices (patterns), and by preventing anti-patterns.
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1 Introduction

“When companies and universities work in tandem to push the frontiers of knowledge, they
become a powerful engine for innovation and economic growth” (Edmondson et al. 2012).

The global software industry and the academic world of Software Engineering (SE) are
both large communities. However, unfortunately, a small ratio of SE practitioners and
researchers collaborate with members of the other community, and the reality is that these
two communities are largely disjoint (Glass 2006; Garousi et al. 2016a; Briand et al. 2017).
For example, at an academic (industrial) SE conference, only a handful of practitioners
(researchers) are usually present (if any), and vice versa.

This is not a new problem. Since the inception of SE in the late 1960’s, both communities
have generally done little to bridge the “chasm” between them (Glass 2006), and the ratio of
collaborative projects is thus relatively small compared to the number of research projects in
the research community and SE activities in the industry. Various reasons have been suggested
to explain the low number of industry-academia collaborations (IAC), e.g., difference of
objectives between the two communities, industrial problems lacking scientific novelty or
challenges, and low applicability or lacking scalability of the solutions developed in academia
(Garousi et al. 2016a; Briand 2012). Yet, for the SE research community to have a meaningful
future, there is a critical need to better connect industry and academia.

As we, members of the SE community, pass and celebrate the “50 years of SE” (as of this
writing in 2018) (Ebert 2018; Broy 2018), many members of the SE community highlight the
need for (more) industry–academia collaborations in SE (Carver and Prikladnicki 2018; Basili
et al. 2018).

This need comes as no surprise to the SE community, because, being an applied discipline,
it has long seen industrial relevance and impact of research activities to be of outmost
importance. An indicator for this importance to the SE research community is the ACM
SIGSOFT Impact project (n.d.; Osterweil et al. 2008), which was conducted in the years from
2002 to 2008. This project measured and analyzed the impact of SE research on practice. To
stress the importance of IAC and to discuss success stories on how to “bridge the gap”, various
workshops and panels are regularly organized within international research conferences. An
example is the panel “What industry wants from research” conducted at the International
Conference on Software Engineering (ICSE) 2011, in which interesting ideas from companies
such as Toshiba, Google and IBM, were presented. Another international workshop on the
topic of long-term industrial collaborations on SE (calledWISE) was organized in 2014, which
hosted several noteworthy talks. In 2016, a conference panel was held on “the state of software
engineering research” (Storey et al. 2016), in which several panelists discussed the need for
more IAC in SE. Similar activities have been continuing up to the present day.

While the disconnect between research and practice perhaps hurts practitioners less than
researchers, they too have recognized this missed opportunity. The classic book “Software
Creativity 2.0” (Glass 2006) dedicated two chapters to “theory versus practice” and “industry
versus academe” and presented several examples (which the author believes are “disturbing”)
on the mismatch of theory and practice (referring to academia and industry, respectively). An
interesting blog called “It will never work in theory” (www.neverworkintheory.org)
summarized the status-quo on the issue of the IAC as follows: “Sadly, most people in industry
still don’t know what researchers have found out, or even what kinds of questions they could
answer. One reason is their belief that software engineering research is so divorced from real-
world problems that it has nothing of value to offer them”. The blog further stated that:

Empirical Software Engineering (2019) 24:2540–2602 2541

http://www.neverworkintheory.org


“Instead of just inventing new tools or processes, describing their application to toy problems
in academic journals, and then wondering why practitioners ignored them, a growing number
of software development researchers have been looking to real life for both questions and
answers”.

Another recent trend among practitioners, perhaps indicating their willingness to leverage
high-quality research, is the creation of reading groups specifically designed to read, discuss,
and present academic papers that could impact their work. This movement, broadly known as
“Papers we love” (www.paperswelove.org), has groups in over forty major cities. However,
after reviewing the papers read and presented in the above community, at least as of this
writing, we found that almost all papers are on theoretical computer sciences topics (such as
databases and algorithms) and we did not find any papers on SE being the subject of
presentation/discussions among that community.

In summary, we observe that, while perhaps our communities’ history of collaboration has
been weak, the enthusiasm on both sides makes this an ideal time to systematize and increase
our efforts. Towards this end, the challenges, patterns (i.e., the best practices that promise
success), and anti-patterns (what not to do) in IAC projects were recently synthesized in a
Systematic Literature Review (SLR) (Garousi et al. 2016a). Taking those results as an input,
the goal of the study reported in this article is to characterize IAC projects with respect to the
challenges, patterns, and anti-patterns identified by the SLR. To address this goal, we
conducted a worldwide opinion survey to gather the data from researchers and practitioners.
In summary, this article makes the following contributions:

& A comprehensive IAC-focused empirical study based on evidence and quantitative as-
sessments of challenges, patterns, and anti-patterns (Garousi et al. 2016a)

& A quantitative ranking of the challenges, patterns, and anti-patterns in a large set of IAC
projects internationally (across 101 projects and in 21 countries)

& A set of evidence-based recommendations to ensure success and to prevent problems in
IAC projects

The rest of this article is structured as follows. In Section 2, we present a review of the related
work. In Section 3, we describe the context of our study and review existing process models
for IACs in SE. In Section 4, we introduce the study goal, research questions and research
methodology. In Section 5, we discuss demographics of our study’s dataset. In Section 6, we
present the answers to our study’s RQs. Finally, in Section 7, we draw conclusions and suggest
areas for further research.

2 Background and Related Work

In this section, we first provide an overview of the related work. Afterwards, to establish a
theoretical foundation for our work, we review the existing theories and models of IACs.

2.1 Related work

A recent SLR (Garousi et al. 2016a) synthesized the body of literature on the subject of IAC
projects in SE by reviewing a set of 33 papers in this area, e.g., (Petersen et al. 2014a;
Sandberg et al. 2011; Lamprecht and Van Rooyen 2012). The SLR derived a list of 64
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challenges, 128 patterns, and 36 anti-patterns for IAC projects. Among the 33 papers reviewed
in (Garousi et al. 2016a), 17 studies reported the number of projects that the observations were
based on. There were on average 4.8 projects reported in each paper (the range was from 1 to
22 projects). While the SLR shared insightful experience and evidence on the topic, we believe
that the SE community still lacks the following two types of empirical evidence: (1) most of
the experience is reported by focused (single) teams of researchers and practitioners and there
is a need for evidence based on a larger, more distributed set of IAC projects to reduce the
sampling bias; (2) challenges, success patterns, and anti-patterns in IAC projects have been
reported rather sparsely and sporadically and there is a need for more systematic synthesis.

Aside from the SLR, while many other studies, e.g., (Petersen et al. 2014a; Sandberg et al.
2011; Lamprecht andVan Rooyen 2012), discuss challenges and success patterns in IAC projects,
they report results from one or a few projects in local contexts. The current article aims to provide
a larger-scale snapshot on the state of IAC projects, sampled from several countries.

In another survey, Wohlin et al. (2012) investigated the success factors for IAC in SE.
Overall, 48 researchers and 41 practitioners from Sweden and Australia participated in the
survey. The most important lessons from the study are that (1) buy-in and support from
company management is crucial, (2) there must be a champion on the industrial side (com-
pany), i.e., someone who is passionate about the IAC and is driving it, and not only a person
who merely has been “assigned” the responsibility to coordinate with the research partner, (3)
different categories of people have different views on the purpose and goals of the IAC, and (4)
social skills are important, particularly if a long-term collaboration shall be established.
Different from Wohlin et al.’s survey (Wohlin et al. 2012), the units of analysis in our dataset
are research projects, and not individuals. Furthermore, our study is not limited to success
factors but, in addition, investigates challenges, success patterns, and anti-patterns.

Other empirical studies on IAC have been reported in other fields such asmanagement (Barnes
et al. 2002; Barbolla and Corredera 2009). For example, the study presented in (Barbolla and
Corredera 2009) assesses the most influential factors for success or failure in research projects
between university and industry. The study is based on interviews with 30 university researchers.
It concludes that the company’s real interest and involvement during an IAC project, its capacity
to assimilate new knowledge, and a confident attitude towards the participating university
researchers are the crucial factors for assuring a successful collaboration.

Another study published in 2017 (Ivanov et al. 2017) is a paper entitled: “What do software
engineers care about? Gaps between research and practice”. The authors surveyed software
engineers with regard to what they care about when developing software. They then compared
their survey results with the research topics of the papers recently published in the ICSE/FSE
conference series. The authors found several discrepancies. For example, while software
engineers care more about software development productivity than software quality, papers
on research areas closely related to software productivity – such as software development
process management and software development techniques – have been significantly less often
published than papers on software verification and validation, which account for more than
half of publications. The study also found that software engineers are in great need for
techniques for accurate effort estimation, and they are not necessarily knowledgeable about
techniques they can use to meet their needs.

One of the research questions (RQs) in this article (see Section 4.1) assesses the industrial
impacts of the surveyed IAC projects. Previous efforts to this issue have been reported, e.g.,
the ACM SIGSOFT Impact project (n.d.; Osterweil et al. 2008), which, according to its
website (ACM SIGSOFT, "SIGSOFT Impact project n.d.), was active in the period of
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2002–2008. Several papers were authored in the context of the Impact project which synthe-
sized and reported the impact of research on practice, e.g., one in the area of software
inspections, reviews and walkthroughs (Rombach et al. 2008), and another about the impact
of research on middleware technology (Emmerich et al. 2007).

This article is a follow-up to a recent conference paper (Garousi et al. 2017a) and extends it
substantially in the following ways: (1) our previous study was based on data from only 47
projects while, based on a follow-up survey, this article is based on a larger dataset (101
projects); and (2) only a few aspects of data and demographics were previously reported, while
more detail is reported in this article.

The current work also builds upon another paper co-authored by the first author and his
colleagues (Garousi et al. 2016b) in which a pool of ten IAC projects conducted on software
testing in two countries (Canada and Turkey) were analyzed with respect to challenges,
patterns, and anti-patterns. A set of empirical findings and evidence-based recommendations
have been presented in (Garousi et al. 2016b). For example, the paper reports that even if an
IAC project may seem to possess all the major conditions to be successful, one single
challenge (e.g., confidentiality disagreements) can lead to its failure. As a result, the study
recommended that both academics and practitioners should consider all the challenges early on
and proactively work together to eliminate the risk of encountering a challenge in an IAC
project. While there are slight similarities between (Garousi et al. 2016b) and the current
article, the set of RQs and the foci of the two publications differ. Paper (Garousi et al. 2016b)
was based on ten IAC projects in software testing in two countries, while this paper is based on
101 projects in all areas of SE in 21 countries.

2.2 Theories and Models of Industry-Academia Collaborations

There exists a large body of literature about IAC in fields like management science and
research policy, e.g., (Vedavyas 2016; Al-Tabbaa and Ankrah 2016; Lin 2017; Huang and
Chen 2017), and also in SE (see the survey paper in (Garousi et al. 2016a)). A search for the
phrase “(industry AND academia) OR (university AND industry)” in paper titles in the Scopus
academic database (www.scopus.com), on March 15, 2018, returned 3371 papers, denoting the
scale of attention to this important issue in the scientific community in general. Papers on IAC
could be classified into two categories: (1) papers that propose heuristics and evidence to
facilitate IAC, e.g., (Al-Tabbaa and Ankrah 2016; Huang and Chen 2017); and (2) papers that
propose theories and models for IAC, e.g., (Nagaoka et al. 2014; Shimer and Smith 2000;
Carayol 2003; Mindruta 2013; Banal-Estañol et al. 2017; Banal-Estañol et al. 2013; Ankrah
and Al-Tabbaa 2015; Simon 2008).

To establish and conduct an effective IAC, the collaboration partners (researchers and
practitioners) need to understand the underlying important concepts and theory (how, why, and
when) behind the motivations, needs, and factors involved in a typical IAC. In their paper
entitled “Where’s the theory for software engineering,”, Johnson et al. write that “To build
something good, you must understand the how, why, and when of building materials and
structures” (Johnson et al. 2012). Also, understanding and utilizing theories of IAC provides
us with a solid foundation for designing our own research method and opinion survey used in
this study (see Section 4). Johnson et al. state that most theories (explanations) in SE have
three characteristics (Johnson et al. 2012): (1) they attempt to generalize local observations and
data into more abstract and universal knowledge; (2) they typically represent causality (cause
and effect); and (3) they typically aim to explain or predict a phenomenon. On a similar note, a

2544 Empirical Software Engineering (2019) 24:2540–2602

http://www.scopus.com


highly-cited study in the Information Systems (IS) domain, which assessed the nature of theory
in information systems, distinguished several types of theories (Gregor 2006): (1) theory for
analyzing, (2) theory for explaining, (3) theory for predicting, and (4) theory for design and
action. Thus, having an initial theoretical basis for IAC in SE can help us explain and
characterize IAC as a phenomenon, and facilitate analysis of causality (cause and effect),
e.g., helping us decide what practices have the potential of yielding more success in IAC.

We provide in the following a review of the existing studies that proposed theories and
models for IAC (Nagaoka et al. 2014; Shimer and Smith 2000; Carayol 2003; Mindruta 2013;
Banal-Estañol et al. 2017; Banal-Estañol et al. 2013; Ankrah and Al-Tabbaa 2015; Simon
2008). The study reported in (Nagaoka et al. 2014) focused on sources of “seeds” and “needs”
in IAC and their matching process. Seeds were defined as “the technology which served as the
base for cooperative research” and needs were defined as “specific use envisaged for the
output of the joint research” (Nagaoka et al. 2014). The study focused on several research
questions including: (1) how important are the seeds and needs for initiating IACs?; and (2)
does matching based on efficiency criteria (the research capability of a partner and the good fit
between industry and academic) result in a successful IAC? It then argued that there often exist
specific seeds and needs motivating a given IAC project and presented a simple analytic model
to quantify the output from collaboration between industry and academic partners. The study
also used the “assortative matching” theory (Shimer and Smith 2000) to characterize the
matching process between partners. Assortative matching is a matching pattern and a form of
selection in which partners with similar objectives match with one another more frequently
than would be expected under a random matching pattern (Shimer and Smith 2000).

In 2003, a paper published in the Journal on Research Policy proposed a typology of IAC
and argued that firms involved in high (low) risk projects are matched with academic teams of
high (low) excellence (Carayol 2003). The authors collected a list of 46 IAC projects in Europe
and the United States. An outcome of the study was a typology of IAC built on a formal
procedure: a multi-correspondence analysis followed by an ascendant hierarchical classifica-
tion. The typology exhibited five types of collaborations, positioned inside circles on a 2D
plane, in which the x-axis is the risk, novelty and basicness of research, and the y-axis
corresponds to the research platform (number of partners), which goes from bilateral research
to networked research.

A study published in 2012, entitled “Value creation in university-firm research collabora-
tions: a matching approach”, explored the partner attributes that drive the matching of
academic scientists and firms involved in IAC (Mindruta 2013). The study modeled the
formation of IAC as an endogenous selection process driven by synergy between partners’
knowledge-creation capabilities and identified ability-based characteristics as a source of
complementarity in IAC.

Banal-Estañol et al. developed a theoretical matching model to analyze IACs (Banal-
Estañol et al. 2017). The model predicts a positive assortative matching (Shimer and Smith
2000) in terms of both scientific ability and affinity for type of research. The study suggests
that “the most able and most applied academics and the most able and most basic firms shall
collaborate rather than stay independent”. Before deciding whether to collaborate, academics
and firms weigh the benefits in terms of complementarities and the costs in terms of divergent
interests. Recent evidence stresses the importance of the characteristics of the matched partners
in assessing collaboration outcomes. Banal-Estañol et al. showed in (Banal-Estañol et al. 2013)
that the research projects in collaboration with firms produce more scientific output than those
without them, if and only if the firms in the project are research-intensive.
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The theoretical model developed in (Banal-Estañol et al. 2017) considers and
analytically models all the important factors in IAC, e.g., investment (time and
money) levels and outcome of projects, which were modeled as follows. When an
academic or firm runs a project on their own, the number of positive results (or the
probability of obtaining a positive result) depends on its own ability and investment.
It was modeled by TAIA and TFIF, where TA (resp. TF) represents the academic’s (resp.
firm’s) technical ability, or efficiency, and IA (resp. IF) represents the academic’s (resp.
firm’s) investment level. The parameter TA measures the technical and scientific level
of a given academic, her publications, the patents and know-how she owns, the
quality of the research group (lab) she works in, etc., whereas the parameter TF

measures the scientific level of a given firm, its absorptive capacity, the level of its
human capital, etc. The theoretical model was then applied to a set of 5855 projects
in a project database of the UK’s Engineering and Physical Sciences Research Council
(EPSRC) and the predictions provided by the model received “strong support” by the
teams of involved academics and firms (Banal-Estañol et al. 2017).

In management science, a SLR on the topic of IAC was published in 2015 (Ankrah
and Al-Tabbaa 2015). The SLR reviewed a pool of 109 primary studies and investi-
gated the following RQs: (1) What are the organizational forms of IACs?; (2) What
are the motivations for IACs?; (3) How are IACs formed and operationalized?; (4)
What are the factors that facilitate or inhibit the operation of IACs?; and (5) What are
the outcomes of IACs? The SLR identified five key aspects that underpin the theory
of IAC: necessity, reciprocity, efficiency, stability, and legitimacy. The SLR showed
that, in the IAC literature, researchers emphasize the role of interdependency and
interaction theories in the genesis, development and maintenance of IAC. Interdepen-
dency theories stress the impact of the external environment on the formation of IAC,
while interaction theories explore the internal development and maintenance of IAC.
Furthermore, the SLR (Ankrah and Al-Tabbaa 2015) argued that various perspectives
and theories have been widely used in IAC, including transaction costs economics,
resource dependency, strategic choice, stakeholder theory, organizational learning, and
institutional theory. Transaction Cost Economics (TCE) assumes that transaction (or
economic exchange) is the basic unit of analysis for an organization’s economic
relationships, where these relationships are sought to reduce production cost and
increase efficiency. Therefore, it may provide an explanation why universities and
companies are inclined to engage in IAC, i.e., minimize the sum of their technology
development costs. Finally, by synthesizing the pool of 109 primary studies, the SLR
(Ankrah and Al-Tabbaa 2015) presented a conceptual process framework for IAC, as
shown in Fig. 1.

Another study, published in the European Journal of Innovation Management,
proposed a process model for IAC which “can be utilized by practitioners from both
academia and industry in order to improve the process of research collaboration and
facilitate more effective transfer of knowledge” (Simon 2008). This study highlighted
the social interactions assuming that “social capital can be regarded as an important
factor when developing collaborations”. The process model, as proposed in (Simon
2008), is shown in Fig. 2. This process model resembles the process framework
presented in (Ankrah and Al-Tabbaa 2015) (Fig. 1) in terms of the process flow,
with the exception that the former has an extra phase called “Terrain mapping” in the
beginning. As discussed in (Simon 2008), mapping of IAC terrain is the initial
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process stage where industry and market analysis is undertaken in order to develop a
detailed understanding of the “collaboration opportunity landscape”. This analysis
should initially be broad-based, but as requirements are understood in more detail
this should lead to more focused activities. If possible, this information gathering
exercise should be extended to include industry’s current needs that could be gained
through person-to-person interactions and networking. Some of the authors of the
current paper have experience with terrain mapping activities, e.g., in a set of 15+
software-testing projects in Canada and Turkey (Garousi et al. 2016b), and experience
with selecting the “right” topics for an IAC (Garousi and Herkiloğlu 2016).

Furthermore, compared to the model in Fig. 1, the model in Fig. 2 has four
additional components: (1) social capital, (2) technical mission, (3) business mission,
and (4) collaboration agent. In this context, social capital corresponds to the networks
of relationships among participants in an IAC who collaborate and enable the IAC to
execute effectively. It includes factors such as familiarity, trust, a common under-
standing, and a long-term commitment to collaboration. Technical mission and busi-
ness mission are quite self-explanatory, i.e., an IAC should create “value” both in

Fig. 1 A conceptual process framework for IAC (source: (Ankrah and Al-Tabbaa 2015))

Terrain mapping
(understanding the 

collabora�on
opportunity landscape)

Proposi�on Ini�a�on Delivery Evalua�on

Technical mission (value crea�on)

Business mission (value crea�on)

Social capital

Collabora�on agent

Fig. 2 A process model for IAC (source: (Simon 2008))
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terms of technical and business missions. Collaboration agent is a role or individual
who personally drives forward the collaboration and is responsible for achieving the
required objectives in order to initiate and deliver the collaboration. In the recent SLR
on IAC in SE (Garousi et al. 2016a), the term “champion” was used as a synonym
for the term “collaboration agent”.

Albeit the slight difference in the terminology used, there are other semantic similarities
between the two models in Figs. 1 and 2, e.g., the process flow are almost the same as an IAC
usually starts from “proposition “or “formation” phase. In this stage, parties aligned the
university’s research offering to the company’s strategy and needs and specifically to the
technology development plans for the relevant products and services that are delivered by the
company (Simon 2008). The IAC then continues to the next phases and finished in the
“evaluation” or “outcomes” phase, in which benefits of IAC are actually implemented and,
usually, a formal or informal post-project evaluation is conducted by both sides. “Motivations”
are the need drivers of an IAC in Fig. 1, while in Fig. 2, the terms “technical” and “business
missions” are used to refer to the same concept.

Another interesting model to assess research “closeness” of industry and academia was
proposed by Wohlin in (Wohlin 2013a). In a talk entitled “Software engineering research
under the lamppost “(Wohlin 2013a), Wohlin presented, as shown in Fig. 3, five levels of
closeness between industry and academia, which could be seen as a maturity model. IAC
projects usually take place in Level 5 (One team) and sometimes in Level 4 (Offline).

In Level 5, the IAC is indeed done in “one team”, a specific industrial challenge is
identified, draft solutions are evaluated and validated in iterations and final solutions are
usually implemented (adopted) in practice. In Level 4, the IAC is offline and often “remote”.
As in Level 5, a specific industrial problem is identified but the solution is done offline, or
rather remotely, in academia. Once ready, a “pre-packaged” solution is offered that is chal-
lenging to implement (adopt) in industry due to its generality.

In Level 1 (Not in touch), Level 2 (Hearsay), and Level 3 (Sales pitch), the linkage between
industry and academia is non-existent or weak, and thus one cannot refer to the linkage as a
proper IAC.

Research

Publish

Industry Academia

Level 1: Not in touch

Research

Publish

Industry Academia

Level 2: Hearsay

General 
challenge

Research

Publish

Industry Academia

Level 3: Sales pitch

Selling 
solu�on

General 
challenge

Publish

Industry Academia

Level 4: Offline

General 
challenge Research

Pre-packaged 
solu�on

Publish

Industry Academia

Level 5: One team

Specific 
challenge Research

Iden�fy problem

Iterate : evaluate and validate
Tailored solu�on

Fig. 3 Five (maturity) levels of closeness between industry and academia (source: (Wohlin 2013a))

2548 Empirical Software Engineering (2019) 24:2540–2602



3 Initial Context and Process Models for Industry-Academia
Collaborations in SE

To put our study in context, we present a domain model (context diagram) and provide
definitions for the terms used in this context.

Figure 4 depicts a UML class diagram representing a typical domain model (context
diagram) for IAC projects. Note that, for brevity, this diagram does not include the cardinality
details. Researchers and practitioners participate in a given IAC project. Either of them or both
could act as the initiator. There is usually a need that drives the project offering one or more
solutionswith impact. Solutions are, in fact, the contributions of an IAC project to its industrial
partner(s). Solutions are expected to have (positive) impact in the industrial context, e.g., an
example solution could be a new software refactoring method for a company providing positive
impact by saving software maintenance costs. To keep our study focused, we only consider
industrial impact and do not consider “academic” impact (Poulding et al. 2015) of an IAC.

There is at least one object of study in the form of a (software) process or a software system.
For example, an IAC project may target improving software testing processes of a given
company. Papers are usually written as a result of the project. Funding sources may support
the project. Partners involved in an IAC project naturally expect the project to be successful.
The level of success is assessed by a set of success criteria, which are defined (at least
implicitly) by the partners, e.g., publication of papers, training of PhD students and young
researchers, getting insights, lessons learned, or new research ideas, and solving the need that
triggered the project in the first place.

In terms of conceptual terminology, the scope of a typical IAC project might not be
immediately clear. We use in this study the “project” notion in the same way as typically used
by funding agencies, e.g., national agencies, such as the NSERC1 in Canada or TÜBİTAK2 in
Turkey, or international agencies, such as the European Commission’s Horizon-2020 pro-
gram.3 An IAC project can take various forms, e.g., technology transfer and consultancy, but
there should be some sort of research involved in it, to make it within the scope of our
definition in this paper. A SE IAC project is a project in which at least one academic partner
and at least one industrial partner formally define a SE-related research topic.

The trigger for an IAC project is usually a real industrial “need” (or challenge), e.g.,
improving test automation practices in a company (Garousi and Herkiloğlu 2016), or is based
on academic research, e.g., assessing the benefits of software documentation using UML. As a
concrete example may serve one of the authors’ action-research IAC (Santos and Travassos
2009; Petersen et al. 2014b; Stringer 2013) conducted with a software company in Turkey.
Early in the collaboration process, the partners systematically scoped and defined a set of
topics to work on (Garousi and Herkiloğlu 2016), e.g., (1) increase test automation, (2) assess
and improve an in-house test automation framework, (3) establish a systematic, effective and
efficient GQM-based measurement program for the testing group, and (4) assess and improve
test process maturity using TMMi (Garousi et al. 2018a).

The presented overview of existing work about IAC theory (Nagaoka et al. 2014; Shimer
and Smith 2000; Carayol 2003; Mindruta 2013; Banal-Estañol et al. 2017; Banal-Estañol et al.
2013; Ankrah and Al-Tabbaa 2015; Simon 2008) enables us to lay a solid foundation for

1 www.nserc-crsng.gc.ca
2 www.tubitak.gov.tr
3 ec.europa.eu/programmes/horizon2020
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designing our research method (see Section 4). Various models have been presented (e.g., see
Figs. 1 and 2) and while there are many similarities across different models, there does not
exist one single unified model. We should mention that each model usually takes a certain
view (perspective) on the nature of IAC or highlights certain aspects. For example, both
(Ankrah and Al-Tabbaa 2015; Simon 2008) took a process view but while the former
highlighted the issues of motivations and facilitating/impeding factors, the latter highlighted
social capital and collaboration agent.

In our study, we focus on the process aspect and on cause/effect-relationships in IAC within
the SE domain. In addition, we incorporate the set of challenges and patterns provided by the
IAC SLR published in (Garousi et al. 2016a).

Thus, we consider the models presented in (Ankrah and Al-Tabbaa 2015; Simon 2008) as
our baseline and extend/adapt them to fit our purpose, as illustrated in Fig. 5. We synthesized
our process model from three sources: (1) the models presented in (Ankrah and Al-Tabbaa
2015; Simon 2008); (2) our experience in IAC, e.g., (Garousi et al. 2016b); and (3) the SLR
study published in (Garousi et al. 2016a). In our study, we use this process model to
understand and characterize IAC in a way inspired by the authors of (Kemper 2013) who
stated that “… a way to evaluate a theory is by its derivations, that is, what does the theory
help us to understand?”. Note that our model is not a collaboration model (like those discussed
in (Petersen et al. 2014a; Sandberg et al. 2011; Gorschek et al. 2006)) but a process model for
IAC projects, including important factors of interest to our study (e.g., collaboration need,
challenges and patterns). We do not claim this model to be a unified complete model for IAC
within the SE domain. We rather see it as an initial step towards such a model corresponding to
our needs in this study.

According to the grounded theory technique (Corbin and Strauss 2014), if the dynamic and
changing nature of events is to be reflected in a process model, then both structure and process
aspects must be considered. Therefore, the model in Fig. 5 is centered in a linear process for
collaboration but also supported by the structural elements, i.e., the cross-cutting concerns such
as challenges and patterns, need for collaboration, outputs, results and contributions to the
literature, and impact on the software project or product under study. The process model has
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four phases: (1) Inception: team building and topic selection; (2) Planning: defining the goal,
scope, etc.; (3) Operational: running, controlling and monitoring; and (4) Transition:
technology/ knowledge transfer and impact.

Three fundamental concepts related to IAC projects are depicted in Fig. 5 (marked with
gray backgrounds): industrial needs, developed solutions, and impacts. IAC projects mostly
are started and executed based on industrial needs (Garousi et al. 2016a; Garousi and
Herkiloğlu 2016). Throughout the project, partial or full solutions are developed which are
expected to address that need (represented by the link between “solution” and “need” in Fig.
5). The developed solution(s) is (are) expected to have positive impacts on the studied context
(a project or a case under study).

4 Research Goal and Method

We discuss in this section the study goal, research questions, study context, and research method.

4.1 Goal and Research Questions

Formulated using the Goal, Question, Metric (GQM) approach (Solingen and Berghout 1999),
the overall goal of this study is to characterize a set of IAC projects in SE, with respect to the
challenges, patterns, and anti-patterns identified by the SLR study (Garousi et al. 2016a). Our
study contributes to the body of evidence in the area of IAC, for the benefit of SE researchers
and practitioners in conducting successful projects in the future. Based on the overall goal, we
raised the following research questions (RQs):

& RQ 1 (focusing on technical SE aspects of projects)- What types of industrial needs
initiated the IAC projects under study, what solutions were developed, and what industrial
impacts the projects provided?

& RQ 2 (focusing on operational aspects of projects)- To what extent did each challenge,
reported in the SLR study (Garousi et al. 2016a), impact the IAC projects?

& RQ 3 (focusing on operational aspects of projects)- To what extent did each pattern and
anti-pattern impact the IAC projects?

Incep�on (forma�on) phase: 
approaching and topic selec�on

Ini�ator 

Ini�ator 

Joint 
discussions

Opera�onal phase: controlling and 
monitoring projects

Transi�on phase: technology/
knowledge transfer and impact

Joint 
efforts

Joint 
efforts

Project/case 
under study

study
study

Project/case 
under study

Research 
literature

review

Research 
literature

contribute

on

Planning

Joint 
efforts

Project plan 
(objec�ves, etc.)

define

Mo�va�ons

Success criteria 

Measures of success 
and sa�sfac�on

used to 
measure

define

used to 
measure

Challenges

Success factors (pa�erns)

An�-pa�erns

Outcomes

Cross-cu�ng

influence

influence influence

influence

Need

Solu�on

(Posi�ve) 
impact

ini�ates /
drives

result in

has (expected)

addresses

IAC 
ends

Researcher 
(academic)

Prac��oner

Fig. 5 A typical (simplified) process for IAC projects (inspired by (Ankrah and Al-Tabbaa 2015))
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Note that, compared to our previous paper (Garousi et al. 2017a), RQ 1 has been added. Both
RQ 2 and 3 were partially addressed in (Garousi et al. 2017a) but without in-depth analysis.
Also, the analyses in (Garousi et al. 2017a) were based on a smaller dataset compared to the
current article. Furthermore, we conduct and report additional analyses in this paper, e.g., an
in-depth analysis of the demographics of the dataset, and an in-depth analysis of how the
challenges affected the projects. Thus, this article is a substantial extension of (Garousi et al.
2017a).

Furthermore, we believe this work makes a novel contribution to the community by
studying both the technical SE aspects of a large set of IAC projects via RQ 1 (needs, solutions
and impacts), as well as their operational aspects and characteristics via RQs 2 and 3
(challenges, patterns and anti-patterns).

4.2 Research Method (Survey Design)

To answer the study’s RQs, we designed and conducted an opinion survey. Our goal was to
gather as many data points (opinions) from researchers and practitioners world-wide. Table 1
shows the structure of the questionnaire used to conduct the survey. To provide traceability
between the questionnaire and the RQs, we also show in Table 1 the RQs addressed by each
part of the questionnaire. Furthermore, we designed the survey in a way to fully match the IAC
process model in Fig. 5. Due to space constraints, we do not provide the full survey
questionnaire, as presented to participants, in this paper, but it can be found as a PDF file in
an online source (Garousi et al. 2016c).

In designing the survey, we benefitted from the survey guidelines in SE (Molleri et al.
2016). Some example survey guidelines that we utilized from (Molleri et al. 2016) are as
follows: (1) identifying the research objectives, (2) identifying and characterize target audi-
ence, (3) designing sampling plan, (4) designing the questionnaire, (5) piloting test question-
naire, (6) distributing questionnaire, and (7) analyzing results and writing the paper. We also
used the recommendations from w.r.t characterizing units of observation, units of analysis,
establishing the sampling frame and recruitment strategies (Mello et al. 2014a, b).

We were also aware of validity and reliability issues in survey design and execution
(Molleri et al. 2016). One aspect of the survey’s validity, in this context, is how well the
survey instrument (i.e. the questions) measures what it is supposed to be measured (construct
validity). External validity of a survey relates to the representativeness of the results for the
population from which respondents are sampled. The reliability of a survey refers to the
question whether a repeated administration of the questionnaire at different points in time to
the same group of people would result in roughly the same distribution of results each time.
We dealt with those validity issues in both the survey design and execution phases.

Table 1 Structure of the questionnaire used for the survey

Part (aspect of IAC covered) RQs addressed Number of questions

Part 1: Demographics (profile) of the respondent and the
IAC project

Demographics (profile) 11

Part 2: Need, developed solutions, and impact of the project RQ 1 3
Part 3: Challenges, patterns and anti-patterns in the project RQ 2 and RQ 3 8
Part 4-Outcome and success criteria Not studied in this paper 5
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It was intended that respondents would respond to the questionnaire with respect to each
single IAC project they had participated in. The unit of analysis in our survey is a single IAC
project. Therefore, a participant could provide multiple answers; each one for a single project he
or she was involved in. The considered IAC projects could be completed, (prematurely) aborted
or ongoing (near completion). We included aborted projects in the survey and its dataset so that
we could characterize the factors leading to abnormal termination of IAC projects.

Part 1 of the questionnaire has 11 questions about demographics (profile) of the respondent
and the IAC project. Part 2 of the questionnaire asked about the needs, developed solutions,
and impact of the IAC project. Part 3 asked about the challenges, patterns, and anti-patterns in
the project, as adopted from the SLR study published in (Garousi et al. 2016a). For example
Q3.1 asked the participants to “rate the extent of the negative effect each of the following
challenges had on the industry-academia collaboration in the project” and listed ten categories
of challenges (again, adopted from the SLR (Garousi et al. 2016a)):

1. Lack of research relevance (LRR)
2. Problems associated with the research method (RM)
3. Lack of training, experience, and skills (LTES)
4. Lack or drop of interest / commitment (LDRC)
5. Mismatch between industry and academia (MIA)
6. Communication-related challenges (CRC)
7. Human and organizational challenges (HOC)
8. Management-related challenges (MRC)
9. Resource-related challenges (RRC)
10. Contractual, privacy and IP (intellectual property) concerns (CPC)

We asked participants about the negative impact of each challenge in their projects using a
five-point Likert scale: (0): no impact, (1): high negative impact, (2): moderate negative
impact, (3): high negative impact, and (4): very high negative impact. We asked similar
questions to gather scale data for 15 categories of patterns and four categories of anti-patterns,
as adopted from the SLR (Garousi et al. 2016a) and listed below:

1. Proper and active knowledge management (PAKM)
2. Ensuring engagement and managing commitment (ENMC)
3. Considering and understanding industry’s needs, and giving explicit industry benefits

(CUIN)
4. Having mutual respect, understanding and appreciation (HMRU)
5. Being Agile (BA)
6. Working in (as) a team and involving the “right” practitioners (WTI)
7. Considering and manage risks and limitations (CMRL)
8. Researcher’s on-site presence and access (ROSP)
9. Following a proper research/data collection method (FPRM)
10. Managing funding/recruiting/partnerships and contracting privacy (MFRP)
11. Understanding the context, constraints and language (UCCL)
12. Efficient research project management (ERPM)
13. Conducting measurement/ assessment (CMA)
14. Testing pilot solutions before using them in industry (TPS)
15. Providing tool support for solutions (PTS)
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16. (Anti-pattern): Following self-centric approach (FSCA)
17. (Anti-pattern): Unstructured decision structures (UDS)
18. (Anti-pattern): Poor change management (PCM)
19. (Anti-pattern): Ignoring project, organizational, or product characteristics (IPOP)

Formore details about each of the above patterns, the reader may refer to the SLR (Garousi et al.
2016a). Part 4 of the survey included five questions about outcome, success criteria and success
levels of the projects. To keep the current paper focused, we are not including any data nor raise
any RQs about those aspects, and plan to analyze those parts of our dataset in future papers.

4.3 Validation of the Survey Design

As mentioned above, construct validity was an important issue and we ensured that the survey
instrument (i.e., the questions) would measure what our study intended to measure. Parts 2 and
3 of the survey were explicitly designed to ensure a direct mapping with the study goal and its
associated RQs (Section 4.1). We designed questions in each survey section (part) to gather
data about the following aspects of a typical IAC project: Part 2 focused on need, developed
solutions, and impact of the project. Part 3 focused on challenges, patterns and anti-patterns in
the projects.

To ensure construct validity, we conducted two rounds of pilot applications of the ques-
tionnaire used in the survey, first among the authors and then, in addition, with five practicing
software engineers selected from our industry network. The main issue we considered in the
pilot phase was to ensure that the survey questions would be understood by all participants in
the same manner.

We were also aware about the importance of reliability/repeatability of the survey instru-
ment. We applied the test-retest reliability check (Kline 2013) for this purpose. We asked two
participants (who had provided their emails addresses in the main data collection phase), one
practitioner and one researcher, to re-fill the survey. The second time of filling the survey by
those two participants was about 1 year after the first time (Fall 2018 versus Fall 2017, see the
next section). For measuring reliability for two tests, we calculated the Pearson correlation
coefficient of the numerical data fields in the survey (e.g., challenge Likert scales), as
suggested in the statistics sources (Kline 2013). The correlations for the two participants were
0.85, and 0.72; and the average value was 0.78, which is interpreted as an “acceptable”
reliability measure for survey instruments (Kline 2013).

4.4 Survey Execution and Data Collection

For data collection, we sent invitations by email to SE researchers and practitioners who were
known in the community to be active in IAC projects and to the authors of the primary studies
reviewed in the SLR (Garousi et al. 2016a). The survey was anonymous, but the participants
could provide their names and emails if they wanted to receive the results of our study. The
total number of invitations and the resulting response rates are discussed further below.

Our sampling method was convenience sampling which is the dominant approach chosen
in survey and experimental research in SE (Sjoeberg et al. 2005). Albeit its drawbacks and
potential risk of bias in the data, this does not mean that convenience sampling is generally
inappropriate (Ferber 1977). Convenience sampling is also common in other disciplines such
as clinical medicine and social sciences (e.g. (Kemper and Stringfield 2003)).
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We are aware of the importance of external validity and reliability of the survey results and
instruments, i.e., representativeness of the dataset and appropriateness of the data sampling
(Gobo 2004). There have been many discussions about advantages and disadvantages of
convenience sampling, e.g., (Gobo 2004; Sackett and Larson 1990). Regarding its limitations,
it has been said that “because the participants and/or settings are not drawn at random from
the intended target population and universe, respectively, the true representativeness of a
convenience sample is always unknown” (Sackett and Larson 1990). At the same time,
researchers have recommended two alternative criteria to explore the external validity of
convenience samples: sample relevance and sample prototypicality (representativeness)
(Sackett and Larson 1990). Sample relevance refers to the degree to which membership in
the sample is defined similarly to membership in the population. For instance, an example of
sample irrelevance taken from a field outside SE, would be a study of executive decision
making conducted with a sample of university student (Sackett and Larson 1990). There exist
also studies about this issue in SE, e.g., (Höst et al. 2000). Sample prototypicality refers to the
degree to which a particular research case is common within a larger research paradigm. An
example of prototypicality would be a study exploring the benefits of software design patterns;
although a sample of senior executives completing such a survey could be collected, a sample
of “technical staff”, i.e., software developers, would be more prototypical of when such
benefits would actually be observed. With sample representativeness, sample relevance is
assumed (Sackett and Larson 1990). In summary, while using convenience sampling in our
work (similar to many other survey studies in SE) the representativeness (and thus external
validity) of our study results could be limited, we still ensured meeting the other two external
validity aspects, i.e., relevance and sample representativeness, since we sent the survey to
researchers and practitioners who have been active in IAC projects and have first-hand
experience of initiating and conducting IAC projects.

Data collection via the online survey was conducted in two phases. The first phase was
conducted in Fall 2016. The second phase was conducted in Fall 2017. In the first phase, we
sent invitations to a large number of SE researchers and practitioners (about 100) who were
known in the community to be active in IAC projects and the authors of the primary studies
reviewed in the SLR (Garousi et al. 2016a). About two-thirds (2/3) of the (100) invitations
were sent to researchers, while the rest (1/3) were sent to the practitioners in our network.
Unfortunately, we received a response rate from the SE community (only 11 data points). The
response rate was 9.1%. Since we (the authors of this study) have also been active in IACs, we
also provided data points related to our past/current projects. In total, during the first phase, the
authors of this study contributed 36 data points, creating a dataset with a total of 47 data points.
We reported an initial analysis based on those 47 data points in a conference paper (Garousi
et al. 2017a).

The second phase of data collection was conducted in Fall 2017, in which we sent 150
invitations. Similar to the phase #1, the recipients were again the researchers and practitioners
who were known in the community to be active in IAC projects. About 100 of the invitations
were sent to the same pool of the recipients, as we had sent in phase #1. We developed an
additional set of 50 researchers and practitioners in the phase #2. Similar to the first phase,
about two-thirds (2/3) of the 150 invitations in the second phase were sent to researchers, while
the rest (1/3) were sent to the practitioners in our network. In the second phase of data
collection, we were more proactive in our survey invitation strategy (e.g., we personally
emailed and reminded our collaborators to fill out the survey) and the response rate (32.7%)
increased compared to the first phase (9.1%). In the expanded dataset, 60 data points were
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from our invited participants in addition to the 47 data points provided by the author team.
Since the study’s authors all have been active in IACs throughout their careers, it was natural
for us to also include the data points from the author team, since we could get a more enriched
dataset. When we entered the data into the questionnaire, we ensured treating it with outmost
care and seeing ourselves as independent participants to prevent any bias in data collection.
Each co-author contributed between 3 and 19 data points. Details about the composition and
evolution of the dataset are shown in Table 2.

To ensure the quality of data, we screened the 107 raw data points. One data point was
excluded since one respondent had entered one single data point as a proxy (aggregate) for her/
his IAC projects in all her/his entire career and thus the provided measures were not valid for
our survey. We excluded five more data points since the only reported research method was a
practitioner-targeted survey, which cannot be considered an actual IAC. Thus, the final dataset
contained 101 projects after screening.

As shown in Table 2, in the final dataset, 46 data points were from the study authors, and 55
data points from the community at large (i.e., not from the authors of this study). In the rest of
this article, we refer to the projects using the labeling of Pi, with i ranging from 1 to 101. These
IDs are indicated in the dataset file.

We also wondered about how many respondents provided the information on the 101
projects. We had some identifying information of the respondents (e.g., emails) and used them
to gather this information. In total, 64 respondents provided the information on the 101
projects. Each respondent provided between 1 and 19 data points. A majority of the respon-
dents (57 people) provided only one data point, thus we can say that a large number of data
points came from different people.

For transparency and to benefit other researchers, after removing identification and sensi-
tive information about the projects, we have shared the raw dataset of the survey publicly in
online sources (phase #1 in (Garousi et al. 2018b), and phase #2 in (Garousi et al. 2018c)). The
full survey questionnaire can be found as a PDF file in an online source (Garousi et al. 2016c).

4.5 Data Analysis Method

We used both quantitative and qualitative analysis techniques. Many questions in our survey
instrument are closed questions. Thus, we could apply simple descriptive statistics and
visualization techniques (e.g., bar charts, histograms, boxplots, and individual value plots) to
analyze and visualize the data received from the survey participants.

Table 2 Details and statistics on the composition of the dataset

Data collection
phase

(Raw)
dataset size

Data from
invited participants

Data from the
author team

Num. of data
points

% of
dataset

Num. of
email
invitations

Response
rate

Num. of data
points

% of
dataset

#1 (Fall 2016) 47 11 23% ~100 9.1% 36 77%
#2 (Fall 2017) 60 49 82% ~150 32.7% 11 18%
Total before data

screening
107 60 56.1% – – 47 43.9%

Final (after data
screening)

101 55 54.5% – – 46 45.5%
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Answers to open-ended questions were analyzed using the qualitative coding (synthesis)
technique (also called, “open/axial” coding) (Miles et al. 2014). For one of the questions
(“needs” addressed in the projects), we also using the word clouds technique to visualized the
responses (results in Section 6.1.1).

Qualitative coding of each open-ended question was done by one co-author, and was peer
reviewed by one other author at least, to ensure highest quality and to prevent bias. In the case
of conflicting opinions by different authors, we had planned to conduct group discussions to
reach consensus (but this never happened).

We provide below an example of how we conducted the qualitative analysis by
showing how the analysis was done on one of the open-ended about industrial
impacts of the projects (Section 6.1.3). Free-text responses for 92 of the 101 data
points were provided for that question by the respondents. We used qualitative
coding (Miles et al. 2014) to classify industrial impacts of the projects into three
categories:

& (1) Positive impacts on the industry partner, backed by quantitative evidence (measures) in
the provided response;

& (2) Positive impacts, backed by qualitative statements; and
& (3) No impacts on industry (yet), work in the lab only, or “not sure”.

Qualitative coding (synthesis) (Miles et al. 2014) is a useful method for data synthesis and has
been recommended in several SE research synthesis guidelines, e.g., (Cruzes and Dybå 2010;
Cruzes and Dybå 2011; Cruzesa and Dybåb 2011). Table 3 shows examples of how we
conducted qualitative analysis of data received for one survey question on several projects. For
example, for project P18, the respondent wrote: “The industry partner did not adopt the
approach, to the best of our knowledge” and thus it was easy to classify it under the “No
impacts on industry” group.

As we were also interested in the SE topics of the IAC projects in the dataset,
another task in our data analysis was to extract the SE topic(s) of each IAC project.
We did not have a specific question about this aspect in the survey (Section 4.2) but
we were able to derive the SE topics of each IAC project by looking at its need
(tackled challenges). To classify the SE topics, we used the latest version (3.0) of the
Software Engineering Body of Knowledge (SWEBOK) (Bourque and Fairley 2014).
The SWEBOK describes 15 Knowledge Areas (KAs), out of which 12 KAs are
focused on technical aspects of SE, e.g., requirements, design, construction, and
configuration management. Three other SWEBOK KAs cover mathematical, computer
and engineering foundations. For example, two respondents mentioned the following
needs for their projects: “supporting change impact analysis” for project P3 in the
pool, and “to enable/improve quality assurance and engineering process improvement”
for project P4. Based on the data, project P3 was classified under the KA “config-
uration management” and P4 was classified under the KAs “process” and “quality”.
Note that each project could be classified under more than one SWEBOK KA.

5 Demographics of the Dataset

We present the demographics of the dataset in this section.
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5.1 Breakdown by Affiliation Types and Countries

One of the questions asks about the respondent’s affiliation types (researcher or practitioner).
83 respondents said they are working at universities or research centers, 21 respondents said
they had industry affiliations, and three respondents said they had both affiliation types (such
as graduate students who also work part-time in companies).

Another question asked about the country (or countries) in which the IAC project was
conducted. Figure 6 shows the data. 21 different countries are represented in the dataset.
Although the authors’ countries of residence influenced the country distribution, the survey
sample is diverse in terms of geographical distribution, covering Europe, Asia, North and
South America.

5.2 Research Methods Used in IAC Projects

To understand the demographics of the IAC projects under study, we asked about the
research methods used in each project. We used the classification of empirical SE
research methods provided by Easterbrook et al. (Easterbrook et al. 2008) for this
purpose, as shown in Fig. 7.

Figure 7 shows that the most used research methods are industrial case studies
(Runeson and Höst 2009) and “action-research” (Santos and Travassos 2009; Petersen
et al. 2014b; Stringer 2013). This observation is as expected since these methods are,
perhaps, better suited than other methods for IAC projects. Action research is “re-
search initiated to solve an immediate problem” (Stringer 2013) and thus many
industry-focused researchers are increasingly adopting it as the research method of
choice, e.g., (Petersen et al. 2014b; Doležel and Buchalcevová 2015; Christensen
et al. 2008; Viikki and Palviainen 2011). By being rooted in industrial practice, these
research methods typically generate rich contextual information and many qualitative
insights (Santos and Travassos 2009). As per our experience, e.g., (Garousi et al.
2016b), industrial case studies usually apply either the “exploratory” or the
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“improving” type, or both, rather than other case study types (descriptive, explanato-
ry) (Runeson and Höst 2009). This helps, for example, to understand how and why
certain practices, techniques, tools and methods actually work in a specific context.

In projects using as their research method controlled experiments with practitioners,
initiation of the IAC usually starts from the researchers’ side (refer to the process model in
Fig. 5). In these cases, typically, researchers have a research method or tool that they wish to
apply in practice to assess its benefit and usefulness (Runeson and Höst 2009).

& Observation 1: Industrial case studies and action-research are the most popular research
methods used in IAC projects.

5.3 Number of Resulting Papers from each Project

We asked in another question about papers resulting from each project. Figure 8
shows that more than 90% of the projects have at least one publication. This means
that there is a fair chance that others can learn from the project experience and that
knowledge about successful – or unsuccessful – IAC projects is being conveyed to a
larger community. However, since most publication venues are of academic nature,
there is a high risk that the lessons learnt from the reported projects are mainly shared

1211109876543210

40

30

20

10

0

Num. of resulting papers

F
re

q
u

e
n

c
y
 (

#
 o

f 
p

ro
je

c
ts

)

1
00

1
3

2

7
66

11

39

10

Fig. 8 Histogram of number of resulting papers in each project

74

41

14

7
0 10 20 30 40 50 60 70 80

Industrial case-study

Ac�on research

Controlled experiments with prac��oners

Other

# of data points

Fig. 7 Breakdown of research methods used in the projects

2560 Empirical Software Engineering (2019) 24:2540–2602



within academia. This is due to the fact that most industrial practitioners do not read
scientific journals or conference proceedings on a regular basis (Chakrabarti and
Lindemann 2015).

& Observation 2: Over 90% of IAC projects, in our dataset, resulted in at least one
publication.

5.4 Who initiated the Projects

IAC projects can be initiated by academic partners, industrial partners, or jointly by both sides
(Fig. 5). In our dataset, the situation was quite balanced, i.e., the academic partners initiated 24
projects (22.4%) and the industry partners also initiated 24 projects. However, 52 projects
(48.6%) were initiated by both sides jointly. No response was provided for the remaining one
project.

We justified the above breakdown as follows. There can be different reasons for
having an IAC project initiated by just one partner. One possibility is that the
motivation for starting a collaboration is heavily academic-driven. For example, an
academic might approach a company in order to validate a new SE method. On the
other hand, the trigger for starting a collaboration might be heavily practice-driven.
For example, a company might approach a university or research institute in order to
get support for improving its SE practices. Thus, in spite of the myth that industry
has in general lower motivation, compared to academia, to start collaborations
(Garousi et al. 2016a), we see that many projects were initiated by industry.

Finally, there might exist established industry-academia relationships among a set of
collaborators. In this situation, partners who have already a track record of successful
collaborations might simply initiate the next IAC project jointly, building upon the trustful
established relationship and capitalizing upon results of past IAC projects.

One could do further in-depth (correlation) analysis on collaborator type who initiated the
project versus other variables in the dataset, e.g., country, and looking into a question such as:
Are there differences between countries in terms of who initiates the IAC projects? However,
for space constraint and also since our dataset is not large enough, we do not conduct and
report such an analysis in this paper. But as discussed in Section 4.4, the entire raw dataset file
(Garousi et al. 2018c) can be used for such extended analyses.

& Observation 3: Industry is as motivated as academia to start IAC projects.

5.5 Project Duration

The “individual-value” plot in Fig. 9 shows the durations of IAC projects in our dataset (in
months). The mean and median values of the IAC project durations are about around 22 and
15 months, respectively. About 4% of the projects took at most 13 months, whereas the
durations of only about 5% of the projects were larger than 48 months. Overall, the durations
of the IAC projects, in most cases, range between 4 and 48 months (i.e., 4–6 months: 18%, 7–
12 months: 28%, 13–24 months: 20%, 25–36 months: 19%, and 37–48 months: 7%).

& Observation 4: More than 90% of the IAC projects in our dataset lasted from 4 months
to 4 years.
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6 Analysis and Results

We analyze the data and answer each of the RQs one by one in the following sub-sections.

6.1 RQ 1-Industrial Needs, Solutions Developed by, and Impacts of the IAC Projects

Since RQ 1 spans over three aspects, we review the results related to each of the three aspects
separately in the next three sub-sections.

6.1.1 Needs (Problems) Addressed in the IAC Projects

Table 4 shows the needs and problems to be solved, the solutions developed, and the achieved
impact of a representative subset of projects. Respondents provided qualitative narratives of
the needs (problems) addressed in their projects.

A number of projects were initiated to improve various aspects, e.g., P1’s goal was to improve
test models used for model-based testing, P5 aimed at improving requirements specifications, and
P13 aimed at improving the tool-support traceability analysis in embedded software. Other
projects were set up based on needs to develop approaches or tools for other purposes, e.g., need
for P3was to provide and deploy an approach to support change-impact analysis, and P81 focused
on the need to provide a practical way to perform regression test selection.

Of course, we would expect that there would be direct relationships among the needs,
solutions, and impacts of a given IAC project. After all, a project is initiated with the goal of
providing a solution (or improvement) to a given need and it is expected that the solution will
have (positive) impact on the context (e.g., software process or product under analysis). We
discuss examples of such expected linkage among the three aspects in the following section.

Given the diversity and wealth of data capturing IAC project needs, we also extracted a
high-level picture of the needs by using word-cloud visualization, as shown in Fig. 10. As we
can see, “testing”, “improvement”, “quality”, “process”, “automation”, and “systems” are
among the most popular needs addressed in the projects. Let us note that we are not using
word-cloud as a “formal” data analysis tool in this paper, but rather as a simple visualization to
show a high-level trend of the topics.
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Table 4 A representative subset of needs of, solutions developed by, and impacts of the projects

Project
ID in
the
dataset

Need / problem addressed
by the project

Solution developed in the project Impact of the project on industry

P1 Improve test models used for
model-based testing

“A tool-supported approach for
extending/refining test models
based on execution traces col-
lected during exploratory test-
ing activities”

“The number of faults that can be
detected by model-based testing
was increased by at least 30%
for the conducted case studies/”

P3 Support change-impact
analysis

“A tool combining mining
software repositories and
information retrieval
techniques”

“40% of true change impact
identified within a reasonable
amount of suggestions. Positive
feedback, especially from
project newcomers.”

P4 Overcome the technical and
semantical gap in
heterogeneous
engineering environments

“A bundle of concepts and
methods for QA and software
process and product
improvement in
multi-disciplinary engineering
context for improving defect
detection and engineering pro-
cesses”

“Enabling collaboration between
disciplines (which was not
possible before) and increase
data synchronization steps
(before manually and if
required), afterwards on a
weekly basis and automation
supported.”

P5 Improve requirements
specifications

“A method for causal analysis
using defect data and a
Bayesian network on common
causes for requirements
engineering problems”

“Reduction of 50% in defect rates.
In the first iteration, reviewers
found 1 defect per function
point and 2.4 defects per
inspection hour. In the third
(last) iteration reviewers found
0.5 defects per function point
and 2.8 defects per inspection
hour.”

P13 Improve tool-support trace-
ability analysis in embed-
ded software

“A traceability analysis tool-set
was developed and released to
the industrial context”

“Based on results from the
improving case studies, the
traceability analysis toolset was
found useful.”

P14 Manual troubleshooting of
environmental
configuration issues was
tedious and error prone.

“An automated environment
configuration testing was
developed and released to the
industrial context”

“The staging environment
instability issues were
automated detected by the tool
and corrected in minutes. The
service downtime reduced to
0–10 min per week.”

P15 Cost of manual testing was
too high and too many
regression faults were
observed

“A tool for automated test code
generation for black-box unit
testing was developed and re-
leased to the industrial context”

“Based on results from improving
case studies, with the help of the
tool, about 46 h of testers time
was saved in each unit testing
iteration.”

P17 Lack of a systematic
approach to decide what
test cases to automate in
software testing

“A systematic approach, based on
optimization and system
dynamics, was developed and
released to the industrial
context”

“Based on quantitative
measurements, the approach
improved the cost effectiveness
of software testing activities.”

P70 To implement a product line
given the nature of the
domain and the
technologies

“No solution. The study was
exploratory/descriptive”

“Not clear yet”

P81 Need for a practical way to
perform regression test
selection

“A regression test selection
technique was developed, that is
easy to integrate with industrial
projects, and shown to be
effective”

“Based on measurement our
technique reduced end-to-end
testing time for about 65% in
industrial setting”
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As stated in Section 4.4, the entire raw dataset is available online in a file (Garousi et al.
2018c). The IAC project needs/solutions data can be reviewed in that online file and may be
used for further analysis. For brevity, we only present summaries of each analyzed aspect in
this article.

& Observation 5: The IAC projects under study have covered a variety of needs /
problems and have developed different types of solutions (contributions) with a variety
of industrial impacts.

Figure 11 shows the distribution of our data points across SE topics. Each data point
corresponds to one IAC project. With the exception of the KA “professional practice”, all
SWEBOK KAs have been modestly covered. Testing and software quality are the most
frequently mentioned topics in the dataset. We initially felt that the authors and their research
areas had some impact on the dataset in this regard, but then we noticed that the survey
participants outside the author team also frequently mentioned projects on testing.

Several data points were classified under more than one KA. Figure 12 shows the number
of KAs per IAC project in a histogram. More than half of the projects (57 out of 101) focused
on a single KA, while the rest focused on more than one KA. This indicates that some IAC
projects addressed multiple SE subject areas. For example, the goal of project P64 was to
“better understand how people deal with code quality when using Continuous Integration”,
which made us classify it under three KAs: Configuration management, Construction, and
Quality.

One project (P20) focused on seven KAs, since its goal was to develop “intelligent software
systems to reduce the pumping cost of oil pipelines”, engineering “scientific software” (Segal
and Morris 2008; Farhoodi et al. 2013). Project P20 was an IAC project among SE researchers
and mechanical/electrical engineers addressing the entire process of developing an optimiza-
tion software for oil pipelines with focus on requirements, design, development, testing and
other KAs of the SWEBOK. Four other projects (P33, P35, P36 and P37) focused on six KAs,
each. Thus, we see that a mix of projects with respect to coverage of SE topics is included in
our study pool.

& Observation 6: Most of the IAC projects seem to focus on exactly one topic of SE, i.e., one
SWEBOK KA. Fewer projects considered multiple SE topics, e.g., an IAC project was to
develop a large software system applying best practices in seven KAs.

Fig. 10 Word-cloud of “needs” (problems) addressed in the projects (created using www.wordle.net)
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6.1.2 Contributions of (Solutions Developed by) the IAC Projects

Respondents were asked to provide qualitative narratives of the solutions developed and
offered in their projects (see a glimpse of the corresponding data in Table 4). Solutions are
in fact the contributions of an IAC project to its industrial partner(s). Analysis of solutions
showed that they usually are about development or customization of (new) tools or approaches
and are related to analysis, testing, measurement and processes.

For example, in P14, “an automated environment configuration testing was developed and
released in the industrial context”. In project P15, to address the problem that “cost of manual
testing was too high and there were too many regression faults”, “a tool for automated test code
generation for black-box unit testing was developed and released in the industrial context”.

To get a better understanding of the solution/contribution types developed in the IAC
projects, we classified the solutions according to the following popular taxonomy of contri-
butions used in SLR studies, e.g., (Zhi et al. 2015; Garousi et al. 2015; Petersen et al. 2015):

15
12

11
47

10
3

20
29

19
34

0
8

0 5 10 15 20 25 30 35 40 45 50

Requirements
Design

Construc�on
Tes�ng

Maintenance
Configura�on management

Project management
Process

Models & methods
Quality

Prof Prac�ce
SE economics

# of data points

Fig. 11 Breakdown of data points by the SE topics based on SWEBOK

7654321

60

50

40

30

20

10

0

# of KAs in each project

F
re

q
u

e
n

c
y
 (

#
 o

f 
p

ro
je

c
ts

)

1
45

3

13

24

57

Fig. 12 Histogram of number of SWEBOK KAs per project

Empirical Software Engineering (2019) 24:2540–2602 2565



approach (method, technique), tool, empirical study only, process, model, metric, any other
contribution (solution type). Figure 13 shows the resulting classifications. As we can see,
approaches and tools are the two most common project contributions (solutions), which
appeared in 35 (32.7%), and 32 (29.9%) projects, respectively.

Contributions of 15 projects (14.0% of the dataset) were empirical studies only. In these
IAC projects new approaches or tools were not developed but existing ones taken from the
literature were applied in industrial settings. For example, in project P12, existing defect
taxonomies were adopted from the literature to link requirements to test artifacts and to use
those links to improve effectiveness and efficiency of tests as well as the requirements review
process. In P24, researchers and practitioners did not develop a novel approach or a tool, but
instead conducted an empirical assessment and improvement of the software test processes in
the company using existing maturity models, like Test Maturity Model integration (TMMi)
(TMMI Foundation 2017) and Test Process Improvement (TPI) (Koomen and Pol 1999).

In 14 IAC projects (13.1%), solutions were process-related. For example, in P4, efforts
were spent on software process improvement (SPI) in multi-disciplinary engineering contexts
for improving defect detection and engineering processes. P8 introduced risk-based testing into
existing test processes. In P29, a company-wide measurement process based on the “Goal,
Question, Metric” (GQM) paradigm was developed.

In ten IAC projects (9.3%), solutions were model driven. For example, in P5, a Bayesian-
network model for identifying common causes of requirements engineering problems was
proposed. In P46, a meta-architecture model was developed to improve architectural design
practices in a company. Participants of P95 developed a knowledge map model.

In two IAC projects (1.9%), solutions were metric-focused. For example, motivated by the
need to identify agile metrics for assessing the performance of IT development teams, project P55
developed a set of metrics to distinguish leading and lagging aspects in agile teams (Cohn 2009).

& Observation 7: Most IAC projects in the pool tend to focus on approach or tool
contributions.

6.1.3 Industrial Impacts of the IAC Projects

Similar to project needs/contributions, respondents provided qualitative narratives of the industrial
impacts of their projects. To give a glimpse into the related qualitative data, Fig. 14 shows a word-
cloud of the textual data provided by participants. We can see in the word-cloud that terms like
“improved”, “effectiveness”, “change”, and “effort” were mentioned several times.
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Fig. 13 Classifications of project contributions based on the taxonomy of contribution types used in SLR studies
(Zhi et al. 2015; Garousi et al. 2015; Petersen et al. 2015)
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A closer look at their occurrence in the raw data reveals that many projects improved
aspects such as effectiveness and effort. Some participants provided concrete quantitative
impact (improvement) measures in their feedback. For example, the participant reporting on
P81 mentioned that “Based on measurements, our technique reduced end-to-end testing time
for about 65% in industrial setting”, and for P14, it was mentioned that “The development
environment instability issues were automatically detected by the tool and corrected in
minutes. [Thanks to the project solution], the service downtime reduced to 0-10 minutes per
week.”

Furthermore, as discussed in Section 4.5, we used a qualitative coding approach (Miles
et al. 2014) to classify industrial impacts of the projects into three categories: (1) Positive
impacts on the industry partner, backed by quantitative evidence (measures) in the data point;
(2) Positive impacts, backed by qualitative statements; and (3) No impacts on industry (yet),
work in the lab only, or “not sure”.

Figure 15 shows the results according to this classification. For a given project, a respon-
dent could provide quantitative and/or qualitative impacts (none, either or both). Since not all
respondents provided this information, the sum of the classified data points only added up to
97, and not to 101 (the total number of data points).

73 IAC projects (~68%) reported at least one type of positive impact (quantitatively or
qualitatively measured). 47 IAC projects reported quantitative positive impact. For example, a
tool-supported approach for extending/refining test models based on execution traces collected
during exploratory test activities was developed in P1 and it was reported that “The number of

Fig. 14 Word-cloud of industrial impacts in the projects (created using www.wordle.net)
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faults that can be detected by model-based test was increased by at least 30% for the
conducted case studies”. For P50, the developed approach “improved test [activities] by
automating it and reduced it by 10% for a year”.

30 IAC projects reported positive qualitative impact. For example, it was reported for P7
that “Based on three case studies from large enterprises, four success factors for introducing
risk-based testing, i.e., (1) risk drivers like an inhomogeneous distribution of risks associated
to the various parts of the tested software system, (2) an improvement goal with regards to
effectiveness or efficiency as well as, (3) a proper risk identification, and (4) risk analysis
approach were identified”.

For a large percentage of the IAC projects in our dataset respondents reported positive
impact and outcome. We attributed this to the widely-discussed “reporting” bias, which refers
to researchers (survey participants) “under-reporting unexpected or undesirable results [IAC
projects in our case], while being more trusting of expected or desirable results” (McGauran
et al. 2010).

It was surprising to observe that 20 projects (19.8%) had “no impacts on industry”.
Respondents gave various reasons for such a lack of (measured) impact, stating, e.g., that
industrial impact was not formally assessed (e.g., in P58), respondents were “Not sure [about
impact]” (P77, P78, P80), “The approach was evaluated on a case-study industrial-like system
in the ‘lab’. The industry partner did not adopt the approach, to the best of our knowledge”
(P18), “Project is still in progress (towards the end)” (P46), “The UML tool prototype showed
feasibility, but was not used in the end (the tool was discontinued)” (P67), and “So far, it [the
project] has not led to a change in the use of safety analysis techniques” (P84).

& Observation 8: A large share of IAC projects (76.2%) reported positive impacts on their
industrial contexts. In about 20% of the projects, industrial impacts were not formally
assessed or the project outcomes did not have noticeable impacts.

6.2 RQ 2- Challenges and their Negative Impacts in the IAC Projects

As discussed in the section on survey design (Section 0), one survey question asked about the
impacts of ten types of challenges (adopted from the SLR (Garousi et al. 2016a)) in the
projects, e.g., “Lack of research relevance” and “Lack of training, experience, and skills (of
researchers or practitioners)”. Responses were provided using the following five-point Likert
scale: (0): no negative impact, (1): minor negative impact, (2): moderate negative impact, (3):
high negative impact, and (4): very high negative impact.

6.2.1 Ranking the Negative Impacts of Challenges

Figure 16 shows the histogram of all the reported impacts of the challenges, and both median
and average values. The median values of the distributions are all equal to 1. Thus, we see that,
in our set of IAC projects, the challenges had, in general, minor or moderate negative impacts.
The three challenges with the highest and the three challenges with the lowest negative impacts
are:

& Mismatch between industry and academia (MIA), average impact = 1.47 (out of 4)
& Human and organizational challenges (HOC), average impact =1.32
& Lack or drop of interest/commitment (LDRC), average impact =1.28
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& Communication-related challenges (CRC), average impact = 1.08
& Problems associated with the research method (RM), average impact = 1.08
& Lack of research relevance (LRR), average impact = 0.90

As shown in Fig. 16, all histograms are skewed towards the left indicating that the
reported impacts of the challenges are low in general. In all histograms, the number
of “0 - No negative impact” responses is higher than or equal to each of the other
responses. This may denote the experience and expertise of the participants, in
general, in carrying out IAC projects.

As the above ranking shows, mismatch between industry and academia (MIA) is the
challenge with the highest observed negative impact. It has been reported in previous studies,
e.g., (Sandberg et al. 2011; Wohlin 2013b; Rombach and Achatz 2007), that academia and
industry have indeed different cultures, goals and objectives, e.g., academics’ main goal is to
conduct research and publish papers, while industry’s main goal is revenue generation and to
excel in their (software) business. Thus, it is very likely that this challenge is to some degree
always present in IAC projects.

An aspect of mismatch between industry and academia is choosing the “right”
topics for collaboration (what problem to focus on in an IAC project?). This issue has
been extensively discussed in the literature. For some researchers, industrial problems
lack scientific novelty or challenges, while some practitioners believe that most of the
solutions developed in the academia have low applicability and scalability (Garousi
et al. 2016a; Briand 2012). The first author and some of his industry colleagues had
success in addressing this challenge in (Garousi and Herkiloğlu 2016), in which they
reported a set of guidelines and a grounded-theory-based approach for selecting the
right topics in IAC projects with focus on software testing. This approach could be
easily transferred to other areas of SE.

& Recommendation 1: Choose the “right” topic for your IAC, since one aspect of mismatch
between industry and academia is failing to choose the right topics for collaboration.
Readers are encouraged to review guidelines such as (Garousi and Herkiloğlu 2016) to
tackle this problem.
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Furthermore, the SLR study (Garousi et al. 2016a) divides the challenge of industry-academia
mismatch into those sub-challenges: Different terminology and ways of communicating; and
Different communication channels and directions of information flow. To address those
challenges, the SLR study suggested the following practices: (1) Having prior projects
between researchers and practitioners and positive experience (which facilitates communica-
tion in current projects); (2) Personal interaction among researchers and practitioners during
data collection; and (3) Running workshops and seminars (increases visibility across organi-
zations, allows to show relevance, strength and ability of both sides).

& Recommendation 2: Tackle industry-academia mismatch in your projects using the variety
of remedies proposed in the SLR study (Garousi et al. 2016a).

To address the second most important types of challenges, i.e., “human and organizational
challenge”s, we observed that in IAC projects it is considered a good idea to involve the key
staff within the company to clarify the common goals, to support the knowledge transfer, and
to validate the ideas.

The third most important challenge, i.e., “lack or drop of interest/commitment”, should also
be properly addressed. A crucial aspect in many human endeavors is commitment. Whenever
organizations are involved, it is very important to guarantee the commitment from top
managers. For example, ensuring the direct participation of CEOs of small companies (such
as software startups) was indicated by one of our participants (P8) as being relevant for
boosting the interest/commitment. In many contexts, having a champion is all that is needed
to have success. It is also important to ensure engagement and to manage commitment.

The challenge with the lowest negative impacts is “lack of research relevance” (LRR,
average = 0.90 out of 4), which means that the IAC projects included in our study, in their vast
majority, are indeed based in industrial problems that require a research-oriented approach. In fact,
in almost half of the projects (48 projects, 47.5%), the LLR challenge had no adverse impact at all
(see the LRR histogram in Fig. 16). If we consider the cases where the LLR challenge had no
negative or just a minor negative impact, the percentage of projects goes up to almost 75%.
However, we should note that industrial relevance of academic research in general, has been
criticized in many papers in SE, e.g., (Briand 2011; Jain et al. 2013; Lo et al. 2015), and in other
disciplines (Mason 2001; Panda and Gupta 2014; Fox and Groesser 2016; Tan and Tang 2016;
Olson et al. 2008). Since our dataset is in fact made up of IAC projects in which research had to be
aligned with industrial needs, it is not surprising that this challenge has been rated very low.

& Observation 9: Mismatch between industry and academia (MIA) and Human and organi-
zational challenges (HOC) have the highest negative impacts on projects.

When assessing challenges of the projects, we were aware of the ratio of the projects (~68%)
for which positive impacts (outcomes) were reported (as discussed in Section 6.2). One would
expect that the projects with positive outcomes are less likely to be impacted by the challenges,
compared to projects with no or negative impacts in the sample. For this purpose, we divided
the two groups of projects and calculated for each group the sum of the reported challenge
levels (as gathered in the 5-point Likert scale introduced in Section 4.2). For example, for
project P1, the levels of the ten considered challenges were: 0, 0, 2, 1, 1, 3, 3, 3, 3, and 0,
which sums up to 16. Figure 17 shows two boxplots for the sums over challenge levels of the
projects having positive impact (on the right) versus those without (on the left). We can see that
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there is no significant difference between the two cases, thus not confirming our hypothesis
that the projects with positive outcomes were less likely to be impacted by the challenges,
compared to projects with no or negative impacts in the sample.

6.2.2 How the Challenges Affected the IAC Projects

In one survey question we asked how the challenges impacted the projects. 70 of the 101 data
points provided answers to this question. The full list of verbatim responses to this question is
provided in Appendix 1.

To make sense of the textual data, we conducted qualitative coding and mapped the
explanations provided by respondents to the list of challenges. Each explanation could refer
to one or more challenges. We provide a few examples below:

& Explanation provided in P1: “Lack of resources (man hours) that can be allocated by the
employees who have to continuously follow up development activities and meet dead-
lines”: This was mapped to the challenge category: Resource-related challenges (RRC)

& Explanation provided in P2: “Relocation of key people within the company”: This was
mapped to the challenge category: Human and organizational challenges (HOC)

& Explanation provided in P3: “Long negotiations before being able to deploy tool”: This
was mapped to the challenge category: Mismatch between industry and academia (MIA)

& Explanation provided in P4: “The availability of industry contact persons made it chal-
lenging, because there are unavailable for a certain time interval or it took quite long to get
answers.“: This was mapped to the challenge category: Resource-related challenges (RRC)
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& Explanation provided in P5: “After causal analysis sessions, we came up with a set of
Improvement actions, but not all of them could be adopted, since this would change
organizational standards beyond the scope of the project. Therefore, most of the reported
benefits actually came from institutionalizing inspections and categorizing defects (and not
from the causal analysis itself).”: This was mapped to the challenge category: Human and
organizational challenges (HOC)

& Explanation provided in P6: “Organizational commitment and resources to implement
[the] approach was difficult to get”: This was mapped to two challenge categories: Lack or
drop of interest / commitment (LDRC), and Resource-related challenges (RRC)

We compared the number of times each of the challenges appeared in the provided explana-
tions of how the challenges affected the projects versus the average negative impact of
challenges (based on rubric data) as discussed in Section 6.2.1. The related visualization in
the form of a scatterplot is shown in Fig. 18. The Pearson correlation of the two data series in
this figure is 0.606, denoting a moderate correlation. We were actually expecting a higher
correlation. The reason for the relatively low correlation is that some respondents mentioned
negative impact for certain challenges (based on rubric data) but provided explanations related
to other challenge types.

We then looked at the coded data (the groups under each challenge type),and
synthesized the responses. We report a summary of that synthesis below, grouped
by the type of challenges and ordered according to the frequencies with which
challenge types occurred in the provided explanations. To support our discussion,
we provide verbatim quotes of the received responses.
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Resource-Related Challenges (RRC) 22 of the 70 (31%) provided explanations focused on
RRC. Most of those explanations mentioned lack of time to invest in the IAC project as one
main challenge that had negative impact.

For the case of P4, “the availability of industry contact persons made it challenging,
because there are unavailable for a certain time interval or it took quite long to get answers”.
In many cases, unfortunately, the IAC project gets low priority when compared to other
business-critical tasks. A project employee was involved in other important commercial
projects during the research collaboration and therefore had to quit.

In addition to time and human resources, lack or shortage of financial resources
was also a recurring challenge. For example, the data point P12 reported that “the
project was not formally funded”. We actually had a question in the demographics
section asking about source(s) of funding (if any) for each project. As per our
counting, 14 of the 101 projects were not funded (yet). A non-funded IAC is often
executed out of curiosity and passion from both sides, or when there is a Master or
PhD student who already works in the company and conducts her/his thesis on the
topic that becomes the IAC. The first author had several such students in Turkey
which resulted in successful theses and IACs.

Often, researchers work for free when there is no research funding for an IAC,
sometimes only using the internal funding and resources of their universities. An
example is P26, a project that was an industrial case study in automated visual GUI
testing (Garousi et al. 2017b). In such IAC projects, due to lack of funding, there are
inherent challenges to run the project, e.g., hard to hire additional PhD students, and
inability to attend conferences to present papers, etc.

Mismatch between Industry and Academia (MIA) Mismatch between industry and acade-
mia was mentioned in 20 responses as a major challenge. A mismatch is possible w.r.t.
different aspects, e.g., mismatch in expectations (P34, P67, P79, P87), mismatch in viewpoints
of what is a technical challenge (P50, P87), mismatch in time horizon (P51, P53, P63, P74),
mismatch in willingness to change (P57), mismatch in assumptions (P76), and mismatch in
objectives and backgrounds (P86).

For P34, it was mentioned that “The project ended up being more a development/
engineering one, with a minimal necessity to include research efforts. The management of
the project was interested in creating research evidences, like patents and papers. This, the
team decided to write scientific papers to address the more research-oriented perspectives of
the project”. For 67, it was mentioned that “industry wanted solutions that would easily
integrate in their current processes. academics wanted to propose their own methods”.

For P50, it was mentioned that “It was very hard to find previous research done on this
topic. And whenever we talked to other researchers, they didn’t think it was a problem.
Whereas when talking with practitioners, we often got the question if/when they would be
able to give it a try. I guess you could say both sides perceive different challenges for (or their
impact on) the industry”.

For P51, it was mentioned that “The long-term research scope of researchers at universities
does not link with short-term goals of many companies”. For P34, it was mentioned that
“Academics wanted to use UML, but no industrial partners were using it”. For P86, it was
mentioned that “the organization and the researchers had different objectives and back-
grounds. so, each side tried to make the resulting products be like what they like. finally, the
results did not make either of them happy”.
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Contractual, Privacy and IP Concerns (CPC) Challenges related to CPC were the third most
frequently discussed challenge and reported in eleven cases. For example, for P16, it was
mentioned that “Security and privacy concerns were not discussed early on in the project. The
only cancelation reason of the project was just that which was a non-technical issue, i.e.,
inability to get security clearance for two graduate students planned to be involved in the
project”. Thus, while contractual and privacy concerns may look trivial for people new to IAC
projects, they sometimes get very critical and lead to cancelation of a project in which a lot of
effort has already been spent.

A similar, but less critical, situation was reported for P49. The respondent mentioned his/
her disappointment with the fact that, although “rich findings and results from the industry”
were generated, their research team could not “exhaustively discuss it and share it with the
community. All the discussion and knowledge sharing [instead had] to be [done] through
open-source, and rather smaller subjects”. The same issue was reported for P68: “Privacy
concerns made the process for publication harder and caused the paper to not have specific
measurements that would have strengthened the arguments”. Similarly, for P80, it was
mentioned that “Not surprisingly, enterprises are paranoiac when it comes to security. This
poses several challenges, e.g., from accessing to the company software for experiments to even
name the company in published papers”. In other projects (such as P69), due to security
concerns, “all the development had to be done on-site [in industry]”.

Issues w.r.t. IP were mentioned for several projects. For example, for P75, it was mentioned
that “Multiple small to medium sized enterprises [were] involved in the project, each wanting
to retain their own IP”.

In some cases, team members had to go through long negotiations, e.g., in P3, “long
negotiations [were held] before being able to deploy [the] tool”.

Lack of Training, Experience, and Skills (LTES) Ten of the 70 provided explanations
discussed negative impacts of challenges related to LTES. In P15, “lack of SE training in
industry side caused the industry folks to undervalue the novelty of test techniques”. In P35,
“the project required knowledge of the software test process. A lack of experience, by the team,
on the software development lifecycle made the team’s velocity lower and a slight delay in the
development of the application”. Also, in P36, “development approaches required a multidis-
ciplinary team with a significant learning curve on business context and tools to be adopted”.

Several respondents mentioned technical and training challenges w.r.t. knowledge of UML
in their projects, e.g., in P77, “industrial practitioners often need training to understand them
[UML models], as they do not [often] use UML during their regular work”.

Another project (P91) whose topic was on software process improvement, mentioned a
similar challenge: “(…) their [the practitioners’] lack of process modeling knowledge and
difficulty in explaining the processes while communicating the required information, their
difficulty in reading the models”.

Another similar issue was raised in P99: “The resistance of managers who do not have the
sufficient background to understand the research ideas but still have a huge impact on the
decision-making process”.

Lack or Drop of Interest / Commitment (LDRC) Eight of the 70 provided explanations
discussed negative impacts in projects related to LDRC. For P22, it was reported that “interest
/ commitment dropped early on”. Such a situation could happen due to many reasons, e.g.,
when expectations are not met or when they are not clearly communicated.
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In P32, the following observation was reported: “Much of the research published by
academia was not of interest to the companies”. That project’s goal was to “understand
problems in mobile application testing and addressing those problems by transferring solu-
tions proposed in the literature”. When the researchers provided a synthesized summary of the
existing mobile testing literature to their industry partners, it seemed that the industrialists did
not show much interest in reviewing them.

In general, many projects reported that organizational commitment and resources to
implement research approaches were “difficult to get”, e.g., P6. For P85 also, it was reported
that “it was hard to keep the motivation of the key personnel in the organization motivated,
since they did not have much incentive to contribute to an innovative project as it required
more effort than their regular job descriptions”.

Human and Organizational Challenges (HOC) Human and organizational challenges
were reported in six cases. In some cases, “relocation of key people within the
company” (P2) caused issues in the IAC project. It often becomes an issue when a
given IAC project’s industry contact point (also called “champion” (Wohlin et al.
2012)) changes the position within the company or moves to another company. In the
former case, since the champion is still in the company, the same person may be able
to continue her/his role in the project, or someone else may “take over” the role of
contact point. If no proper arrangements are made, the project will most likely be
paused or terminated (e.g., P13).

There were also organizational challenges, e.g., in P5, the team members “came up with a
set of improvement actions, but not all of them could be adopted, since this would impact
changing organizational standards beyond the scope of the project”.

Resistance to change, by staff and organizations, was anothermentioned challenge, e.g., in P88
(“additional effort was needed to be spent to overcome the resistance of employees”) and P91.

Management-Related Challenges (MRC) Six of the 70 provided explanations discussed
negative impacts due to management-related challenges. Changes in company management
or priorities often produce challenges in IAC projects, e.g., P39 and P44.

IAC projects may also struggle to get management to “believe in the business value of the
collaboration” (P53). It is also usually not easy to engage management “because academia is
basically slow and [often] unwilling to adapt” (P57).

Lack of Research Relevance (LRR) Five responses discussed negative impacts due to lack of
research relevance. In P13, “the connection link between industry and academia got weak in middle
of project due to turn-over in the company, and thus gradually led to lack of research relevance”.

For P38, “the research relevance of the project lost its significance during the project. Although
the project had focused on relevant research issues related to test processes, those research issues
were not exploited since the defined test process had not been sufficiently studied”.

In P41, “the idea was to build a measurement system in [an] EU project. Parts of the
measurement where not novel and those got implemented. All the other goals were unrealistic
and did not get implemented. [There were] lots of bureaucracy involved”.

Unsuitable Research Methods (RM) Four responses discussed negative impacts due to
unsuitable research methods. For P67, it was reported that “Industry wanted solutions that
would easily integrate in their current processes. Academics wanted to propose their own
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methods, tools/techniques that they are fond of, without considering the actual needs of the
industrial partners”. Such a research approach is often called “advocacy research” (also called
the “research-then-transfer”) (Potts 1993; Glass 1994) which is often not received well by
industry. Researchers have commented on how to address such an issue. For example, (Tichy
et al. 1993) called for “a paradigm shift ... from purely theoretical and building-oriented to
experimental”. (Griswold and Opdyke 2015)suggested to researchers to “see the world [SE
practice] as it is”. (Glass 1994) suggested using the “industry-as-laboratory” approach, in
which “researchers identify problems through close involvement with industrial projects, and
create and evaluate solutions in an almost indivisible research activity” (Potts 1993).

For P47, it was reported that “We [the team members] missed a major flaw to validity
through combined lack of understanding related to test flakiness”, denoting issues in the
research method. A challenge in P53 was that “[the] tension between scientific quality and
practical applicability cannot be avoided but can be balanced with experience”.

For P57, it was reported that “they [researchers] come in with a hammer and look for
nails”, again denoting fundamental issues in research methods. Similarly, for P67, it was
reported that: “academics wanted to propose their own methods, tools/techniques that they are
fond of, without considering the actual needs of the industrial partners”, again highlighting the
negative impact of the “advocacy research” (also called “research-then-transfer”) (Potts 1993;
Glass 1994).

Communication-Related Challenges (CRC) Three responses discussed negative impacts due
to communication-related challenges. Communication habits/patterns of the involved parties
might be different, e.g., speed in responding to emails or technical tasks (such as data
collection). If both sides (researchers and practitioners) do not show “understanding” for such
different styles, there could be challenges.

For P53, it was reported that “Communication habits/patterns are challenges and need
champions on both sides to be overcome”. For P38, it was reported that” Due to some
connection problems (Skype mainly), there was some challenges related to communication”.
Thus, we can that, for the case of remote collaborations, it is important to ensure smooth and
reliable teleconferencing facilities.

P20 was a project on engineering (development) of scientific software (Segal and Morris
2008; Farhoodi et al. 2013). For that project, it was reported that “Since software engineers
worked with other types of engineers in the oil industry (e.g., chemical and mechanical
engineers), as expected, there was considerable gap of knowledge in the two sides w.r.t. the
other side. The two sides had to struggle to communicate and understand each other in many
occasions”.

One Challenge could Lead to One or More Additional Challenges By analyzing the data,
we also came across a few cases in which a challenge could lead to one or more additional
challenges. For example, for P10, there was a “demanding industry partner” and expectations
of both sides were not clearly communicated and thus one side put more demand on the other
side. Such a situation often negatively impacts the relationship (the so called “social capital”
(Al-Tabbaa and Ankrah 2016)) which in turn degrades the performance of the IAC project, and
could result in the Drop of interest/commitment” challenge.

As another example, for P13 “the connection link between industry and academia got weak
in middle of project due to turn-over in the company”. Such a challenge “gradually led to lack
of research relevance”.
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& Recommendation 3: Review how the challenges affected the projects in the dataset
of this study (summarized above), and the suggested best practices provided in the
SLR study (Garousi et al. 2016a) to be able to cope with similar challenges in
your IAC projects.

6.2.3 Other Challenges Observed

Another survey question (see Q3.3 in (Garousi et al. 2016c)) asked participants about any
other challenge(s) they might have observed in their projects, in addition to the ten categories
of challenges that we had asked in a previous question (as discussed above in Section 6.2.1).
This question was answered for 24 of the 101 projects.

After analyzing the provided responses, we found that 20 of those 24 “other challenges”
could actually be classified under our own ten challenge types (see the above sections). We
show a few of those responses that we classified under our own ten challenge types below:

& Human and organizational challenges

& “Difficulty to introduce new tool in a strict process “(P3)
& “Restructuring of company leading to moved role for championing individual “(P82)

& Mismatch between industry and academia

& “Gap between research prototypes and industry projects (different key goals of project
stakeholders) “(P4)

& “Keeping a long-term research focus while delivering (interesting enough) short-term
results for the service and developing unit “(P43)

& “Publications are great, but for industry it is not the end-goal. The end-goal is to use the
tool... which requires more work than in a typical IAC set-up “(P48)

& “Shifting business priorities “(P73)

& Contractual, and privacy concerns

& “The workers council did not allow us to collect all the data that we wanted to have (e.g.,
how long does a person work for the company, ...) “(P45)

& “Publishing the results were difficult due to privacy / sensitive information concerns. We
succeeded, but it was somewhat difficult “(P46)

& Management-related challenge

& “Changes in top-management of software companies; often leading to new and adjusted
goals. Research should be more agile in following these changes “(P51)

& Lack of training, experience, and skills

& “The lack of know-how on the system domain by the academics “(P57)
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The remaining four of those 24 “other challenges” were related to getting funding in support of
the IAC project. We itemize those responses below:

& “Time and effort spent for bureaucratic issues due to the involvement (communication
with) multiple funding partners” (P1)

& “Lack of understanding for empirical approach by sponsors. Terminology was also a
problem as people often tend to make (negative) associations with certain terms. We
simply talked about technology transfer when actually meaning technical action research
(to not be associated with ivory tower research)” (P66). The first author also recently
experienced these challenges in the context of a recent grant proposal in which he
partnered with three industrial companies and two other research institutes on the topic
of “testing scientific software”. After submitting the proposal to the Dutch national funding
agency (called: NWO), it was rejected and the main comment was that most of the work
was empirical and there was little “scientific” merit in the proposal.

& “To get funding, in the grant applications you need to promise the Moon (a grant
application in Software Engineering that does not also cure AIDS and cancer as byproduct
is not worthy to fund). But what you get in the end (i.e. in terms of PhD students and post-
docs to hire) is not enough to even cover 1/10th of what promised... the industrial partners
might not be happy about it” (P67)

& “It was not easy to get the project funded, given the bureaucracy at a Brazilian federal
university. I just moved to a privately held university [name removed to keep anonymity]
that has a huge tradition in promoting university-industry collaborations. Promoting and
facilitating industry collaborations was the main motivation for my move”. (P71)

6.2.4 RQ 3- Practices (Patterns and Anti-Patterns) and their Impacts in the IAC Projects

For RQ 3, we measured the impacts of applying practices in the IAC projects. We intentionally
did not classify practices into patterns (what to do to ensure success) or anti-patterns (what not
to do to avoid failure) as it was done in the survey (Garousi et al. 2016a), since we wanted to
see whether extracted data for impacts related to each practice would denote it as a practice
resulting in positive or negative outcomes (i.e., patterns and anti-patterns). As discussed in
Section 4.2 (survey design), responses were provided using the following five-point Likert
scale: (−2) - Very negative impact; (−1): Negative impact; (0): Neutral (the practice did not
have any impact); (+1): Positive impact; and (+2): Very positive impact. An “empty” answer
would denote that “The practice was not applied / NA”.

Figure 19 shows the reported impacts of practices on projects, classified using the five-point
Likert scale. For example, the “Ensuring engagement and managing commitment (ENMC)”
practice had largely positive (48 votes) or very positive impact (29 votes).

To be able to compare the impacts of practices, we calculated the average values for all the
101 data points. For example, if there were equal number of −2 and + 2 values for a given
practice (and not other values), the average would be 0, denoting that considering all data
points, that practice had overall a neutral impact. Figure 20 shows the average values.

6.2.5 Patterns (What to do to Ensure Success)

Based on the values in Fig. 20, the three practices with the highest positive impacts are:
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(1) Working in (as) a team and involving the “right” practitioners (WTI), average impact =
1.39 (in range of [−2, 2])

(2) Having mutual respect, understanding and appreciation (HMRU), average impact =1.37
(3) Considering and understanding industry’s needs, and giving explicit industry benefits

(CUIN), average impact =1.28

& Observation 10: The three most important practices in IAC projects to increase chances of
success are: (1) Working in (as) a team and involving the “right” practitioners, (2) Having
mutual respect, understanding and appreciation, and (3) Considering and understanding
industry’s needs, and giving explicit industry benefits.

We noticed interesting “contrasting” situations for some of the practices. For example,
the HMRU practice had an overall positive impact (i.e., it ranked the second most
helpful practice above), however, in the case of one data point (P22), HMRU had a
“high” negative impact. The following supporting comment was entered by the
corresponding participant for P22: “the industry side did not appreciate the need for
software testing research”. For another project (P21), “moderate” negative impact was
reported for the HMRU practice, with the following comment: “appreciation from the
industry side decayed by time”. Thus, we can see that while most of the helpful
practices were supporting IAC projects, there could be exceptional opposing cases due
to differences in the project contexts. Note that, in such cases, it is not appropriate to
say that the practice itself is an anti-pattern or had a negative impact. One should
rather say that not being able to satisfy (implement) the practice yields a negative
impact (like the examples of projects P21 and P22).

We had two follow-up questions asking for a narrative explanation of the effect of
the practice with the most positive impact. We reviewed those explanations about
manifestations of the patterns and matched them with the corresponding patterns. We
show a subset of the matching data in Table 5, which presents qualitative data and
lessons learned.

& Recommendation 4: Review and consider using the patterns (as listed in Table 5) in your
IAC projects.

Based on the qualitative data provided by the participants, we give the following recom-
mendations with respect to the top-3 reported patterns to increases chances of success in IAC
projects:

& Having mutual respect, understanding and appreciation:
Recommendation 5: Develop a relationship of trust with the involved practi-

tioners. Trustful relationship is key in the successful execution of many IAC
projects. Often, the physical presence of the researchers at the industrial partners’
facilities, during some periods of time, proves helpful in developing this relation-
ship of trust.

& Working in (as) a team and involving the right practitioners:
Recommendation 6: Develop a team spirit in your IAC projects. Like in collective

sports, team spirit is crucial for a successful IAC project. A good practice, indicated by
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Table 5 Patterns and their manifestations in the sample data points (quotes from the data)

Patterns Manifestations (Example quotes from the survey data)

Proper and active knowledge management (PAKM) • The fact that we can get feedbacks right away! Knowledge
transferring to the industrial practitioners is the key.

Ensuring engagement and managing commitment
(ENMC)

•We keep including the practitioners in the loop of the project day
by day and I think that’s the most importance practice.

• In our project, SME’s were involved. Management commitment
was therefore essential. Indeed, two CEOs even participated
directly in the project.

Considering and understanding industry’s needs,
and giving explicit industry benefits (CUIN)

• The academia side carefully considered and understood
industry’s needs, and gave explicit industry benefits during the
project.

• Giving explicit industry benefits and solving the right problem,
in our case we categorized defects found during peer reviews
and focused directly on them. Thus, we were using real and
relevant data, in which the industry partner had a direct
interest. One of the researchers was a trainee at the
organization, which gave us on-site presence and easy access
to all the data. Finally, the improvements were measured
precisely in terms of defects per function point and also defects
per inspection hour.”

• Keeping the companies happy and having constant discussion
with them.

• Showing the prototypes and intermediate solutions off to
colleagues in industry, gave good feedback on what the next
steps should be, and what would be possible with the proposed
approach/tool.

• Main positive impact was providing explicit industry benefits.
This in turn is associated to a precise measurement approach
to enable clearly showing the achieved benefits to the industry
partner stakeholders. Also, the new technology that was
applied during the project had been evaluated before, in
academy and with industry representatives, before applying it
in the real case study.

Having mutual respect, understanding and
appreciation (HMRU)

• The most positive practice was having mutual respect,
understanding and appreciation.

• When having a project with multiple partners (and limited
resources), goal alignment becomes essential.

•Developing a relationship of trust with the involved practitioners
was the key in the successful execution of study steps.

Being Agile (BA) • “We applied the Agile practices and since the project was based
on action-research, we reacted to changes and needs ASAP.
This led to success.”

• Being agile in organizing research
• Allowing the researcher full reign after describing the problem

and enabling them to go wherever the data took them.
Working in (as) a team and involving the “right”

practitioners (WTI)
• “Tight and regular knowledge exchange during the project

(typically bi-weekly)”
• Finding the right people in the right environment is the key of

success of such a project, in my experience.
Considering and manage risks and limitations

(CMRL)
No discussion quotes in the data.

Researcher’s on-site presence and access (ROSP) • “Appointing researchers who have domain knowledge and
full-time access to subject systems”

• “Build trust and spend time on site”
• The physical presence of the researcher for some time at the

company was quite helpful in developing this relationship of
trust.

Following a proper research/data collection method
(FPRM)

• The research method (experiment) was well understood and, due
to that, the management had trust in our results.

Managing funding/recruiting/partnerships and
contracting privacy (MFRP)

No discussion quotes in the data.

Understanding the context, constraints and language
(UCCL)

• In order to get quickly to the point and to engage with the
company experts, it is important that the researcher has solid
technical (and practical) background and speaks the language
of the practitioners.

Efficient research project management (ERPM) No discussion quotes in the data.
Conducting measurement/ assessment (CMA) No discussion quotes in the data.
Testing pilot solutions before using them in industry

(TPS)
• Testing pilot solutions in lab settings before using them in

industry was a good practice
Providing tool support for solutions (PTS) No discussion quotes in the data.
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many of our respondents, to boost this team spirit is to consider the presence of the
academics at the facilities of the industrial partners. This practice seems to strengthen the
bond between the two sides.

Recommendation 7: Organize frequent and regular meetings during the IAC project.
One recommendation is to meet twice a week, to ensure that the knowledge is exchanged
among the team members. Another guideline is to involve academics with domain
knowledge (i.e., knowledge on the subjects being addressed by the IAC project). In fact,
researchers should have solid technical and practical background and be able to speak the
language of the practitioners.

& Considering and understanding industry’s needs, and giving explicit industry benefits:
Recommendation 8: Make sure that each side adapts, as much as possible, to the other

one (e.g., in terms of terminology, needs, etc.). Academia and industry have different
mindsets and distinct time frames. A good recommendation is for academics to give
explicit industry benefits and solve the right problem. In some cases, this entails simple
things such as using real and relevant data, in which the industry partner has a direct
interest.

Recommendation 9: Follow iterative approaches in IAC projects: Adopting iterative
approaches, such as the ones suggested by agile methods, seem useful as they allow
industrial partners to iteratively adapt their needs, a practice that is followed in some
contexts (Hicks and Foster 2010).

6.2.6 Anti-Patterns (What not to do to Avoid Failure)

In terms of anti-patterns (the last four practices in Fig. 20), the participants reported
negative impacts for them, as was expected. The anti-pattern with the highest negative
impact is “Following self-centric approach” (FSCA) in conducting IAC projects, i.e.,
each side (industry and academia) focuses only on its needs and objectives in the
project. We have had personal experience in how this particular anti-pattern can ruin
an IAC, for example, we have been involved in an IAC in which a researcher just
focused on the academic objectives (publishing papers) after the project started and
did not consider the industrial partner’s objective of decreasing test costs in practices
(although it was mentioned in the project description for the funding agency). This
anti-pattern led to a decrease of mutual trust and loss of “social capital” (Al-Tabbaa
and Ankrah 2016) on the side of the industrial partner which unfortunately led to a
poor execution of the IAC project at the end.

As Fig. 20 shows, the other three anti-patterns were also empirically observed in
the dataset: Poor change management; Ignoring project, organizational, or product
characteristics; Unstructured decision structures. We reviewed the quotes from the
dataset that provided narrative explanation on manifestations of the anti-patterns and
matched them with the four anti-patterns types. We show a subset of the matching
data in Table 6. As we can see, there is a huge amount of qualitative data and
lessons learned in these quotes, which we present and hope that readers can benefit
from.

& Recommendation 10: Review and take the anti-patterns (as listed in Table 6) as cautionary
lessons in your IAC projects.

2582 Empirical Software Engineering (2019) 24:2540–2602



Based on the qualitative data provided by the participants, we provide the following
recommendations with respect to the top-three reported anti-patterns to increase chances of
success in IAC:

& Poor change management:
Recommendation 11: Be more flexible to change in the IAC project. We have observed

in a few projects of our own that many academics are usually work in big up-front design
(planned) fashion and are not flexible to changes. However, industry in general is
becoming more flexible to change and we have seen that this can sometimes cause issues
when things do not go as planned, e.g., when the project’s main contact point in the
company leaves the company without notice.

& Ignoring project, organizational, or product characteristics:
Recommendation 12: Adopt and pay attention to needs of both sides of the IAC project.

In some cases, researchers are interested in just proving the concept, while the industry
partners are often looking for tools with full functionality and relevant quality attributes
(usability, portability, maintainability).

Recommendation 13: Pay attention to organizational characteristics (norms). Re-
searchers are encouraged to have the “soft” skills to follow the specific written and non-
written organizational norms.

Table 6 Anti-patterns and examples of their manifestations in the sample data points (quotes from the data)

Anti-patterns Manifestations (Example quotes from the survey data)

Following self-centric approach • “Lack of [active] collaboration (between industry and research
partners) can make the project challenging (and hinder successful
projects)”

• “A self-centric approach not taking the specific situation of the 5 SMEs
[involved in the project]”

• “The industry side did not appreciate the need for SW test research”
• “A PhD student was the bridge between the two sides (he worked for

the company). Self-centric approach was slightly the case”
Ignoring project, organizational, or

product characteristics
• “Underestimating the fluctuations regarding workload at the industry

side due to deadlines, crisis situations, relocation of employees, etc.”
• “Underestimating the rigidness of the development process under

study”
• “Due to the team lack of experience in the test domain, in the beginning

of the project the team had some difficulty understanding the project
context.”

• “To sit down and get acceptance to conduct measurements in an
organization/group (as part of a large organization) that has “little
time” is often futile (since their connection to a specific measurement
is often vague, it’s good measurement for the company, but not for the
group that needs to collect measurements). Therefore, new measure-
ments are hard to get started, or old measurements might get re-
moved.”

Poor change management • “The connection link between industry and academia got weak in
middle of project due to turn-over in the company, and from that point
on, the project was led mostly by the academia side. The industry side
‘just stayed on paper’”

• “Strictly following the research plan that made no sense. Wrong
partners”

Unstructured decision structures • “Lack of full control on the resources provided by the industry”
• “Unclear and non-transparent decisions”
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& Following a self-centric approach:
Recommendation 14: Avoid self-centric approach. We have observed in a few projects

of our own that many researchers follow self-centric approach in that they consider their
ideas and method unquestionable and thus act in a self-centric fashion. This usually turns
off industry partners and should be avoided.

6.3 Discussion

In this section, we first discuss the implications of our findings and recommendations and then
the limitations and potential threats to validity of this study.

6.3.1 Implication of Findings

Based on the synthesis of all the data provided by the participants in the previous
sections, we offer four take-away messages in this article that should ensure success-
ful IAC projects. They are the following: (1) establishing a common goal; (2)
recognizing and understanding the fundamental difference; (3) understanding and team
work; and (4) managerial topics.

A common goal is a cornerstone of any IAC project. In the histogram showing the impact
of challenges (Fig. 16), we see that lack or drop of interest is the challenge with the highest
negative impact. Mismatch between industry and academia is the challenge with the second
highest impact. Both of these challenges reflect that a common goal for the research project is
missing. Without a common goal that is both interesting and beneficial for both parties, IAC
projects have a little chance of succeeding. This is highlighted by the quote stating that
“Finding common ground is hard but important” (P52).

The fundamental difference denotes the fact that, ultimately, academics want to get top
journal publications and material for Ph.D. degrees from the projects. Industry wants a solution
that is useful and comes with low maintenance cost. For academics, making improvements to a
tool or process or writing a publication is a common research goal. Industry, on the other hand,
wants long-term solutions, as they have to live with the new tool or process for the years to
come, while the academics move to the next challenge. For example, a new tool that is correct
90% of the time might be a great improvement in a specific industry setting and thus the
industry partner would in a next step focus on making sure that the tool is usable and
maintenance free (able to handle all special cases, for example). In contrast, academics would
focus on developing a new prototypical tool that is 95% correct. Thus, the academic interest
would be to continue to improve the tool’s correctness no matter whether the new prototype
renders the tool less usable and increases maintenance cost or learnability (for example
requiring longer running time, more manual steps, more information from different data
sources). Our suggestion for this fundamental issue is that both sides recognize that such a
point exists where interest would differ and define what to do at this point. In an ideal case,
industry would start to ensure tool usability and low maintenance, while academics would be
allowed to work on the tool until prior work is beaten.

Understanding and team-work ensure that IAC projects move smoothly and the common
goal is not lost in the process. Industry and academia have different cultures, backgrounds, and
objectives. Thus, it is natural that all of the top-3 ranked success criteria deal with the topic of
gaining understanding and forming a team:
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1. Having mutual respect, understanding and appreciation (HMRU)
2. Working in (as) a team and involving the “right” practitioners (WTI)
3. Considering and understanding industry’s needs, and giving explicit industry benefits

(CUIN)

Even when a common goal has been found and a team with a mutual understanding and
respecting has been formed, an IAC project can fail due to management related issues. For
example, contractual and privacy concerns need to be taken into account. Getting and keeping
higher levels of management commitment is important, as otherwise top-level mangers can
abruptly abort IAC projects if they think the company employees are wasting their time.
Internal company policies need to be understood; for example, some units or sites of a large
company may not have permission (or have limitations) to be involved in research activities.
Some of these managerial topics could be impossible to bypass and may lead to ending a
research project before it has even begun.

We should also mention in this context that challenges of an IAC project should not be
analyzed in isolation, as challenges are often inter-related with patterns and anti-patterns.
Figure 21 shows a cause-effect diagram of inter-relations of challenges, patterns, and anti-
patterns (adopted from (Garousi et al. 2016b)). Challenges and anti-patterns are expected to
negatively impact success, while applying patterns is expected to positively impact success.
Challenges necessitate the need for applying patterns that address those challenges. Patterns
and anti-patterns could neutralize each other. For example, the anti-pattern “Following self-
centric approach (FSCA)” could damage (neutralize) the benefits gained by applying the
pattern “Working as a team and involving practitioners (WTI)”.

Furthermore, anti-patterns usually bring more challenges. Thus, participants of an IAC
usually apply patterns (which we discuss later in the context of RQ 2) to address challenges.
For example, to decrease the cultural and objective mismatch between industry and academia,
various practices, such as those grouped under the “Understanding the context, constraints and
language (UCCL)” pattern (Garousi et al. 2016a), are usually applied.

6.3.2 A Checklist for IAC Projects

In order to help researchers and practitioners who plan to conduct an IAC, we suggest a
checklist as shown in Table 7. The checklist is based on the recommendations extracted in
Sections 6.1 and 6.2. The first ten items in the checklist apply to both researchers and
practitioners. The 11th item is particularly important to be checked by researchers. After each
checklist item, we indicate the recommendation(s) from which it is derived.

Success of industry-academia collabora�ons

Challenges Pa�erns An�-pa�erns

Nega�vely 
impact

Address (reduce)

Necessitate 
need for

Nega�vely
impact

Posi�vely 
impact

Bring more of

Neutralize

Neutralize

Lead to more chance of

Fig. 21 Inter-relationship of challenges, patterns and anti-patterns in IACs (taken from (Garousi et al. 2016b))
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6.3.3 Limitations and Potential Threats to Validity

In this section, we discuss potential threats to the validity of our study and steps we have taken
to minimize or to mitigate them. The threats are discussed in the context of the four types of
threats to validity based on a standard checklist for validity threats presented in (Wohlin et al.
2000): internal validity, construct validity, conclusion validity and external validity.

Internal Validity Internal validity is a property of scientific studies which reflects the extent to
which a causal conclusion based on a study and the extracted data is warranted (Wohlin et al.
2000). A threat to internal validity in this study lies in the selection bias (i.e., lack randomness
of the projects participating in our survey).

Table 7 A checklist for IAC projects, derived from earlier recommendations

Checklist item To be used by… Recommendation numbers
leading to the checklist
itemResearchers Practitioners

1. Check whether the topic for your IAC has been well
chosen using guidelines such as those proposed in
(Garousi and Herkiloğlu 2016).

x x 1

2. In case you identified a mismatch of expectations
and interests under Item 1, try to resolve the
mismatch using IAC best practices such as those
proposed in (Garousi et al. 2016a).

x x 2

3. Review the list of challenges listed in Sec 6.1.1 and
check whether you will be able to cope with similar
challenges in your IAC project.

x x 3

4. Review the patterns listed in Table 5 and check
which ones are the most usable in (beneficial to)
your IAC project.

x x 4

5. Check whether you have established a relationship
of trust between the actors involved in your IAC
project.

x x 5

6. Check whether you think that you will be able to
develop team spirit among the actors in your IAC
project.

x x 6

7. Check whether you will be able to organize frequent
and regular meetings during your IAC project (e.g.,
once or twice a week).

x x 7

8. Check whether each partner (researchers and
practitioners) has sufficient benefit from your IAC
project. The expectations should be made explicit
and aligned as much as possible.

x x 8, 12

9. Check whether the IAC project will follow a
flexible, iterative approach allowing each partner to
mutually adapt and align their needs and
expectations.

x x 9, 11

10. Review the anti-patterns listed in Table 6 and
check whether there is a risk that any of those
anti-patterns apply to your IAC project.

x x 10

11. Check whether each partner has the soft skills to
pay enough attention to organizational
characteristics and norms important for the other
side in your IAC project. Avoid a self-centric atti-
tude.

x 13, 14
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Construct Validity Construct validity is concerned with the extent to which the objects of
study truly represent theory behind the study (Wohlin et al. 2000). In other words, it relates to
whether we actually measured industry academy collaboration project in our study. One form
of industry academy collaboration project we might have covered only partially are Master’s
thesis student projects, which in many countries are made while the students work on the
industry payroll. A typical goal of such thesis is to improve a tool or a process used by a
company. These projects might have been missed because they do not often result in academic
papers, the university does not formally manage them, and the academic contributions are
limited. At the same time, based on discussion with industry, it seems that these projects
deliver timely and real benefits to industry and industry is also continuously willing to invest
their money for thesis student projects. Let us recall from Section 4.4 that, in total, 64
respondents provided the information on the 101 projects. Each respondent provided between
1 and 19 data points. A majority of the respondents (57 people) provided only one data point,
thus we can say that a large number of data points came from different people. The data points
from the same respondent correspond to different projects and thus there is some level of
independence between them.

It is also common for people to deflect their answers when they feel being evaluated and
based on what they think is the intended result of a study. To mitigate this, we informed
participants prior to the survey that our motive in this study was to take a snapshot of IAC
projects and that we did not intend to publish any identifying information so that participants
will remain anonymous.

Conclusion Validity Conclusion validity of a study deals with whether correct conclusions are
reached through rigorous and repeatable treatment (Wohlin et al. 2000). We analyzed, qual-
itatively, challenges and success criteria of IAC projects. For each RQ, we attempted to reduce
the bias by seeking support from the data gathered in the survey and subsequent statistical
analysis. Thus, all the conclusions that we present in this article are strictly traceable to data.

External Validity External validity is concerned with the extent to which the results of this
study can be generalized (Wohlin et al. 2000). Given the moderate number of 101 projects
included in the analysis (after screening), the external validity is somewhat limited, but still the
largest one reported so far in the literature. Also, the results might be more or less represen-
tative, depending on SE area in the scope of an IAC project. In the set of projects we used for
our analysis the fields “testing”, “quality” and “process” are the most frequent ones, while
“professional practice”, “configuration management” and “maintenance” are the least frequent
ones. This could indicate that some SE areas are more appropriate and relevant for conducting
successful IAC projects than others.

As discussed in Section 4.4, we were vigilant about survey reliability, i.e., repre-
sentativeness of the dataset and sampling (Gobo 2004). Although we used “conve-
nience” sampling, we took various measures to ensure survey reliability. In summary,
by using convenience sampling in our work (similar to many other survey studies in
SE), although representativeness could be limited, but we increased the external
validity of the survey by ensuring sample relevance and sample prototypicality
(representativeness) (refer to Section 4.4 for details).

Furthermore, since the unit of analysis in this study is an IAC project, the true population is
all IACs in SE. In our survey execution, to ensure getting as many data points as possible, we
have asked each respondent to provide as many data points (IAC projects) as possible, thus we
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have taken the convenient sampling approach for sampling respondents conveniently, and also
sampling projects conveniently, which is away from true random sampling. Therefore, the
external validity is impacted with this convenient sampling approach.

Also, as discussed in Section 6.1.3, a large percentage of the sample included projects
reporting positive impact and outcome. We attributed this to the widely-discussed “reporting”
bias, which refer to researchers (survey participants) “under-reporting unexpected or undesir-
able results [IAC projects in our case], while being more trusting of expected or desirable
results” (McGauran et al. 2010). Approaches to address this potential validity threat could be
to increase ratio of less-successful projects by removing from the dataset a randomly-selected
subset of projects with positive impact, or to encourage survey participants to also report
projects with no impact. We had actually made that encouragement in our invitation emails. As
for the former approach to increase ratio of less-successful projects, we decided not to remove
from the dataset any of the projects with positive impacts as to not decrease our dataset size.

6.4 Conclusions and Future Work

This article makes four contributions. Firstly, we report the largest survey, ever in the Software
Engineering (SE) community, on industry-academia collaborations (IAC) projects. Our results
are based on 101 different projects from 21 different countries, and covering 11 (out of 12)
SWEBOK KAs. Secondly, we show that lack or drop of interest/commitment (LDRC) is the
most highly observed challenge in the projects. On the other hand, the challenge with the
highest perceived negative impact is resource-related challenges (RRC) followed closely by
LDRC. Thirdly, our statistical analysis unexpectedly shows that perceived challenges were not
correlated with project success or failure. Fourthly, in order to ensure success in IAC projects,
we suggest focusing on three issues: (1) Finding and maintaining a common goal; (2) focusing
on mutual understanding (between academia and industry) and teamwork; and (3) making
sure that managerial topics do not prevent project success. In fact, good management in
research projects cannot guarantee success, but poor management can prevent or shutdown a
project, therefore effectively preventing any type of success to occur.

Our future work directions include the following possibilities: (1) to use findings from this
study with respect to challenges, patterns, and anti-patterns in our upcoming IAC projects; (2)
to adapt the paper to have industry practitioners as the targeting audience; and (3) to analyze
which issues are most likely to be relevant in order to guarantee that a given IAC project is
successful, taking into account its characteristics (SE topic, culture of the country where it is
being developed, project initiators, etc.). This sort of result can provide important indicators for
SE researchers and practitioners, so that they can analyze them before progressing with IAC
projects.

Furthermore, we plan to conduct methodological and empirical studies for improving IAC
in SE by adopting novel ideas from other fields, e.g., the concept of social capital and its role in
IAC (Al-Tabbaa and Ankrah 2016), the contingent role of collaboration-specific attributes in
IAC (Lin 2017), and focusing on “innovation performance” in IAC (Huang and Chen 2017).
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Appendix 1- Verbatim Responses from Survey Participants: How
the Challenges Affected the Projects

(sorted alphabetically)

& A project employee was involved in other important commercial projects during the
research collaboration and therefore had to quit the project

& Academics wanted to use UML, but no industrial partner was using it. So most of the time
was spent in the learning the software system of the industrial partners to be able to model
it, which of course remove important resources from building the solutions (e.g. tools) that
industrial partners need additional effort was needed to be spent to overcome the
resistance of employees

& After causal analysis sessions we came up with a set of Improvement actions, but not all of
them could be adopted, since this would change organizational standards beyond the
scope of the project. Therefore, most of the reported benefits actually came from institu-
tionalizing inspections and categorizing defects (and not from the causal analysis itself).

& As for any IAC project involving UML, lot of time is needed to prepare the models, and the
industrial practitioners often need training to understand them, as they do not use UML
during their regular work

& Availability of company for checking results
& Boss controlling everyone. Multiple small to medium sized enterprises involved in the

project each wanting to retain their own IP.
& Building usable tools take a lot of time, especially when you also have to write academic

papers and run experiments. But industrial partners couldn’t care less about these latter,
and have the wrong expectation that academics would code full time like normal engineers

& Challenges such as the lack of interest from the bank employees to the project, their lack of
process modeling knowledge and difficulty in explaining the processes while communi-
cating the required information, their difficulty in reading the models. Resource assign-
ment was not done in time when compared with their commitment.

& Confidentiality constraints and lawyers in general were by far the most harmful problems
& Contracts had to be signed before we started, which significantly slowed down planning.
& Contractual and confidentiality related challenges such that it was forbidden to work in

weekends in the organization and organization’s network was a must to be used in the
project. There was no access to the organization network

& Demanding industry partner
& Development approaches required a multidisciplinary team with a significant learning

curve on business context and tools to be adopted
& Different time horizons between industry and academia. Industry is interested in solutions

in a timeframe of 3–6 months. This is too short to start research projects together with
university. For instance, it is hard to manage master thesis projects part of an industry
research collaboration. Ph.D. projects are not possible at all.

& Difficult to get time for dissemination of results and necessary feedback
& Difficult to invest in external academic research, because 1) they know less (!) about

testing than industry - “Why should we teach academics- I thought they would HELP us”?
2) learning curve in general difficult on industrial systems and industrial practitioners are
busy, unwilling to change and have other targets - it must make the everyday work better -
if it does not - not interested 3) management hard to engage because different time -
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resource and feedback - academia is basically to slow and ““lazy”“- and unwilling to
adapt. They come in with a hammer and look for nails, instead addressing issues at hand.
Researchers should more be generalists but still know coding. Also, most of my collabo-
rations are Ph.D. students from Industry. Their issues are a bit different. For pure
academic (Ph.D. students) their work is most often considered a ““waste”“of effort for
Industry. Senior researchers hard to engage. Some universities in Sweden are fighting
about IPR and do not sign NDA deals - a deal-breaker. In general. We I am always
surprised when I get collaboration to really work. But the effort internally is usually VERY
large (10–15 meetings before deal is done).

& Time horizons is so different. Industry want results within a few months, but academics
are.... SLOW. Takes years. So, problem is already solved and obsolete by the time we really
got the academic to understand all issues. And of course - resources are always very
scares for this ““extra curricula”“activities as research is seen as.”

& Due to security concerns, all the development had to be done on-site.
& Especially in large companies as this one it is difficult to get the support. In our case,

strangely, we lacked the support by higher management while we managed to get
champions at project level. Those champions get us the necessary contacts in product
development to complete the project successfully. The end results than convinced higher
management. Wouldn’t we have had the champions, we’d never be able to get through the
project

& I think the different vision is the real turning point, although I don’t see any real solution.
Industry deals with “white papers” which would never pass a peer review.

& In this particular collaboration there was a huge interest by the industry partner. They
wanted to improve their requirements engineering practices and in a previous contact we,
from the university side, had already informed them that we had the know how to support
them on this matter. The main challenge was highlighted as “Human and organizational
challenges” because we applied defect causal analysis and as a result had a list of
improvement actions (listed in the paper). There is a natural resistance to change in
process improvement in general. Therefore, not all the actions that we would like to
implement could actually be implemented in practice. Nevertheless, they were happy with
the outcome of the project and future collaborations are planned.

& Industry wanted solutions that would easily integrate in their current processes. Aca-
demics wanted to propose their own methods, tools/techniques that they are fond of,
without considering the actual needs of the industrial partners

& Intellectual property rights and privacy limited access to data (challenge C61), were not
discussed early one. The cancelation reason of that project was one single purely non-
technical issue, i.e., inability to get security clearance for two graduate students planned
to be involved in the project. Thus, we observe that, even if an IAC project does not possess
challenges from many aspects, one single major challenge is enough to lead to its
halt/failure.

& Interest / commitment dropped early on
& It seemed that much of the research published by academia was not of interest to the

companies.
& It was difficult to identify the right contact points in the companies for the survey; interest

to participate was generally low; the topic RE is not really in the focus for most companies
(as they ae often technology-driven)
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& it was hard to keep the motivation of the key personnel in the organization motivated, since
they did not have much incentive to contribute to an innovative project as it required more
effort than their regular job descriptions. Also, since the personnel was not trained and
experienced in software engineering and BPM, they were uncomfortable in critical making
decisions.

& It was quite difficult to find participants at the company for the study since the number of
experts was quite small. Also, reviewers at academic conferences were not understanding
of industrial constraints e.g. not understanding why pilot studies of “moon shot” ideas are
useful.

& It was very hard to find previous research done on this topic. And whenever we talked to
other researchers, they didn’t think it was a problem. Whereas when talking with practi-
tioners, we often got the question if/when they would be able to give it a try. I guess you
could say both sides perceive different challenges for (or their impact on) the industry.

& Lack of background/experience in research from important stakeholders
& Lack of commitment translates into people becoming unavailable, or at least delays;

different time horizons, communication habits/patterns are challenges and need cham-
pions on both sides to be overcome; the management needs to believe in the business value
of the collaboration; tension between scientific quality and practical applicability cannot
be avoided but can be balanced with experience.

& Lack of resources (man hours) that can be allocated by the employees who have to
continuously follow up development activities and meet deadlines

& Lack of SE training in industry side caused the industry folks to undervalue the novelty of
test techniques

& Lack of time and resources of the company to validate the results.
& Lack of time of the company to validate the results early
& Long negotiations before being able to deploy tool
& Mismatch between academic viewpoint and the project expectations
& No real major challenges. It was a smooth project
& Not much challenge
& Not surprisingly, enterprises are paranoid when it comes to security. This poses several

challenges, e.g. from accessing to the company software for experiments to even name the
company in published papers

& Organizational commitment and resources to implement approach was difficult to get
& Originally, much more participants were committed. Due to other, more important things,

the number decreased dramatically.
& Privacy concerns made the process for publication harder and caused the paper to not

have specific measurements that would have strengthened the arguments.
& Privacy issues Different priorities (industrial partners had deadlines and no specific

resources to invest in the research we were doing).
& Project was not formally funded
& RE: Mismatch between industry and academia: the industry side was not that interested to

continue the work after one single tool development and paper.
& Relocation of key people within the company
& Since software engineering worked with types of engineers in the oil industry (e.g.,

chemical and mechanical engineering). As expected, there was considerable gap of
knowledge in the two sides with respect to the other side. The two sides had to struggle
to understand each other in many occasions
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& Some of the consultants we worked with were not trained in qualitative research and
observation; management did not value the research outcomes and focused on the
business objectives.

& The availability of industry contact persons made it challenging, because there are
unavailable for a certain time interval or it tool quite long to get answers.

& The connection link between industry and academia got weak in middle of project due to
turn-over in the company, and thus gradually led to lack of research relevance, e.g.,
Results produced by research are not measurable and exploitable (mechanisms for
exploiting them are missing)

& The fact that with a huge and rich findings and results from the industry, we cannot
exhaustively discuss it and share it with the community. All the discussion and knowledge
sharing need to be through several open source, and rather smaller subjects.

& The goal was to apply published modeling approaches to company data; not all published
approaches were sufficiently described to be able to reproduce them

& The lack of training etc. was a challenge since several of the engineers were domain
experts and not testers. This posed a challenge since it was testing we were doing, but otoh
this was also the main objective with the project, i.e., that an interactive search-based tool
would help domain experts in testing the software.

& The long-term research scope of researchers at universities does not link with short-term
goals of many companies. Researchers should organize their research in a more iterative
manner, including the financial part. Instead of asking budget for 4 year research they
should organize for 3 months research goals, with an option on extension when successful.

& The main issue is the lack of willingness to go the extra mile to make the approach really
applicable: e.g. addressing most of C++, taking care of the proper build system.

& The most challenge thing on the project was the connection with other systems or receiving
information from other partners. Unfortunately it wasn’t easy to guarantee that but the
team found alternatives ways to receive the necessary information.

& The most significant challenge is that industry partners did not have much time to dedicate
to the project. They had to do their own work since company was not willing to invest
much time of their employees on the project.

& The most significant challenge was to get the resources required to move the research from
prototype/proof of concept to production

& The organization and the researchers had different objectives and backgrounds. So, each
side tried to make the resulting products be like what they like. Finally the results did not
make either of them happy.

& The organization personnel resisted to change and had a hard time to understand the
goals

& The project ended up being more a development/engineering one, with a minimal necessity
to include research efforts. The management of the project was interested in creating
research evidences, like patents and papers. This, the team decided to write scientific
papers to address the more research-oriented perspectives of the project.

& “The project required knowledge of the software testing process.
& This lack of experience, by the team, on the software development lifecycle made the team’s

velocity lower and a slight delay in the development of the application.”
& The project was performed in an organization in defense sector and the information

confidentiality was high. The academicians needed to be within the organization facilities
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to run the data analysis. That was not always feasible as the academicians had time
constraints.

& The research relevance of the project lost its significance during the development of the
tool. Although the project has focused on relevant research issues related to testing
processes, those research issues were not exploited and the defined testing process has
not been sufficiently studied.

& Most of the team members had no experience in testing, test tools and test processes. Part
of the team members had no knowledge of SCRUM approach. These two topics have
caused some delays in the initial development of the project.

& Some elements of the development team were in a different company facility, and due to
some connection problems (Skype mainly) there was some challenges related to commu-
nication, particularly in the Sprint Reviews and Daily Meetings.

& One element of the team, due to software license issues had to use personal laptop to
develop the project.”

& The resistance of managers who do not have the sufficient background to understand the
research ideas but still have a huge impact on the decision making process.

& Things developed in the project genuinely helped the companies. However, when cus-
tomers who pay the companies what something that takes precedence over anything.
Company people are busy and having them to run e.g. RCAworkshops completely on their
own is challenging. When we run it for them they were very happy and active participants
in the sessions. Changes in company management produced challenges. When the com-
pany side management of the research project changed then the researchers had to “re-
sell” their research to the new managers. New managers in general are eager “to prove
their worth” and thus getting rid of anything extra that takes money or resources can be
seen as an achievement. We were successful in re-selling our project to the new managers.

& This was not really a research project with clear focus. The idea was to build a
measurement system in EU project. Parts of the measurement where not novel and those
got implemented. All the other goals were unrealistic and did not get implanted. Lot of
bureaucracy involved

& Time pressure
& We had research deadlines different than project deadlines
& We had issues in the meetings, the company folks wanted full agile dev, while some

researchers wanted waterfall
& We had to significantly censor many of our discoveries.
& We missed a major flaw to validity through combined lack of understanding related to test

flakiness. The technique preferred scheduling flaky tests.
& We started with some groups/projects and then after a while they changed the managers

and we had to start over to “sell” the model, why we do this etc. This happened several
times during the years
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