
PlayScrum - A Card Game to Learn the 
Scrum Agile Method 

João M. Fernandes 
Dep. Informática / CCTC 
Universidade do Minho 

Braga, Portugal 

Sónia M. Sousa 
Dep. Informática 

Universidade do Minho 
Braga, Portugal 

 
 

Abstract— To motivate and engage students and, consequently, 
improve the quality of learning, some researchers suggest new 
ways of teaching, including the use of serious games in the 
classroom. This paper describes PlayScrum, a new card game 
devised to allow university-level students to learn Scrum, an agile 
software development method. We present the card game, its 
rules, and how it supports the main concepts of the Scrum 
method. We also discuss how PlayScrum was validated, based on 
questionnaires filled in by master students who have played it. 

Keywords- software engineering; Scrum; card game; learning 

I.  INTRODUCTION 
The software engineering process includes practices that 

promote the development of software systems and relies on 
methods to develop in systematic and organized ways robust 
software applications [8]. Agile methods are a subset of these 
methodologies, which propose approaches and principles 
different from those suggested by traditional methods, such as 
the "Waterfall Model". Traditional methods are based on a 
sequential development of activities. They are considered 
heavy because of its large bureaucracy and its weak 
adaptability to reality. Scrum is one of the most popular agile 
methods and involves little bureaucracy during the 
development process. It was designed for small teams (around 
10 persons) and the software is produced incrementally based 
on the requirements collected throughout the development 
process [10-12]. 

Teaching software engineering requires addressing a very 
large spectrum of techniques and concepts. In particular, 
teaching software development methods proves difficult, since 
it is not easy to mimic in the classroom the realities faced by 
the software practitioners. The theoretical concepts may have 
been assimilated, but the student does not realize how and 
when to apply them in the “real” world. This lack of practical 
understanding by the students, even at the end of their 
academic education, does not satisfy the employers who have 
to hire them. To overcome this problem, new forms of 
learning that tend to give a more realistic view of the software 
engineering process have emerged recently. The teaching of 
software engineering using serious game is one of these 
alternatives. These games allow the simulation of the software 
engineering process in a more enjoyable and funny way, in 
which each student may play a role in the process. The games 

must be relatively easy to understand and interesting in order 
to attract students and improve the quality of learning. 
This paper presents PlayScrum, a card game devised to help 
university-level students to learn the Scrum agile method. 
Students should learn concepts, practices and practical issues 
associated with the adoption of this software development 
method. This game is the result of a research about Scrum to 
objectively define the implication of its use in software 
processes and of the investigation of techniques and methods 
for creating games with rules that make their use feasible in a 
learning environment.  

II. MOTIVATION 
The use of traditional educational methods, like expositive 

lectures, is not always the most effective way to convey some 
concepts. In some contexts, students cannot get a real sense of 
what is transmitted to them because they do not understand the 
relevance of the teaching contents for their future profession. 
The use of serious games can be an effective approach to learn 
subjects, namely when feeling that business relevance is 
paramount. Several authors [1-7, 9, 13, 16, 17] have reported 
that, when learning with games, students can really acquire 
what is taught, putting aside their fears and anxieties and 
devoting themselves to the game. The concentration is intense 
and concepts are absorbed [13]. Software development is 
suited for being learnt with serious games, since many of its 
aspects are not technical.  

Good software development planning is the key to 
producing good software. Scrum is used by companies with a 
leading position in the market, such as Google, Yahoo, 
Siemens, and British Telecom. Scrum is, therefore, seen as an 
important process for software development and was chosen 
to be the topic of the game described in this manuscript.  

III. RELATED WORK 
Over the last few years, several games were proposed as a 

method for learning software engineering [1-3, 5-7, 16]. 
Games, like SIMSE, SESAM, and Problems and 
Programmers, were created in order to improve the quality of 
the learning process in software engineering topics, like 
project management and software process and, so, to improve 
students’ capabilities in making decisions. The designers 
found that the use of games as a complement to traditional 



teaching is much more efficient than as a single method of 
teaching [2, 5].  

A. SIMSE 
SimSE [7] is a simulation game played by a single player 

who must play the role of a project manager leading a team of 
developers. The player, among other things, can hire and fire 
employees, assign tasks to his team members, monitor the 
progress of the project, and acquire tools to improve the 
project. He can see all information needed to control and 
manage the project, namely related to his employees, to the 
progress of the tasks, to the satisfaction of the customers, to 
the budget and to the deadline for completing the project.  

In the real world, software processes vary with the culture 
of the organization and its scope and, as such, SimSE is able 
to portray the differences that may exist in these processes.  

B. SESAM 
The SESAM project [3] led to the development of a 

simulator, in which a student can perform the role of a project 
manager. The player controls the simulator using a text 
interface, to read and write messages. He can hire or fire 
employees and ask them to perform tasks useful to software 
development, such as preparing the revision of the 
specification or testing the code. Most of the messages that the 
player receives are statements from the employees. The player 
is advised to carefully evaluate these statements, since they 
constitute the only source of information he has to make his 
decisions. The simulator has a number of internal variables, 
but these are not visible to the player, who only accesses the 
information that any project manager accesses in reality. 

 When the game ends, the player sees the obtained score 
and he can analyze his performance using the analysis tool 
provided by SESAM, which graphically displays the internal 
variables of the game.  

C. Problems and Programmers 
Problems and Programmers [1] is a competitive card game 

in which each student plays the role of a project manager. 
They have to lead the same project and the player who finishes 
first is the winner. However, to finish the project, competitors 
must be able to manage their budget, meet customer 
requirements and produce high quality software, among other 
things. Basically, they should follow the best practices of 
software engineering in order to avoid any obstacle.  

The software development method followed in the game is 
the Waterfall Model and the software developed by the players 
goes through the different stages of this model (analysis, 
design, development, integration and test).  

Players begin as such to create a column with analysis 
cards, then building a column of design cards at the right of 
the first. They continue by playing code cards to be grouped, 
at the end of the game, in an integration column. Thus, 
progress through different stages of the model is presented in a 
simple way and players can easily monitor their progress.  

Even if the software process is fixed, the game gives 
players the freedom to define how to best achieve their 
objective [1]. While some players will place great emphasis on 

the analysis and design phases and carefully inspect the code 
developed before integrating it, others will rush all these 
stages in order to deliver the project as soon as possible. The 
game allows one to observe the strategic differences of the 
various competitors, which provides a powerful example of 
the consequences inherent in each of the strategies used in 
software engineering. 

IV. SCRUM 
Practices used in software development are constantly 

changing. Organizations have found that producing innovative 
products with high quality at a reduced price is often not 
enough to allow them to become the leaders in increasingly 
competitive markets. It is necessary to produce products 
quickly and provide flexibility in their development. In 1986 
Takeuchi and Ikujiro presented a new approach to software 
development as a response to these new market needs [15]. 
While traditional approaches are based on a sequential 
development, this new approach is grounded on product 
development as a whole, made by a multi-disciplinary team 
that works together throughout the process. In 1993, 
Sutherland used a development method based on the study 
published by Takeuchi and Ikujiro, and he was the first to 
designate it as Scrum [14]. In 1995, Schwaber formalized the 
Scrum development process for the software industry with the 
publication of a paper at the OOPSLA conference [10].  

Scrum is used to organize teams and promote a more 
productive software development, with higher quality. Its 
main idea is that software development involves environment 
variables that make the development unpredictable and 
complex, requiring flexibility to follow the changes [10]. 
Scrum enables development teams to choose the amount of 
work to do and how to do it, providing a flexible working 
environment. Scrum gives priority to work with more value 
for the customer, improving the usefulness of the delivered 
product, and increasing revenues generated through the 
provided software. Designed to adapt to changing customer 
requirements during the development process, Scrum is 
divided into sprints that have a typical duration of four weeks, 
allowing the definition of new requirements and adjusting the 
requirements to be developed in future sprints. Thus, 
developers can give customers what they really need, thereby 
increasing their degree of satisfaction.  

Software development methods, like the Waterfall or the 
RUP (Rational Unified Process), provide the context and the 
definition of the process at the beginning of the project. In 
contrast, Scrum recognizes that the development process is 
never completely defined and uses control mechanisms to 
improve its flexibility. These mechanisms define that analysis, 
design, coding, and testing must be included in all sprints. A 
project that adopts Scrum starts with an abstract vision of the 
system to be developed. This view is based on the expected 
business results, but as the project advances, system 
requirements become increasingly clear and objective [11].  

In general, projects that follow Scrum exhibit the following 
characteristics: 



• Flexible deliveries determined by several environment 
variables. 

• Small development teams composed of around ten 
persons. 

• Interdisciplinary collaboration. 

A. Phases of Scrum  
Scrum is divided into three major phases during the 

execution of a project: 
1) The Analysis phase consists in planning the new 

version of the system based on the requirements, to 
determine the time and cost of the implementation 
and, to define minutely how must be the 
requirements’ implementation. This phase involves 
the definition of logical and physical architecture. 

2) The Development phase is divided in sprints during 
which the functionalities of the system are developed, 
always considering the various environment variables 
that may affect the project.  

3) The Closure prepares the system for final delivery to 
the customer. This preparation involves the system 
documentation, the testing and the delivery [10]. 

B. Scrum Control Methods 
Due to its flexibility, Scrum requires control mechanisms to 

avoid that the system development falls into chaos using the 
following techniques to support the development:  

• Establishment of lists that describe the requirements 
that were not properly developed. In those lists all 
enhancements requested by the customer are 
registered. This document also notes the expected 
outcomes of the system or the level of competitive 
advantage to be achieved as compared to its 
technological aspects; 

• Definition of the product components that have to be 
changed to fit the requirements of the new system; 

• Definition of the changes that must occur in the 
implementation of new requirements; 

• Definition of technical problems that must be solved to 
implement the required changes; 

• Definition of the risks that may affect the success of 
the project and produce responses to contradict them. 

C. Scrum Actors 
Projects, developed with Scrum, include three groups of 

stakeholders: the Client, the Team and the Scrum Master. The 
Client, representing the interests of those who ordered the 
system, introduces at the beginning of the project a list of 
requirements that must be implemented during the system 
development. This list defines the expected return on 
investment, as well as the delivery schedule. This document, 
known as the "Product Backlog", allows the Client to ensure 
that the most valuable features will be delivered first by the 
Team responsible for developing the system [11].  

The Team is responsible for the technical development of 
the project. Teams have the power to self-manage, self-

organize and are responsible to transform the "Product 
Backlog" provided by the Client in a sequence of tasks to be 
undertaken in iterations [11]. Teams define whose members 
are responsible for developing a task based on their expertise 
and personal will.  

The Scrum Master is responsible for ensuring that all actors 
follow the rules and practices of Scrum, and he is bound for 
implementing the Scrum Method according the organizational 
culture, and for providing the expected results of the software 
development [11].  

Members of these three groups form the actors that should 
not have more than ten elements. Other persons may have a 
stake in the results of the system but should not intervene in its 
development. Scrum ensures that the Team has sufficient 
authority to do what it finds necessary for the project to be 
successful. 

D. Scrum Documents 
In Scrum, one needs to register all requirements for the 

system as well as the priorities for their implementation.  
The "Product Backlog" lists the requirements defined for 

the system. This document is prepared by the Client, who is 
responsible for its content, by prioritizing the requirements 
and the delivery system. This document is never complete, and 
as such, ends up being a mere tool to estimate requirements. 
The "Product Backlog" evolves as the product evolves. It is 
constantly changed in order to identify what the product must 
have to be a leader in the market and will be valid as long as 
the product exists.  

The "Burndown Chart" shows the amount of work carried 
out at any time within the project [11]. This chart allows the 
correlation between the work done and the amount of work 
still to be developed by the Team to be visualized. This 
document allows the Client to assess accurately the 
implications of adding or removing features and also allows 
him to have an understanding of a possible gap between the 
reality of implementation and what was originally planned.  

The "Sprint Backlog" is a document made by the Team to 
record the tasks to be carried out during the iteration. The 
Team compiles the initial list of tasks to be developed in the 
second part of the meeting, which indicates the beginning of 
the iteration. This document can only be changed by the 
Team, as it represents a clear picture of the work that it intends 
to develop during the iteration.  

Scrum requires the Team to develop and to deliver new 
features at the end of each sprint. These features must be 
complete and ready to be presented to the client, who can use 
them immediately. This implies that the source code for the 
functionalities was reviewed, tested and is well structured. The 
documentation of the developed functionality should have 
been prepared and delivered to the Client. 

E. Scrum Proocess 
The Client is responsible for ensuring that the obtained 

system is actually the expected one and that it can maximize 
the return on investment. The Client prepares a project plan, 
the "Product Backlog", which includes a list of the functional 
and non-functional requirements for the project. These 



requirements, when transformed into features, present the full 
scope of the expected product. The "Product Backlog" has a 
hierarchy of priorities and is divided into several deliveries. 
The priority of this list is the starting point of the project; 
however, other priorities often change during the project to 
reflect changes in business requirements and the speed with 
which the team can implement the requirements.  

All work is divided into sprints that last thirty consecutive 
days. Iteration begins with a meeting in which the Client and 
the Team agree on the tasks to be developed in the current 
iteration. By selecting from the "Product Backlog" the 
requirements with the highest priorities, the Client tells the 
team what requirements are to be developed in this iteration. 
The team informs what percentage of these requirements can 
be effectively implemented in the iteration. Each of these 
meetings cannot exceed eight hours and is divided into two 
parts. The first four hours allow the Client to present the 
priority tasks to the Team that, in turn, can question him about 
the content and objectives to be achieved. The Team will 
select the requirements that can be developed and tested 
during the iteration. The remaining four hours will be used by 
the Team to plan their work during the iteration. The tasks that 
make up this plan are recorded in the "Sprint Backlog" and 
emerge as the iteration progresses. Early in the second half of 
the meeting, the iteration has begun and will have, from that 
moment, the maximum period of thirty days.  

The Team meets daily for about fifteen minutes to review 
the state of the project. Each member of the team must answer 
three questions [11]:  

• What did you do since the last meeting? 
• What will you do today? 
• What are the factors that can prevent you from 

fulfilling your goals for this iteration?  
The purpose of this daily meeting is to synchronize the 

work of all members of the team and to schedule any meetings 
for the team to present their progress.  

At the end of a sprint, there is a meeting in which the Team 
presents to the Client what was done during the iteration. This 
informal meeting permits the stakeholders to determine which 
options to be followed by the Team. After this meeting and 
before the one that starts the next iteration, the Scrum Master 
has a meeting with the Team to do a retrospective analysis of 
what happened in the previous iteration. For around three 
hours, the Scrum Master encourages the team to review its 
development process to make it more effective in the next 
iteration. All these meetings serve to verify the correct 
implementation of the practices advocated by Scrum.  

This process is repeated throughout the duration of the 
project, knowing that as the project moves forward new 
requirements and priorities may be defined. New requirements 
that may arise in iteration cannot be developed immediately. 
The plan for iteration cannot be broken and, if new needs must 
be registered, they will be developed in future sprints through 
its priority level. 

V. PLAYSCRUM 
The card game PlayScrum, based on its predecessor 

Problems and Developers, is a competition game in which 
each student plays the role of a Scrum Master in a software 
development that follows the practices of Scrum.  

PlayScrum can be played by between 2 and 5 players. The 
game is divided into sprints that differ from project to project 
and during which each player must develop a number of tasks 
defined at the start of the game.  

PlayScrum includes the following elements:  
• One board for each player. 
• Product Backlog cards that determine the 

characteristics of the project. 
• Problem Cards launched by opponents of a player. 
• Concept Cards used by the player, as a remedy to 

problems launched by his opponents. 
• Developer Cards corresponding to the development 

members of the Team of a player. 
• Artefacts that represent the tasks performed by the 

Team during the project. 
• A die. 

The winner is the player who first performs all tasks 
defined for the project without errors or the player who has the 
highest percentage of tasks without errors, after the end of the 
last iteration. 

A. The Board 
We were able to identify certain shortcomings in the 

Problems and Developers game. One of them is the absence of 
a board for players to put their cards. As the participants were 
acquiring cards, it became very difficult to clearly identify 
which stage a particular card belongs to. As such, a board was 
conceived to facilitate playing with PlayScrum.  

The board is an area in which players have their developers 
in columns and the acquired artefacts in rows. Artefacts are 
placed in the cells of the board, below the developer who 
acquired them. Artefacts acquired in this round are placed in 
the first line and artefacts acquired in previous rounds are 
placed in the second line. This separation exists because some 
problems cards differentiate on the rounds the artefacts were 
acquired. 

 Finally, with the board one can check more easily if a 
player does not exceed the budget set for the game, since the 
board allows players to have all their developers and concepts 
organized and visible to all participants. 

B. The Product Backlog 
Product Backlog Cards (Figure 1) provide all information 

of the project: 
• Description: asserts the main features of the project. 

This description makes the game more realistic and 
helps the player to understand the system’s main aim. 

• Sprints: indicates the number of sprints on the project. 
A sprint lasts for 4 rounds. Thus, if a project has 7 
sprints, then the game will be played in 28 rounds.  



• Complexity: indicates the number of points that a 
developer has to spend to obtain a good artefact. The 
complexity of the project can be either 2 or 4. 

• Tasks: determines the number of articles without errors 
that the user must complete to win the game.  

• Budget: Money available to spend during the project. 
This attribute restricts the developers that can be hired 
as well as the use of certain concepts. Throughout the 
game, the value of the wages of all developers plus the 
cost of the concepts should not exceed the project 
budget. 

 
Figure 1.  An example of a Product Backlog card. 

C. The Cards  
PlayScrum contains playing cards that make up the game. 

They are divided into four types: problems, concepts, 
developers and artefacts.  

Problem cards (Figure 2a) describe classical problems that 
arise in the software projects, as well as problems that are not 
compliant with the practices imposed by Scrum. These cards 
are played by opposing players as obstacles to the progress of 
the development and have the following attributes: 

• Definition of the problem: a short sentence that 
presents the problem to be handled. Thus, the student 
can see what problems may affect a software project 
developed with Scrum.  

• Condition for the application of the problem: some 
problems can affect all developers, while others only 
affect developers with some characteristics. This 
difference depends on the problem and highlights the 
fact that there are external variables that can lead the 
project to failure.  

• Consequence of the card: this attribute defines which 
penalty to be applied to the player who has received 
the card.  

 
 (a) (b) 

Figure 2.  Examples of (a) a Problem Card and (b) a Concept Card. 

Problem cards are the main negative source of the game. 
They occur when players make bad decisions. These cards 
allow students to recognize the mistakes they made during the 
game and allow them to associate those mistakes with events 
that occur in the real world.  

Concept cards (Figure 2b) describe the best practices in 
software engineering and can be used by players to react to the 
problem cards played by their opponents. The attributes of a 
concept card are: 

• Definition of the Concept: a short sentence that 
presents the concept. The student can figure out what 
are the best practices to be followed when developing a 
project with Scrum.  

• The consequence of the card: this attribute defines the 
positive effect of the card.  

• The cost: some cards have a price. 
Players use developer cards to progress in the game. 

Developers produce artefacts (code) that are needed to 
complete the project. These cards (Figure 3) have the 
following information: 

• The name of the developer. 
• A short personal description of the developer. 
• The salary of the developer must be considered, since 

the sum of the developers’ salaries and the cost of the 
concepts should not exceed the budget of the project.  

• The personality, measured from 1 to 5, reflects the 
tendency of the developer to be a good employee, and 
is pertinent when receiving problem cards.  

• The skill, measured in a scale from 1 to 5, reflects the 
knowledge level of the developer and determines the 
points that a developer possesses to perform the actions 
(buy, inspect and correct articles) during the game. 

 
Figure 3.  An example of a Developer Card. 

Artefacts, which may or may not contain errors, correspond to 
the tasks performed by developers. There are two types of 
artefact cards: 

• Blue artefacts (Figure 4) are considered good, because 
they have a 20% probability of containing a bug. Each 
blue artefact can be purchased by the value defined by 
the "complexity" attribute of the Product Backlog.  

• Red artefacts in turn are seen as bad, because their 
probability to contain bugs is 60%. As such, each one 
can be purchased for half of the value set in the 
attribute "complexity" of the Product Backlog. 



D. The Game 
Before the game begins, a Product Backlog card is chosen. 

This card defines the number of sprints of the project and the 
number of tasks that should be done to end the game. The card 
also determines the project’s complexity that determines the 
cost of the blue and the red artefacts, as well as the budget 
available to each player in the project.  

 
Figure 4.  An example of an Artefact Card. 

Each player receives 2 developer cards, which represents its 
Team. The sum of all developers and concept cards cannot 
exceed the budget set for the project. 

 As in the "Problems and Developers," the developer card 
determines the characteristics of the developer, namely salary, 
personality and skill. This last attribute implicitly defines the 
number of artefacts that the developer can produce.  

Next, players mount their board and the cards are separated 
into four piles: one for developer cards, one for problem and 
concept cards, one for blue artefacts, and one for red artefacts. 
With the die, players determine who is the first playing and 
the game proceed in clockwise order. 

 At each turn, a player rolls the die and according to the 
number, draws cards from the piles: 

•  If the player draws 1, 2 or 3, only cards from the 
problems/concepts pile can be taken. He takes the 
number of cards indicated by the die. 

• If the player draws 4, 5 or 6, he chooses 3 cards from 
the problems and concepts pile and the picks cards 
from the developers pile in a number equal to the 
number indicated by the die minus 3. 

Problems and concepts stay in the player's hand until the 
moment he considered appropriate. Developer cards can also 
continue in his hand or can be placed immediately on the 
board, indicating the hiring of the developer. The player can 
have a maximum of six cards, including concepts, problems 
and developers. If the player has more than 6 cards, he must 
discard the excess cards before the end of his turn.  

Artefacts are implemented according to the developers 
present at the board. The player may purchase as many 
artefacts as he can, as long as they are within the skill of its 
team of developers. An artefact represents a task defined by 
the product backlog and, when acquired, should be placed on 
the tray below the developer who implemented it. It is also 
necessary to separate artefacts implemented in this round or in 
previous rounds because some problems and concepts cards 
differentiate this situation. Artefacts implemented in this 
round should be placed at the forefront of the board below the 
developer who implemented them, while artefacts 
implemented in previous rounds must be placed in the last 
row.  

In short, during a turn the player starts by rolling the die. 
Depending on the number shown by the die, he collects cards; 
he can hire developers to implement artefacts. In addition, 
during play, each developer can perform other tasks such as:  

• Check his artefacts: the player turns one of the artefacts 
to see if it contains a bug. This task costs 1 point.  

• Fix bugs in his artefacts: if a bug is found when 
inspecting an artefact, the developer can fix it by 
replacing the artefact with another one of the same type 
(blue or red). This task also costs 1 point.  

Players can inspect and correct their artefacts during the 
sprint regardless of the round they were implemented. 
Similarly, problems and concepts apply to artefacts 
implemented throughout the sprint, except when the card itself 
invalidates this fact.  

The player can also hire and lay off developers. However, 
to demonstrate the adaptation time that hiring a new developer 
implies this process must follow a strict chronological order. 
The player can fire and hire developers at the end of his move. 
As such, he dismisses the developer in a round and can only 
hire a new one in the next round. As the hiring is done at the 
end of the move, a new developer just starts to implement 
code in the next round. As such, the new developer will be one 
round without being able to produce.  

At the end of his turn, a player is able to receive problems 
cards from his opponents. He can receive cards from the three 
players who played immediately before him.  

The product backlog is divided into sprints that last for 4 
rounds. Each player tries during these 4 rounds to get the 
maximum number of artefacts without errors depending on 
their developers and the problem cards that are used against 
him by his opponents.  

At the end of 4 rounds, the moderator inspects the artefacts 
of each player and counts the number of artefacts without 
errors and the number of artefacts with errors (used to 
differentiate players in case of ties). 

After this counting, the moderator removed the artefacts of 
each player and the process is repeated for subsequent sprints. 
Artefacts are placed back on the pill where they belong to. If 
at the end of iteration, a player achieves the number of tasks 
defined in the Product Backlog without errors, he is the 
winner. In case a tie occurs, the player who has fewer artefacts 
containing bugs wins. If the tie persists anyway, the winner is 
the player who had fewer bad artefacts during the project.  

At the end of all sprints, if no player can reach the number 
of tasks imposed by the Product Backlog without errors, the 
player who is closer to that number wins the game. 

E. PlayScrum vs Scrum 
This section presents a relation between the Scrum method 

and the PlayScrum game, to make it clear how the latter 
addresses the practices and principles advocated by the 
former. Additionally, this exercise also exposes those aspects 
that were not included in the game and that should be 
considered in a future version. 

• The Product Backlog is represented in PlayScrum by 
the card that has all the characteristics of the project. 



• The Sprint Backlog is contemplated by the problem 
cards of PlayScrum. 

• The Burndown Chart is not covered by PlayScrum. 
• The game does not include the concept of 

Prioritization of Tasks. There are a number of tasks 
that must be accomplished to win the project, but 
nothing is said about their priorities. 

• The concept of Sprint is considered by PlayScrum. All 
sprints have the same length (four rounds). 

• The Daily Meeting is addressed by PlayScrum by the 
existence of problem and concept cards. 

• The Delivery of features 100% developed at the end 
of the iteration is evident in PlayScrum, since at the 
end of iteration, the moderator collects all the artefacts 
developed by developers, and differentiate tasks with 
bugs and without them For the purpose of winning 
only the ones without errors count. 

• PlayScrum enforces Small teams, since a player can 
never have a large number of developers, as the budget 
never allows it. 

• Flexibility and adaptability are shown in the 
problems and concepts cards of PlayScrum. 

The list presented above shows that PlayScrum includes 
almost all Scrum main principles and practices, namely the 
concept of sprints, the existence of the Product Backlog and 
the Sprint Backlog, small teams, and the delivery of features at 
the end of each iteration fully developed.  

The points that were not included in PlayScrum are the 
prioritization of tasks, the Burndown Chart and the meetings 
that occur at the beginning and at the end of the sprints. 

VI. VALIDATION 
In order to perform a qualitative and exploratory validation 

of the game, thirteen master students at UMinho played the 
game and then were asked to submit written feedback in the 
form of answers to a questionnaire. In the future, we expect to 
conduct other evaluations experiments, namely by performing 
comparative studies between the aptitudes of students who 
played the game and those who did not. 

Initially, students formed 8 groups to play the game. 
However, this number of participants was too large and at the 
end of the first sprint, the 4 groups with the worst scores were 
eliminated. Following this, they completed a questionnaire 
stating their thoughts and feelings about the game in general, 
their opinions about the pedagogical effectiveness of the game 
for issues on software engineering process, and their 
educational and professional background in software 
engineering. Some of these questions required a numerical 
answer on scale from 1 (low) to 5 (high), while others allowed 
students to give their responses in a free form. 

A. Experimental Results 
In general, students’ feelings about the game were 

favourable. The first question "Do you consider PlayScrum 
enjoyable to play?" had an average score of 4.4. This result 
demonstrates very clearly that the 13 participants enjoyed their 

experience with PlayScrum. To reinforce this idea some 
students wrote:  

"The game is very interactive and allows players to think 
about the next moves in advance". 

"The game is interesting and very enjoyable to play. It's a 
different way of seeing the problems in these areas".  

It also emphasized a negative point that implied to change 
the maximum number of players in PlayScrum from 8 to 5:  

"The main drawback I found is the time of the game that 
can be very long". 

The second question "What is the level of difficulty of 
PlayScrum? What is the most difficult part of the game?" had 
an average score of 2.5 that shows that the level of difficulty 
of the game may be considered appropriate. Regarding the 
most complex part of the game, some students also answered 

"The most difficult is to manage the budget and decide what 
kind of artefacts I have to implement";  

The third question "Do you think PlayScrum increase your 
knowledge of Software Engineering?” got an average score of 
3.8. This score makes evident that students see PlayScrum as a 
good complement to classes. They also answered  

"It allows us to easily understand the agile methods 
concepts". 

"The game can be a good complement to classes because it 
is a fun way to look at project management".  

Question 4 "Do you gain new knowledge about Software 
Engineering with PlayScrum?" received an average score of 
3.3, which means that students see PlayScrum as a new way of 
learning Software Engineering but as a complement to lectures 
on classes. 

 The fifth question "Does the game teach, in general, the 
software engineering process? Why?" earned an average score 
of 3.6. The analysis of this result shows that students could 
better understand the process of software engineering by 
playing PlayScrum. To reinforce this idea some students 
wrote:  

"It helps to understand the concept of iteration and 
incremental development process in software engineering". 

"It helps to realize the difficulty of producing software 
correctly, quickly and within budget". 

The sixth question "Would you include PlayScrum in a 
software engineering course?" obtained an average score of 
3.8, which means that students agree to integrate PlayScrum in 
a software engineering course. Although this question does not 
require a textual answer some of the students choose to 
explain the marks given.  

"Yes, because it is a practical application of what we learn 
in class";  

Finally, the last question "In general, what is your opinion 
of PlayScrum?" aims to understand what should be changed in 
PlayScrum. This question can also define several possible 
directions for future work on the game. 

Students were very cooperative in their responses and gave 
some suggestions: 



"The strengths of the game are working with the budget, 
developers and artefacts. The weakest point is that one 
rarely uses the possibility to 'turn' tasks and replace them";  

"Linking the number of tasks and sprints with the number of 
players to prevent the game from becoming too long or 
even very fast";  

The dismissal of developers was also included in the rules 
of the game after this validation because it really makes sense 
to be able to exempt an element that does not meet the 
expected objectives. 

During this validation, it was possible to realise that 
students also appreciated the fact that PlayScrum enables them 
to understand clearly the role of a Scrum Master in the project 
management. Questions, such as "Is it better to get a good 
developer or two average ones?", were discussed by students 
at the end of the game. The budget of projects forced students 
to understand the decisions that must be considered and taken 
in software development. The game also demonstrates the 
importance of developing from the onset good quality 
software. At the beginning of the game, students risked getting 
red artefacts to get twice the number of artefacts in the same 
number of rounds. However, after seeing the amount of 
artefacts with bugs they had, they quickly opted to prefer blue 
artefacts and only go for red ones when they could not choose 
the blue ones. This allows students to clearly understand that 
the quality of a feature is paramount and that delivered 
products cannot have failures. In fact, it is less costly to 
produce good software from the beginning than to produce 
poor-quality software to be developed again, which delays the 
product’s delivery.  

Whilst most of the answers were quite positive, it was 
noticeable that students with a poor knowledge of Scrum had 
much difficulty to understand the game and its dynamics. This 
point clearly demonstrates that the game should not be used in 
isolation. Instead, it should complement the theoretical 
concepts taught in class to take full advantage of it.  

In short, the evaluation of the game was very positive and 
proved that the game conveys practices and procedures of 
Scrum and Software Engineering in a more comprehensively. 

VII. CONCLUSIONS 
PlayScrum represents a first attempt at using a physical 

card game to teach students about the Scrum agile method. 
PlayScrum addresses many of the weaknesses of more 
traditional learning approaches and brings additional benefits 
in the form of face-to-face learning and enjoyable play. We 
believe that, when used in conjunction with lectures and 
projects, PlayScrum allows students to gain a solid 
understanding of real world lessons that might otherwise have 
been poorly understood or overlooked altogether. 

PlayScrum has a very visual nature, is simple and fun to 
play, allows for collaborative learning, and provides almost 
immediate feedback to players about the lessons to be learned. 
We feel that the game represents a good balance between our 
stated objectives. 

The results of our experiments show that some PlayScrum 
cards can be improved. Problem and concept cards can be 
more explicit in their scope. As indicated before, some 
features of Scrum are not covered by the game, but we plan to 
include them in future versions. 

 An electronic version of PlayScrum would be a good way 
to continue this project. This version could be even more 
enjoyable to play and could have an area that allows the 
students to access all the theoretical contents of Scrum, 
thereby complementing the game.  

Finally, in the future we plan to develop a more general 
version of the game, to allow students to learn all agile 
methods. This path requires an investigation of other agile 
methods and a comparison among them. 

REFERENCES 
[1] A. Baker, E. Navarro, and A. van der Hoek, “An experimental card 

game for teaching software engineering”, J Sys Soft 75(1-2):3-16, 2005. 
DOI 10.1016/j.jss.2004.02.033. 

[2] D. Carrington, A. Baker, and A. van der Hoek, “It’s all in the game: 
teaching software process concepts”, Proceedings of the 35th Frontiers 
in Education Conference, 2005. DOI 10.1109/FIE.2005.1612152. 

[3] A. Drappa and L. Jochen, “Simulation in software engineering training”, 
Proceedings of the 22nd International Conference on Software 
Engineering, 2000, pp. 199-208. DOI 10.1145/337180.337203. 

[4] M. Ferrari, R. Taylor and K. VanLehn, “Adapting work simulations for 
schools”, J Educ Comput Res 21(1):25-53, 1999. 

[5] P. Mandell-Striegnitz, “How to successfully use software project 
simulation for educating software project managers”, Proceedings of the 
31st ASEE/IEEE Frontiers in Education Conference, 2001. DOI 
10.1109/FIE.2001.963884. 

[6] E. Navarro, A. Baker, and A. van der Hoek, “Teaching software 
engineering using simulation games”, Proceedings of the International 
Western Simulation Multiconference, 2004. 

[7] E. Navarro and A. van der Hoek, “Software Process Modeling for an 
Educational Software Engineering Simulation Game”, Software Process 
Improv Pract 10(3): 311-325, 2005. DOI 10.1002/spip.232. 

[8] R. S. Pressman, “Software engineering: a practitioner’s approach”, 4th. 
ed., McGraw-Hill, 1997. 

[9] J. M. Randel, B. A. Morris, C. D. Wetzel, B. V. Whitehill “The 
effectiveness of games for educational purposes: a review of recent 
research”, Simulation & Gaming 23(3):261-276, 1992. DOI 
10.1177/1046878192233001. 

[10] K. Schwaber, “Scrum development process”, OOPSLA95 Business 
Object Design and Implementation workshop, 1995. DOI 
10.1145/260094.260274. 

[11] K. Schwaber, “Agile project management with Scrum”, Microsoft Press, 
2004. 

[12] K. Schwaber and M. Beedle, “Agile software development with Scrum”, 
Prentice-Hall, 2002. 

[13] B. Shneiderman, “Designing for fun: how can we design user interfaces 
to be more fun?”, interactions 11(5):48-50, 2004. DOI 
10.1145/1015530.1015552. 

[14] J. Sutherland, “Agile development: lessons learned from the first 
Scrum”. Available at jeffsutherland.com. 

[15] H. Takeuchi and I. Nonaka, “The new new product development game”, 
Harvard Business Review 64(1):137-146 1986. DOI 10.1225/86116. 

[16] G. Taran, “Using games in software engineering education to teach risk 
management”, Proceedings of the 20th Conference on Software 
Engineering Education & Training, 2007, pp. 211-220. 

[17] D. Thatcher and C. Donald, “Promoting learning through games and 
simulations”, Simulation & Gaming 21(3):262-273, 1990. DOI 
10.1177/1046878190213005

 


