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Abstract. This manuscript addresses the creation of scenario-based models to
reason about the behavior of existing industrial information systems. In our ap-
proach the system behavior is modeled in two steps that gradually introduce de-
tail and formality. This manuscript addresses the first step, where text-based de-
scriptions, in the form of structured rules, are used to specify how the system
is or should be regulated. Those rules can be used to create behavioral snap-
shots, which are collections of scenario-based descriptions that represent differ-
ent instances of the system behavior. Snapshots are specified in an intuitive and
graphical notation that considers the elements from the problem domain and per-
mit designers to discuss and validate the externally observable behavior, together
with the domain experts. In the second step (not fully covered in this manuscript),
the system behavior is formalized with an executable model. This formal model,
which in our approach is specified using the Colored Petri Net (CP-nets) lan-
guage, allows the system internal behavior to be animated, simulated, and opti-
mized. The insights gained by experimenting with the formal model can be sub-
sequently used for reengineering the existing system.

1 Introduction

In industrial environments, reengineering an existing industrial information sys-
tem, to support significant changes in the process or to improve its performance,
is usually an extremely sensitive operation. In industrial environments, modify-
ing directly the system and testing the impact of those changes on the number
and quality of the produced goods is simply prohibitive, because this would im-
ply vast losses. Additionally, some industrial information systems are intrinsically
complex, since they are expected to orchestrate control, data, and communication
in distributed environments, where their operation is both business- and safety-
critical. Monitoring and supervision of industrial processes require huge invest-
ments in technical solutions based on real-time embedded technologies, espe-
cially developed to interconnect the production equipments with the MIS (Man-
agement Information Systems) applications [8]. Complex systems are, by their
nature, hard to master and reason about. In engineering, one classical solution
to this problem is to create a model, since for the specific purpose in consider-
ation, it is simpler, safer or cheaper than the considered system. For industrial
information systems, which are typically control intensive [9], this implies that
we essentially need to have a model of the behavior, since this is the most critical



view to take into account. This contrasts with data-centric systems, like databases
or information systems, where the information and the relation among entities are
the most important issues to consider.
For the majority of the existing industrial information systems in operation, there
is no model with which one can immediately reason about those systems. If it
does exist, typically the model does not completely reflect the system, since main-
tenance procedures that resulted in modifications in the system structure and be-
havior, were not reflected in changes in the model. This implies that techniques
to obtain models for systems in use are most-needed in industrial organizations.
This manuscript presents an approach that was devised for a particular problem
(i.e., an existing industrial information system), in order to obtain a behavioral
model of that already existent system. This model, obtained after a careful de-
scription of the perceived behavior, permits industrial engineers (here, consid-
ered the domain experts) to reason about the system, evaluate which parts can be
improved, change the model accordingly, analyze the improvements in relation
to the initial version, and decide if the changes could be reflected in the indus-
trial information system. In summary, the devised approach adopts three different
artifacts:

1. Rules describe, in a textual form (written with natural language), how the
system is (in an ’as-is’ approach) or should be (in a ’to-be’ approach) regu-
lated, and thus implicitly specify the requirements the system is supposed to
accomplish;

2. Snapshots present, in a pictorial format (by means of an intuitive and graph-
ical notation), scenarios of the interactions among the system and the envi-
ronment, illustrating application cases of the defined rules;

3. CP-nets are used to give a formal and executable nature to the snapshots,
which are essential characteristics to allow reasoning capabilities.

Within a concrete reengineering problem of an existing industrial information
system, the proposed approach supports the characterization of both the base-
line situation (the ’as-is’ system) and the future or end-state situation (the ’to-be’
system). This is extremely important to allow the construction of the sequencing
plan, where the strategy for changing the system from the current baseline to the
target architecture is defined. It schedules multiple, concurrent, interdependent
activities, and incremental builds that will evolve the industrial organization.
In this sense, the overall goal of the presented work is to simultaneously capture
requirements and support animation of behavioral snapshots through Petri nets
(PNs) based modeling. This manuscript focuses on the integrated usage of the
first two artifacts for the considered industrial information system in an ’as-is’
approach and is structured as next described. For details about the generation of
CP-nets (from scenario models), please refer to [3, 11, 13] In Section 2, the run-
ning case study is briefly described. Section 3 presents the structuring of rules by
using text-based descriptions. Section 4 illustrates the construction of snapshots
by means of scenario-based descriptions. Section 5 briefly describes how CP-nets
must be obtained to support reasoning activities. Section 6 is devoted to the final
considerations.

2 Case study

All artifacts presented in this manuscript are related to the production lines that
manufacture car radios (Fig. 1). Each car radio is placed on top of a palette,



whose track along the lines is automatically controlled. The transport system is
composed of several rolling carpets that conduct the radios to the processing sites.

Fig. 1. The production lines of the case study.

The radios are processed in pipeline by the production lines. The processing sites
are geographically distributed in a sequential way, along the production lines.
Each production line is composed of 6 transport tracks (that can be simply called
“lines”): three on the upper level (LA, LB, LC) and three on the lower level (LD,
LE , LF ). The upper level tracks transport palettes from left to right and the lower
level tracks transport palettes from right to left.
The track LB is used to transport radios between non sequential sites. The upper
tracks LA and LC are preferably utilized for sending the radios to the buffers of
the sites (FIFOs that start at the sites). The lower tracks are used for: (1) routing
malfunctioning radios to the repairing sites; (2) feed backing the sites that did
not accept radios because their buffers were full; (3) transporting empty palettes
to the beginning of the line. There is also a robot that receives radios from the
previous production sub processes (component insertion) and puts them on track
LB. The transfers allow the change of palettes between two neighbor tracks at
the same level or between a track and an elevator. The five elevators (eα , eβ , . . .)
establish the linkage between the upper and the lower tracks.

3 Text-based Descriptions

Text-based descriptions in the form of structured rules are used to specify how
the system is or should be regulated. These rules constitute, from the external
point of view, the functionalities of the control parts of the industrial information
system.



The usage of rules at the beginning of the (re-)design phase is crucial to charac-
terize the system, since domain experts can thus be involved to discuss, with the
designers, the expected behavior for the environment elements (that constitute the
plant). The option for natural language allows domain experts (frequently, per-
sons with no scientific knowledge about specification formalisms) to effectively
get involved in the definition of the rules.
Typically, the rules make reference to the elements of the environment. Taking
into account the domain concepts, it is crucial to normalize the vocabulary, the
notation and the graphical elements. For the case study, the graphical notation
depicted in Fig. 2 was adopted, where all the basic elements of the environment
(in this case, sensors and actuators), that must be sensed and controlled by the
system, possess a precise graphical representation and a textual notation.
Fig. 2.a shows (1) rolling carpets that transport the palettes along the Oχ axis,
whose movement is activated by actuator mc; (2) transfers that shift palettes be-
tween transport tracks along the Oγ axis, whose movement is activated by ac-
tuator t; (3) sensors that detect palettes in a specific (x,y) point of the transport
tracks, identified as iu, il,x, il,y, id , ip, ir,y, and ir,x; (4) bar code readers that iden-
tify the car radio that is placed on top of a palette, identified as b; (5) stoppers that
block the movement of palettes in a specific (x,y) point of the transport tracks,
whose state is activated by actuators sc, sp, sl , and sr; (6) processing sites, identi-
fied as Pn,l and Pn,r.
Additionally, for each basic element of the environment, there is a tabular de-
scription that fully characterizes its functionality and its logic interface (output
for sensors and input for actuators). Fig. 2.c is an example of one of these ta-
bles for one inductive sensor. The tables for the other elements in Fig. 2.a are not
shown here, due to space limitations. To specify the concrete production lines,
this textual notation was used to instantiate each one of the existing elements
of the environment package (Fig. 2). See [10] for details, not covered in this
manuscript, on how to obtain the system’s components.
The notation should take into account the elements usually adopted in the prob-
lem domain, so that designers can validate the behavior with the domain experts
when animating the rules with behavioral snapshots. The effort to use only ele-
ments from the problem domain (in these rule-based representations) and to avoid
any reference to elements of the solution domain (in what concerns the system
parts) is not enough to obtain models that can be fully understood by common
domain experts. This difficulty is especially noticeable in the comprehension of
the dynamic properties of the system when interacting with the environment. This
means that, even with the referred efforts, those static representations should not
be used to directly base the validation of the elicited requirements by the do-
main experts. Instead, those static representations are used to derivate behavioral
snapshots.
The purpose is not to formally reason about the mathematical properties of the
obtained system models, in a typical verification approach. The usage of intuitive
representations of the expected system behavior, from the external point of view
and in a usability driven approach, is rather preferred. The adopted tables for
static characterization and pictorial representation of the plant have proven to be
quite effective to accomplish the goal of simultaneously capturing requirements
and supporting the animation of behavioral snapshots.
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Fig. 2. (a) Graphical notation of the case study environment; (b) Graphical notation of an elevator
node; (c) Characterization of one basic element of the environment.



3.1 High-Level Rules

A set of generic rules (named high-level rules), that characterize the global ob-
jectives of the plant, must be defined. The concrete rules (just called rules) must
contribute, either directly or indirectly, to the accomplishment of the high-level
rules. For the running case study, the following high-level rule is an example:

[hlr 3] Transfers and elevators must be managed as scarce resources of
the environment. This implies that the time they are allocated to a given
palette must be minimized and that the simultaneous accesses must be
efficiently controlled.

This high-level rule of the plant is very generic and does not impose any design
or implementation decision to the system. It also leaves open the way it will as-
sure the exclusive access to the critical resources of the environment. However,
although the high level rule is generic in its nature, it constitutes a proper require-
ment of the system, namely the need to control multiple accesses.

3.2 Rules

Due to the great complexity of the system (illustrated in the case study), it was
decided to impose a functional partition that gave rise to two hierarchical levels to
define the (low-level) rules: (1) level 1, where the strategic management decisions
about the flows along the lines are considered; (2) level 2, where the concrete
movement decisions for the palettes along the lines are taken. This 2-level parti-
tioning guides the elicitation of the system requirements, since, for each level, a
specific set of rules must be defined to specialize and refine the high-level rules.
For level 1, four sets of rules were defined: computation of the next production
area (rna), site processing (rsp), buffers management (rbm), and strategic routing
(rsr). In total, 15 rules of level 1 were characterized. As an example, consider one
of the rules related to the site processing:

[rsp-2] A car radio can be processed in a site, if the latter belongs to its
processing sequence, if the task to be processed in the site was not yet
accomplished over the car radio, if it is guaranteed that all the previous
processing tasks were successfully executed over the car radio, and if
the car radio physically arrived to the given site under coordination of
the system.

For level 2, other four sets of rules were defined: transfers access (rta), elevators
access (rea), fault tolerance (rft), and performance optimization (rpo). In total, 16
rules of level 2 were identified. As an example, consider one of the rules related
to the elevators access:

[rea-2] The routing of a palette that requires the usage of an elevator
must be executed in two distinct steps; in the first one, the final desti-
nation is the transfer that is inside the elevator; in the second step, the
destination is the real one and the start is the transfer inside the elevator.



This rule directly contributes to the fulfillment of high-level rule hlr-3. Neverthe-
less, not all high-level rules must be refined, since they are supposed to be very
high-level directives to guide the development of the system. Thus, it is possible
that some of them are not taken into account, especially in the early stages of
system design, when functional prototyping gathers the main design effort. Typ-
ically, high-level directives that are concerned with non-functional requirements,
such as fault tolerance and performance optimization, are postponed due to the
need to adopt requirements prioritization techniques.
To fully characterize the interaction with the environment, all the possible rules
must be elicited and documented. Thus, the system behavior is correctly and com-
pletely inferred. If this task is not properly executed, the behavioral description
of the system can become incomplete and some inconsistencies may also occur.

4 Behavioral Snapshots

Scenarios are almost unanimously considered a powerful technique to capture the
requirements of a given system. They are especially useful to describe the sys-
tem requirements, which are typically more detailed than the user requirements.
Additionally, scenarios are easier to discuss than the textual descriptions of the
systems requirements, since these are inevitably interpreted in different ways by
the various stakeholders, due to the usage of natural language.
UML 2.0 has several types of interaction diagrams: communication diagrams
(designated collaboration diagrams in UML 1.x), sequence diagrams, interaction
overview diagrams, and timing diagrams. Each type of diagram provides slightly
different capabilities that make it more appropriate for certain situations. All in-
teraction diagrams are useful for describing how a group of objects collaborate
to accomplish some behavior in a given scenario. However, these diagrams are
considered too technical for domain experts not able to read UML models.
In some situations, to allow a better communication with the domain experts,
it is important to use a different notation, for modeling the interaction between
the environment elements and the system. That notation should be based on the
vocabulary of the problem domain. In the case study, the environment elements
are sensors, actuators and the palettes for the car radios. If carefully selected to
be as powerful and expressive as the sequence diagrams, the usage of behavioral
snapshots is a proper choice, especially if the system is complex in behavioral
terms and the need to discuss the system with the domain experts is paramount.
In our approach, an instantaneous snapshot is a static configuration of the envi-
ronment elements in a sufficiently short timeframe, which assures the atomicity
of the external observable system state from a behavioral point of view. A behav-
ioral snapshot is a chronologically ordered collection of instantaneous snapshots
that shows how elements of a system behave and react, within a given scenario.
A scenario is a coherent sequence of actions that illustrates behaviors, starting
from a well defined system configuration and in response to external stimulus.
A behavioral snapshot is intended to convey the same behavior as a sequence
diagram, and thus can be seen as a domain specific visual representation of a
sequence diagram. Fig. 3 depicts one behavioral snapshot with four instant snap-
shots (a→ b→ c→ d), for the following rule of performance optimization:



[rpo 3] If a palette, during a movement through the transfers, is in a
transfer of a middle line (lines B and E, for the upper and lower nodes),
it must be verified, during a pre-defined period (parameter TIME BL),
if the exit at the destination is free; if this is not the case, the palette
must follow for a middle line.

In this behavioral snapshot, between instants t1 and t2, palette #2 is put just after
the transfer C, which makes impossible for palette #1 to reach its destination. The
unexpected positioning of palette #2 just after the transfer C may occur without its
explicit transportation by the system, since line operators sometimes put palettes
in the tracks. At instant t3, after time TIME BL is elapsed, the destination for
palette #1 is changed to track LB, since palette #2 is still placed just after the
transfer C. In this case, track LB is used as an alternative route, since the initial
destination (track LC) can not be reached. With this strategy, the permanence of
stopped car radios at the transfers is avoided, which increases the availability
of resources. This behavior maximizes the probability of car radios to have a
destination to exit the node, even in situations where the initial path becomes
blocked for some reason. If the track LB is also blocked, the node is blocked until
the track becomes free. At the lower tracks, the behavior is similar and track LE
is used as the alternative one.
Only for those rules that present some critical behavior requirements it is recom-
mended to construct the corresponding behavioral snapshots. Rule rpo-3 corre-
sponds to a critical situation. The arrows depicted in behavioral snapshots repre-
sent the final destination of palettes. Whenever the destination of a palette must
be redefined, a new arrow must be drawn to represent that new destination.
The behavioral snapshots can also illustrate the application of the rules that present
alternative or optional scenarios. Rule rsr-7 presents two alternative behavioral
snapshots.

[rsr-7] Under the request of level 2 control, level 1 control should au-
thorize one palette to mount into one transfer, if the palette path does
not present any crossing point with any other palette that is already ex-
ecuting its path along the same node and if the exit at the destination is
free (the place just after the transfer) to receive the palette.

Fig. 4 depicts one behavioral snapshot for rule rsr-7. In this scenario, palette #2
has track LB as its destination. At time t1, it is possible to check that the path to
track LB is free, even though one palette (#3) is located in a transfer, while being
conducted to its destination (track LA). The movement of palette #2 can be started
at time t1, since the paths of the palettes #2, #3 and #4 do not overlap and the
destination of palette #2 is free. Instants t2− t4 show the elementary movements
made simultaneously by palettes #2 and #3 to reach their destinations (palette #4
remains stopped during all the scenario).



Fig. 3. A behavioral snapshot for rule rpo-3.

Fig. 4. First behavioral snapshot for rule rsr-7.



Behavioral snapshots are a good technique for requirements elicitation. However,
since they are based on scenario identification, they do not assure a complete
behavior characterization and they lack semantic formalization. These character-
istics justify the usage of a more formal behavioral specification to support the
system detailed design, namely those based on state oriented models.

5 Specification with Colored Petri Nets

As already said, the ultimate goal of the approach partially presented here is to
allow the generation of CP-nets from scenario models, in order to allow validation
of the system under consideration.
The application of PNs to the specification of the behavioral view of controllers
can benefit from several research results. PNs constitute a mathematical meta-
model that can be animated/simulated, formally analyzed, and for which several
implementation techniques are available. The designer can choose, among several
PN meta-models, a specific one intentionally created to deal with the particulari-
ties of the system under consideration, like the ones referred in [4, 7, 15, 16].
In the last years, research in scenario-based modeling is receiving a considerable
attention. In this manuscript, the main general goal is to devise scenario-based
modeling techniques that can be translatable to a PN model, so here we focus on
previous works that address the (more generic) transformation of scenario-based
models into state-based models.
Campos and Merseguer integrate performance modeling within software devel-
opment process, based on the translation of almost all UML behavioral models
into Generalized Stochastic PNs [1]. They explain how to obtain from sequence
diagrams and statecharts a performance model representing an execution of the
system.
Shatz and other colleagues propose a mapping from UML statecharts and col-
laboration diagrams into CP-nets [14, 5]. Firstly, statecharts are converted to flat
state machines, which are next translated into Object PNs (OPNs). Collaboration
diagrams are used to connect these OPN models and to derive a CP-net model
for the considered system, which can be analysed by rigorous techniques or sim-
ulated to infer properties some of its behavioral properties.
Pettit and Gomaa describe how CP-nets can be integrated with object-oriented
designs captured by UML communication diagrams [12]. Their method translates
a UML software architecture design into a CP-net model, using pre-defined CP-
net templates based on object behavioral roles.
Eichner at al. introduce a formal semantics for the majority of the concepts of
UML 2.0 sequence diagrams by means of PNs [2]. The approach concentrates
on capturing, simulating and visualizing behavior. An animation environment is
reported to be under development, to allow the objects to be animated, using the
PN as the main driver. Their work has some similarities with ours, namely on the
usage of sequence diagrams, but uses a different PN language (M-nets) and is
oriented towards sequence diagrams that describe the behavior of a set of objects.
It is important to note that the choice of which state based model to use must
be made consciously, taking into account the characteristics of the system. If
they have simple sequential behavior, FSMs or Statecharts are enough, but if they
present several parallel activities and synchronization points, a high-level PN may
be the most adequate choice to cope with the system’s complexity.



In our approach, behavioral snapshots are translated into sequence diagrams to
allow the application of the techniques described in [13, 11, 3] to allow the rig-
orous generation of CP-nets [6]. The transitions of these CP-nets present a strict
one-to-one relationship with the messages in the sequence diagrams. So, for each
message in a sequence diagram, one transition, in the corresponding CP-net, is
created. In order to make that correspondence more evident, the name of each
transition matches exactly the name of the corresponding message in the sequence
diagram.

6 Conclusions and Future Work

In this manuscript, we present an approach that uses scenario-based descriptions
and CP-net for modeling the behavior of an industrial information system. Further
research is needed to investigate how the approach can be generalized, namely
because the usage of an informal and intuitive notation, based on concepts and
elements borrowed from the problem domain, may not have the same degree of
readability.
A behavioral snapshot is an ordered collection of instant snapshots and shows
how elements of a system behave and react, within a given scenario. Since the
notation for the snapshots should consider the vocabulary of the problem do-
main, designers and domain experts can cooperate in the validation of the system
behavior. The presented approach offers a client friendly scenario notation, which
eases the discussion with non technical stakeholders.
Based on the sequence diagrams equivalent to the behavioral snapshots, con-
trollers can be incrementally formalized with a state based model. CP-nets are
adopted, since they are able to explicitly support the management of the envi-
ronment resources in a conservative way. This incremental approach allows the
completion and early correction of CP-nets by functional validation and perfor-
mance optimization.
Currently, the domain concepts used in the snapshots have to be produced for
each application. As a way to bridge the current gap between sequence diagrams
and snapshots, the development of a domain specific meta model to describe the
terms used on the sequence diagrams is under consideration.
It is also planned to incorporate into the tool workbench a mechanism to achieve
the automatic generation of the animated sequence diagrams. This will allow the
automatic reproduction of the very same set of scenarios that were initially de-
scribed using behavioral snapshots and sequences, if the state based model is
correct and complete.
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